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Abstract

The aim of this study is to offer useful correlation equations to the
designer for the optimum design of annular fins with thermal properties
varying with temperature. In order to obtain the optimum size of the
fins, the heat transfer from the fin must be calculated with the least
assumptions possible. Therefore, the variation of the heat transfer
coefficient and thermal conductivity with the temperature are
considered in this study and a nonlinear fin equation is solved with the
variation of parameters method, which is quite new in the solution of
nonlinear heat transfer problems. Heat transfer rate from the fin to the
environment is calculated in terms of dimensionless problem
parameters with the help of the obtained temperature distribution. Fin
geometries maximizing the heat transfer rate are determined for the
given problem parameters. These results, which can be used for nucleate
boiling, natural convection and forced convection heat transfer modes,
are offered to the designer with two identical correlation equations.

Keywords: Annular fins, Optimization, Variable thermal conductivity,
Nonlinear differential equations, Variable heat transfer coefficient,
Variation of parameters method

Oz

Bu ¢alismanin amaci, 1sil ozelliklerin sicaklikla degistigi dairesel
kanatlarin optimum tasarimi igin, tasarimcitya kullanish korelasyon
denklemleri sunmaktir. Kanatlarin optimum boyutlarini elde etmek icin
kanattan olan 1s1 transferinin miimkiin olan en az kabulle hesaplanmasi
gerekir. Bu nedenle, bu calismada 1s1 tasinim katsayisi ve isil iletkenligin
sicaklikla degisimi goz ontine alinmis ve lineer olmayan kanat denklemi,
nonlinear problemlerin ¢éziimiinde kullanimi ¢ok yeni olan
parametrelerin degisimi yéntemi ile ¢éziilmiis, elde edilen sicaklik
dagilimi yardimiyla kanattan g¢evreye olan isi transfer hizi boyutsuz
problem parametreleri cinsinden hesaplanmistir. Verilen problem
parametreleri igin is1 transfer hizini maksimum yapan kanat
geometrileri saptanmistir. Kaynama, dogal tasinim ve zorlanmis
tastmimla 1s1 transfer modlari icin kullanilabilecek bu sonuglar iki es
korelasyon denklemi ile tasarimcinin hizmetine sunulmustur.

Anahtar Kkelimeler: Dairesel kanatlar, Optimizasyon, Dogrusal
olmayan diferansiyel denklemler, Degisken 1s1l iletkenlik, Degisken 1s1
tasinim katsayisi

1 Introduction

Finned surfaces are the thermal equipment used for increasing
the heat transfer from a solid surface to the environment. An
extensive review containing the research carried out on this
subject is available in the literature [1]. Fins are used in many
areas such as industrial ovens, aircraft and spacecraft radiators,
cooling, heating and air conditioning processes, the chemical
industry and for cooling electronic systems. The environments
in which fins having various sizes and geometries are used have
different flow fields and thus various heat transfer modes.
Although thermal analysis of the fins is generally performed in
terms of the constant heat transfer coefficient, in reality, heat
transfer coefficients for different heat transfer modes are the
functions of the temperature difference between the fins and
the environment [2]. There are many studies in the literature
considering the variation of the heat transfer coefficient [2]-[6].
Laor and Kalman [2] presented a therotical-numerical analysis
oflongitudinal and annular fins which subject to a temperature-
dependent heat transfer coefficient. The thermal analysis of
the annular rectangular profile fins with variable thermal
properties is investigated by using the homotopy analysis
method [3]. The Adomian decomposition method is used to
analyze the thermal characteristics of a straight rectangular fin
for all possible types of heat transfer [4]. In this study, the local
heat transfer coefficient is assumed to vary with a power-law

function of temperature. Kim and Huang [5] proposed a new
series solution to the fin problem with temperature-dependent
thermal conductivity and a temperature-dependent heat
transfer coefficient. The homotopy analysis method is used to
evaluate the analytical approximate solutions and efficiency of
the nonlinear fin problem with temperature-dependent
thermal conductivity and heat transfer coefficient [6]. In a
different study, authors aim to use Least Square Method for
obtaining the temperature distribution in longitudinal fins with
temperature-dependent thermal parameters and different
section shapes and heat generation [7].

Thermal conductivities of the materials used for manufacturing
the fins are known to change with the temperature. In
particular, in the cases where the temperature differences
between the fins and the environment are high, the effect of this
variation on the heat discharged from the fin is emphasized as
significant. Many studies are available in the literature
considering this variation [8]-[16]. The optimum design of an
annular fin with temperature-dependent thermal conductivity
is analyzed by Arslanturk [8]. In a study presented by Kundu
and Bhanja [9], an exercise has been devoted to establish an
analytical model for thermal performance and optimization of
a constructal fin subject to variable thermal conductivity of fin
material and convective heat transfer coefficient over the fin
surface. The Least Square Method is introduced by Aziz and
Bouaziz [10] for predicting the performance of longitudinal fins
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with variable thermal-conductivity. An analytical study based
on the Adomian decomposition method on thermal
performance and optimization for an absorber plate fin having
variable thermal conductivity and overall loss coefficient has
been conducted by Kundu [11]. A homotopy analysis method
(HAM) is used to develop analytical solution for the thermal
performance of a straight fin of trapezoidal profile when both
the thermal conductivity and the heat transfer coefficient are
temperature dependent [12]. Aziz and Khani [13] studied
convection-radiation of a continuously moving fin of variable
thermal conductivity. On the other hand, Torabi et al. [14]
worked on same problem by using differential transformation
method. Mosayebidorcheh et al. [15] studied the transient
thermal analysis of longitudinal fins with variable cross section
considering internal heat generation. In this study, it is assumed
that both thermal conductivity and internal heat generation are
as linear functions of temperature. Moradi et al. [16]
investigated the convection and radiation effects in the analysis
of performance of a porous triangular fin with temperature-
dependent thermal conductivity.

Since many fins are used in a surface, achieving the desired heat
transfer by using minimum fin material gains importance in
terms of costs. In order to obtain the optimum sizes of the fins,
the heat transfer from the fin must be calculated with the least
assumption possible. Therefore, the variations of the heat
transfer coefficient and the thermal conductivity must be
considered.

In this study, the thermal analysis of annular fins with
rectangular profile working in different heat transfer modes
was conducted. Fin equation obtained as a result of the varying
heat transfer coefficient and thermal conductivity is highly
nonlinear. To obtain general results, fin equation is made
dimensionless and dimensionless nonlinear fin equation
containing dimensionless problem parameters is obtained.
These mentioned parameters are defined as thermal-
conductivity parameter representing the thermal conductivity
variation, fin parameter including thermal and geometric
properties of the fin, exponential coefficient representing the
heat transfer mode, the ratio of the dimensionless fin thickness
and the fin radius. Dimensionless fin equation is solved with
the variation of parameters method (VPM), which is a well-
known method frequently used for solving inhomogeneous
linear differential equations [17]. However, it was proved
recently that this method can be used effectively in the solution
of nonlinear differential equations [18]-[20]. In 2010, Mohyud-
Din et al. [18] applied VPM successfully in various initial and
boundary nonlinear value problems. Rahmatullah and Mohyud-
Din [19] solved nonlinear diffusion problems with this method.
Recently, Moore [20] used this method in the solution of
nonlinear direct and inverse heat transfer problems. Moore and
Jones [21] analyzed a conduction-radiation problem in
absorbing, and emitting non-gray planar media using this
method. In order to test the accuracy and efficiency of the
method, Moore compared the solution in the literature and the
results obtained from this method proved that it gives accurate
and precise results [20]. References [20] and [21] are the first
studies in which VPM has been used in the solution of nonlinear
heat transfer problems.

By using temperature distribution obtained from the solution
of the nonlinear fin equation with VPM, heat transfer rate is
expressed as a function of the problem parameters. At this
stage, fin geometry maximizing the heat transfer rate for a given
fin volume is obtained in a wide range of parameters.

Optimization results are expressed by the correlation
equations that the user can easily use. These equations are
thought to be important tools offered in the literature for the
optimum design of annular fins working in boiling, natural
convection and forced convection transfer modes.

2 Mathematical model

This study was conducted to analyze an annular fin of
rectangular profile (Figurel). The base temperature of the fin
and the ambient fluid temperature are T}, and T, respectively.
The fin has these dimensions: thickness t, inner radius r; and
outer radius 7,. Since the fin is assumed to be thin and the
temperature gradient at the fin tip approaches zero, there is no
heat transfer from the fin tip. It is assumed that the heat
conduction is one-dimensional, that is, T =T(r). The
convection heat transfer coefficient and thermal conductivity of
the fin are temperature dependent as mentioned below.
Applying the first law of thermodynamics to the differential fin
element of Figure 1, the fin equation is expressed as follows.
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Figure 1: Geometry of an annular fin.
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Thermal conductivity of the fin and the convection heat transfer
coefficient are temperature dependent according to [3].

k(T) = keo[1+ k(T — To)] (2)
T—T, "
h= hy [ Tm] ()

It is mentioned that the form of Eq. (3) is suitable for heat
transfer coefficients in free convection, forced convection,
nucleate boiling and space radiation at zero ambient
temperature in the literature [2]-[5]. The various values of m
correspond to different heat transfer modes: For free
convection m = 1/3 or 1/4 for radiation m = 3 and for boiling
m = 1/3, 2 or 3. For constant heat transfer coefficient, m = 0
can be used.

In order to obtain the dimensionless formulation of the
problem, it is defined the following dimensionless parameters.

R_r—ri B—T_TOO B,_Zhbri 4
- T ’ _Tb_Too' L= koo (a)
s=L =l L (T — Tw) 4b

_ri, _Ti'lp_S’ﬁ_K (=] ( )
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Where; R dimensionless radial coordinate, & dimensionless
temperature, Bi Biot number, § thickness-radius ratio, 4, radii
ratio, Y, thermo-geometric fin parameter, and £, a parameter
describing the variation of thermal conductivity.

The governing differential equation and its boundary
conditions can be written in non-dimensional form as:

1 d deo 1 dey’
- el m+1 _ bt
1+RdR [(1 Rl =TT e [1/)9 b (dR) ] (>2)
With boundary conditions
0=1at R=0 (5b)

0
_— = —_ 5
TR 0 at R=1-1 (5¢)

3 Variation of parameters method for
nonlinear problems

The method was first developed by Lagrange JL (1736-1813)
for solving linear non- homogeneous differential equations
[17]. It has been shown that the method can also be used to
solve nonlinear differential equations [18]-[20].

Consider a nonlinear differential equation.
0 =f(R,6,6) (6)

Where, L is a second order linear operator.

The related homogeneous differential equation has two linear
independent solutions and the complementary solution of the
homogeneous equation can be expressed as,

0.(R) = Clac,l(R) + Czec,z(R) (7)

Where, c¢; and c, are constants and 6.; and 6., form a
fundamental set of solutions of the homogeneous equation. The
basic idea behind the VPM is to seek a particular solution of the
form

O0(R) = v1(R)B.1(R) + v,(R)O.,(R) (8)

The solution procedure is the same as for a linear differential
equation such that [17].

gp(R) = Clec,l(R) + ngc,z(R) + U1(R)9c,1(R)

+ v,(R)6.2(R) 9)
Where,
(R fRL6,60)6..R)
v (R) = | WO (R, 6.,(R)) dR (10a)
R f(R',6,6)8,(R")
— ’ i b
UZ(R) o W(Qc,1(R'),9c,z(R’)) dR (10 )
Where,
6. 6.
W(0en0e2) = g g, (11

Because, 6 appears on both sides Eq. (9), an iterative approach
is required to solve 6. Although not a closed-form solution
because of the iteration required, the solution can still be
considered exact if f is only a function of R and 8 because the
numerical integration required by Egs. (10a) and (10b) can be
performed to an arbitrary degree of accuracy. If f is also a

function of the derivatives of 6, finite difference equations must
be used to approximate these derivatives [20].

4 The fin temperature distribution

The homogeneous equation corresponding to the fin equation,
i.e. Eq. (5a), is integrated twice, yielding the complementary
solution.

GC(R) = C106’1 (R) + 0295‘2 (R) =C ln(l + R) + Cy (12)
The particular solution can be written as according to Eq. (8).
6,(R) = v; (R) In(1 + R) + v,(R) (13)

The dimensionless temperature profile is the sum of the
complementary and particular solutions.

O(R)=c; (R)In(1 +R) + c; +v;(R) In(1 + R) + v,(R) (14)

The constants c¢; and ¢, in Eq.(14) are found by applying the
boundary conditions given in Egs. (5b) and (5c). By substituting
the constants into Eq. (14), the temperature profile is obtained.

A-1
9(R) = 1— In(1 +R)f (1 + R)g(R, 6,6)dR
. 0
+ In(1 + R)f (1+R)Dg(R',86,0)dR’ (15)
0

R
+f (14 R)In(1 + R g(R',0,60)dR’
0
Where

9(R,6,0) = Pom+t — po?| (16)

|
(1 +50)
Because, 6 and appears on both sides Eq. (15), an iterative
approach is required to solve 6. The iterative solution begins
with an initial guess of the temperature profile. To calculate a
new temperature profile, this guess is used to numerically
integrate the integrals on the right side of Eq. (17).

A-1
oM+t =1— In(1+ R)f (1+R)g(R,0™ 6™)dR
0
R .
+ In(1 + R)f (1+RNDg(R', 6™ 6™dR' (17)
0

R
+f (1+R"DIn(1 + RNHg(R', 6™, 6™)dR’
0

In this study, the linear temperature profile is used as the initial
guess. The finite difference method is used to express the
derivatives of € in Eq. (17). With the initial guess, a new
temperature profile is updated using Eq. (17). This updated
temperature profile is then used to recalculate a new
temperature profile and repeated until convergence is
obtained. Convergence is considered achieved when the
Euclidean norm of the difference between the calculated
temperature profile of the current iteration and that of the
previous iteration reaches the tolerance which is specified as
10-6.

When g equals to zero, the function g describing in Eq. (16)
does not include the derivative of 6. Although the method
requires an iterative approach and numerical integration, the
solution to this special case can be considered exact because
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numerical integration can be performed to an arbitrary degree
of precision [20]. For 8 # 0, the finite difference method must
be used approximate the derivative of 8 on the right hand side
of Eg. (17). In this case the approximate solution of the problem
is obtained.

5 Optimization

Steady-state heat transfer rate from the fin is calculated from
the Fourier heat conduction law.

. [2 k dT]
Q = Ty ar rmr, (18)

By using the dimensionless parameters, dimensionless heat
transfer rates can be defined as follows.

0 dae
1= = —_ 19
9= kT, —Toy A+ A [dR]R=0 (19)
Dimensional and dimensionless fin volumes are calculated as

below.

V=n@2-rPt (20)
- 22 —1)8
v=E_37 ( ) (21)

L

In Eq. (21) & is taken and rewritten into the Eq. (19)
dimensionless heat transfer rate can be defined with the
following function.

q=q(mv,B, A, Bi) (22)

For given m, v and £ and Bi, dimensionless heat transfer rate
is only the function of 4, the radii ratio.

4¢=q@) (23)
A value maximizing this function and the maximum heat
transfer rate corresponding to this value are calculated by a
classical search method.

6 Results and discussion

In this section, firstly the convergence and accuracy of the
solution made with VPM is investigated. Eq. (17) must be solved
iteratively in order to obtain temperature distribution. Three
integrals in Eq. (17) are solved numerically with the trapezoidal
rule. How fin tip temperature changes with the sub-region
number is shown in Table 1. It can be seen from the table that
the 100 sub-region is adequate in order to obtain the solution
regardless of the number of the sub-region. Since fin equation
for(B; m) = (0; 0) state, i.e., Eq (52) is linear, an exact analytical
solution of the equation exists [22]. When Table 2, in which the
comparison of the exact solution and VPM are given for three
different values of the fin parameters, is examined both
solutions are seen to be perfectly compatible.

Moreover, this study and the results obtained by Aksoy [3] with
the homotopy analysis method (HAM) are compared for the
cases where the equation is nonlinear.

Figure 2 is drawn to make this comparison. This comparison
performed for the (4;; m)= (2.0; 0.25; 0.25) parameter group
shows that the results from both methods are perfectly
compatible.

In Figure 3, how heat transfer rate changes with the fin
geometry is investigated for a given fin volume and Biot

number, (v; Bi)= (0.8; 0.01). When Figure 3 is investigated, it is
understood that the heat transfer rate reaches the highest value
in a A value and this A value corresponding to the maximum
point varies with the thermal conductivity parameter . From
the figure, A value in which the highest heat transfer rate occurs
shifts to the lower values with decreased £. Increases of the m
parameters defining the variation of the heat transfer
coefficient with the temperature lead to a decrease in heat
transfer rate. The coordinates of the maximum points of the
curves in Figure 3 are determined with a search method
explained in the previous section. Optimum radii ratio and the
maximum heat transfer rate are shown in Figure 4 as a function
of Bi for five different fin volumes.

1.00

—— HAM, Ref. [3]

0.93 o VPM

0.50
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Figure 2: HAM (Ref. 3) and present VPM numerical results.
(in case of 1 = 2.0, ¥ =0.25, m = - 0.25).
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Figure 3: Heat transfer rate as a function of radii ratio 4, for
v =0.8and Bi = 0.01.

Biot number, Bi

Figure 4: Optimal values of radii ratio and heat transfer rate as
a function of Bi number for five different fin volumes.

Optimum radii ratio for a given fin volume decreases fast with
the low values of Bi and decreases more slowly in the median
values. It seems from this change that fins with bigger surface
areas are needed for small Bi values.
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Table 1: Convergence test of the dimensionless tip temperature for different m and § values (y = 0.2, 1 = 3.0).

m=0 m=1/4 m=1/3 m=2 m=3
M B=-0.2 B=0.2 B=-0.2 B=0.2 B=-0.2 B=0.2 B=-0.2 B=0.2 B=-0.2 B=0.2
10  0.569034 0.569034 0.597029 0.670907 0.670907 0.677053 0.677053 0.756591 0.743894  0.784240
20 0.569094 0.569094 0.597059 0.671010 0.671010 0.677146 0.677146  0.756590 0.743812  0.784215
30 0.569105 0.569105 0.597064 0.671029 0.671029 0.677164 0.677164 0.756590 0.743797  0.784210
40  0.569109 0.569109 0.597066 0.671036 0.671036 0.677170 0.677170 0.756590 0.743791  0.784208
50 0.569110 0.569110 0.597067 0.671039 0.671039 0.677173 0.677173  0.756590 0.743789  0.784207
60 0.569111 0.569111 0.597067 0.671041 0.671041 0.677175 0.677175 0.756590 0.743788  0.784207
70  0.569112 0.569112 0.597068 0.671042 0.671042 0.677176 0.677176  0.756590 0.743787  0.784207
80  0.569112 0.569112 0.597068 0.671043 0.671043 0.677176 0.677176  0.756590 0.743786  0.784207
90  0.569112 0.569112 0.597068 0.671043 0.671043 0.677177 0.677177  0.756590 0.743786  0.784207
100 0.569112 0.569112 0.597068  0.671043 0.671043 0.677177 0.677177 _ 0.756590 0.743785  0.784206
Table 2: Comparison of the present solution and the exact solution for a linear case (m =0, §=0, A= 2.0).
¥ = 0.05 Y =0.10 Y =0.20
R Exact VPM Exact VPM Exact VPM
0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 0.9932582 0.9932582 0.9868281 0.9868280 0.9748124 0.9748124
0.2 0.9875788 0.9875787 0.9757476 0.9757475 0.9536842 0.9536842
0.3 0.9828285 0.9828284 0.9664919 0.9664918 0.9360806 0.9360805
0.4 0.9789039 0.9789038 0.9588537 0.9588535 0.9215861 0.9215860
0.5 0.9757229 0.9757228 0.9526689 0.9526687 0.9098727 0.9098724
0.6 0.9732197 0.9732195 0.9478057 0.9478055 0.9006774 0.9006771
0.7 0.9713403 0.9713401 0.9441569 0.9441566 0.8937874 0.8937871
0.8 0.9700402 0.9700400 0.9416342 0.9416339 0.8890286 0.8890282
0.9 0.9692825 0.9692823 0.9401645 0.9401641 0.8862579 0.8862575
1.0 0.9690361 0.9690359 0.9396864 0.9396860 0.8853571 0.8853565

Figure 4 shows that the maximum heat transfer rate for a given
fin volume increases with the increased Bi number. While this
increase is exponential for small Bi values, it becomes
approximately linear when the Bi number gets bigger. Data in
Figure 4 are for (m; )= (2.0; —0.2) parameter values. To obtain
more extensive results, data that are necessary to draw similar
graphs for all values that f and m parameters can take properly
to the problem of physics must be obtained.

For different values of the data parameters (m=0,1/4,1/3, 2.0,
3.0) and (f — 0.2,—0.1,0.0,0.1,0.2) are obtained as a function
of fin volume and Biot number and expressed with two identical
correlation equations in the intervals of the independent
variables appropriate to the physic problem (0.0005 < Bi < 0.2)
and (04<v<20).

a + bin(v) + cIn(Bi) + d[In(Bi)]?
1+ eln() + flin(v)]? + gln(Bi)

Aopt: Qmax = (24)

Determination coefficients of 50 correlation equations with
corresponding coefficients given in Table 3, each one
representing different parameters are R?>0.998. The surfaces
showing the optimum radii ratio and the surfaces showing the
maximum variation of heat transfer rate for (m; )= (2.0; —0.2)
are shown in Figure 5 and Figure 6. It is clear that these
equations will provide great convenience to the designer in the
optimum design of annular fins having various thermal
parameters.

7 Conclusions

In this study, the optimum design of rectangular profile annular
fins with thermal parameters changing with temperature was
conducted. Temperature distribution inside the fin required to
perform the optimization calculation was obtained by solving
the nonlinear fin equation with the variation of parameters
method. Optimum geometry of the fin, thermal conductivity

parameter defining the variation of the conductivity with the
temperature, fin parameter describing the fin geometry and
thermal properties of fin were obtained in terms of exponential
coefficient representing the heat transfer mode in the medium
where the fin works and fin volume. These results are
presented as correlation equations the designer can easily use.

I =
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Figure 5: The optimum dimensionless radii ratio as a function
ofvand Bi (m = 2.0, = —0.2).
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Figure 6: The maximum dimensionless heat transfer rate as a
function of v and Bi (m = 2.0, § = —0.2).
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Table 3: Coefficients of Eq. (24) for optimum radii ratio and dimensionless heat transfer rate.

m=0 m=1/4 m=1/3 m=2 m=3
Aopt Qmax Aopt Qmax Qmax Aopt Qmax Aopt Qmax
a 1.827635094 0835418425 1804610562 0.785116666 1796727502 0770722023 1681322846  0.602338526  1.635795975 0.549394765
b 0.041572907 0028365066  0.034964069 0.026565105 0034231305 0.026049711  0.011256411 0.020043961  0.004020831 0.018163082
L © 0108350350 0217504026 1 ipocayaq 0204571067 ioi0ocacs 020087309 (oencogccs OASTAO9MAL (o000 0143835315
s 4 0.026567943 0015142211 0026496379 0.014249453 0026281994 0.013994428  0.023730746 0.010996030 0.022394601 0.010050146
n - - - - - - - - -
e e -0I29071400 g cusorg560  0.130322700 0.645287620 0130201770 0.645277610 0132330290 0645771320  0.132426990  0.646031610
f 0.007508585 0075636118 0.007722800 0.075286046  0.007402440 0.075168808  0.007611595 0.073937777  0.007479843  0.073536332
g 0051734828 0499397510 V051317077 4500700670 O0SM4MNT3 503650080 0051291907 517493170 0051601817 550679190
a 1.842977808 0767011373 1819594832 0.721593331 1812098785 0708674567 1697833931 0.555435566  1.653240702 0.506978606
b 0.043404217 0026098363 0.038412348 0.024469951 0035158335 0.024010140  0.014769640 0.018532199  0.007845215 0.016807757
L ¢ OILIG2BI0 0199604969 g igco0zg0g 018793323 g 1o43g3000 OAB4606LIS o ggunnggyg OLSIELTSS ey 0132662669
S 4 0.026969699 0013892108 0.026574109 0.013086660  0.026683046 0.012856617  0.024125065 0.010131408  0.022774207 0.009266490
[l - - - - - - - - -
= e CDA29IBI0 4045175580 0129753650 0.645230550 0130516440 0.645290760 0132168730 0.645668490  0.132018200 0.645906120
f 0.007562647 0075804389 0.007600580 0.075457503  0.007879758 0.075410942  0.007579726 0.074097368 0.007459691 0.073685692
8 DERIG7ITE 0497628170 0051594649 500578360  O0S1B14174 51979500 0051235598 51535959 0051680910 oo 0544020
a 1.857655017 0711075312 1832506441 0.669564588 1829963025 0.657669560 1715532578 0.516782061  1.669603178 0.471962620
b 0.045459649 0024241281 0040838936 0.022750608 0035098587 0.022323841  0.019323615 0017283047  0.010514782  0.015680464
o ¢ 0113557430 0184972384 0109737680 174309292 106779080 0171252345 g ggeeppaap 0134998005 479368749 0123451219
S 4 0.027286154 0012870268 0026768397 0012134631 0027683749 0.011923660 0.024436772 0.009419280 0.023234391 0.008621109
n - - - - - - - - -
S ° 0129177090 0645135270 0129633450 0.645182670  0.131964510 0.645201990  0.131314750 0.645584280 0132056490  0.645786150
f 0.007639190 0075968045 0.007521793 0.075621889 0008129221 0.075520703 0.007557331 0.074248106  0.007390305 0.073835234
g 0.051710741 0495985610 0051653663 499179539 0050517104 500149049  OOSLASTAE 513449450 0051571500 546515909
a 1.872307768 0.664366062 1847308464 0.624205727 1841287170 0.615060873 1728816332 0484296629  1.686404360 0442515141
b 0.048087420 0022687837  0.046208643 0.021038146  0.043032730 0.020915289 0.022558073 0.016230980  0.013645620 0014740377
¢ OLISTEBIT0 0A72TSSBOL  gyppi0000 OA6ZBSTIS g pigppgssg OA600MMOL ogqsnpng 0426458238 ggigg009p 0115690273
S d 0.027721184 0012017219 0.027008602 0.011309016  0.026932149 0.011143914  0.024524816 0.008821007  0.023710025 0.008076328
n - - - - - - - - -
= e 0129051600 4106170  0.128678970 0.639399920 0129261460 0.645162260 0130869780 0.645513970  0.131662800 0.645720350
f 0.007697502 0076128160  0.007624364 0.067846987  0.007530246 0.075679014  0.007474986 0.074396283  0.007600387  0.073967198
g 0051630910 g 494456660 091810610 0494471230 0051738359 0498549160  O051643523 514707500 0051497415 56820270
a 1.889306078 0624739659 1860350863 0.589078957 1850669876 0578821485 1745194852 0456531643 1700004498 0.417264391
b 0.049450048 0021382576 0.048706336  0.020087820 0049613784 0.019716956 0.024269756 0.015330041  0.017349727 0.013932551
Lc 0479290 0162385620 yypcgrgy OISIZINZEggigecaesg OASOS0ISO g ggpgn43gy 0119161683 g pacigige 0109042625
S 4 0.028115776 0011293126 0026752624 0010662653 0026239519  0.010480942  0.025173150 0.008309932 0.023852740  0.007610068
n - - - - - - - - -
@ e -0.129158100
0.645083280 0127927920 0.645134270  0.127151020 0.645144930  0.131259870 0.645450170  0.131147050 0.645553140
f 0.008129253 0076251988 0.007398206 0.075935084 0007337890  0.075835365  0.007588955 0.074534424  0.007463609 0.074080338
& 0052261325 0493158700 U052476560 496190160 0052720334 4 497098960 OOSI318BZS 510084680 0051677125 545076930
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