
 
 

Pamukkale Univ Muh Bilim Derg, 23(4), 444-450, 2017 

 

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 

 Pamukkale University Journal of Engineering Sciences 

 

444 
 

Large neighbourhood search algorithm for type-II assembly line balancing 
problem 

Tip-II montaj hattı dengeleme problemi için büyük komşuluk arama 
algoritması 

Şener AKPINAR1* 

1Department of Industrial Engineering, Engineering Faculty, Dokuz Eylul University, Izmir, Turkey. 
sener.akpinar@deu.edu.tr 

Received/Geliş Tarihi: 22.05.2016, Accepted/Kabul Tarihi: 22.08.2016 
* Corresponding author/Yazışılan Yazar 

doi: 10.5505/pajes.2016.75975 
Research Article/Araştırma Makalesi 

 
Abstract  Öz 

This paper proposes a large neighbourhood search (LNS) algorithm 
for type-II simple assembly line balancing problem (SALBP-II). The 
LNS algorithm was initially developed for solving vehicle routing 
problem and its later implementations were used to solve scheduling 
problems. The reported results about these two problems indicate that 
LNS algorithm is a powerful method. Vehicle routing problem has the 
main objective to find the optimal match between a certain number of 
routes and a certain number of customers, while SALBP-II is trying to 
find the optimal match between a certain number of workstations and 
a certain number of assembly operations. To our point of view, LNS 
algorithm would also be a powerful method for solving SALBP-II due to 
the structural similarity between these two problems. Within this 
context, a LNS algorithm is developed to tackle SALBP-II and the 
performance of the proposed algorithm is tested on a set of benchmark 
instances. Computational results indicate the satisfactory performance 
of LNS algorithm in solving SALBP-II. 

 Bu makale tip-II basit montaj hattı dengeleme problemi (BMHDP-II) 
için bir büyük komşuluk arama (BKA) algoritması önermektedir. BKA 
algoritması ilk olarak araç rotalama problemlerinin çözümü için 
önerilmiş ve sonraki uygulamaları çizelgeleme problemlerinin çözümü 
üzerine olmuştur. Bu iki problem için raporlanan sonuçlar BKA 
algoritmasının güçlü bir yöntem olduğunu ortaya koymuştur. Araç 
rotalama problemi belirli sayıdaki rota ile belirli sayıdaki müşteriler 
arasındaki optimum eşleşmeyi bulmak temel amacına sahipken, 
BMHDP-II belirli sayıdaki istasyon ile belirli sayıdaki montaj işlemleri 
arasındaki optimum eşleşmeyi bulmaya çalışmaktadır. Bizim 
açımızdan, bu iki problem arasındaki bu yapısal benzerlik BKA 
algoritmasının BMHDP-II için de güçlü bir yöntem olabileceği fikrini 
doğurmuştur. Bu kapsamda, BMHDP-II için bir BKA algoritması 
geliştirilmiş ve geliştirilen algoritmanın performansı bir problem seti 
üzerinde test edilmiştir. Hesaplamalı sonuçlar BMHDP-II çözümünde 
BKA algoritmasının tatmin edici performansını ortaya koymaktadır. 

Keywords: Large neighbourhood search algorithm, Assembly line 
balancing, Maximizing production rate, Meta-heuristic 

 Anahtar kelimeler: Büyük komşuluk arama algoritması, Montaj 
hattı dengeleme, Üretim oranı maksimizasyonu, Meta-sezgisel 

 

1 Introduction 

The history of the assembly lines begins with the Terracotta 
Army, which was produced in an assembly type manner in 
China in 200 BC, however, assembly lines played their vital 
role in automotive industry after the development of the first 
automotive assembly line by Ransom Olds in 1901 [1]. In 
1913, Henry Ford improved Ransom Olds’ idea by introducing 
the moving belt for the assembly lines of his factory, where he 
had been produced Model T Fords. This innovative 
improvement on the automobile production process changed 
the type of manufacturing systems all over the world over the 
years because of the significantly reduced cost of production 
through the investment and installation of assembly lines 
(ALs). Through these kind of production systems companies 
have been able to produce standardized products in high 
volumes. Additionally, this type of production systems picked 
out a new optimization problem namely assembly line 
balancing problem (ALBP) that mainly deals with the design 
issues of ALs. ALBP searches for the allocation of task to 
workstations under some constraints in order to optimize 
some pre-determined performance measures. 

Salveson formulated ALBP mathematically for the first time in 
literature and focused on line configuration, assignment of 
tasks to workstations [2]. Afterwards, ALBP has been attracted 
a lot of attention in the research community. This interest of 

the research community on the ALBP has been increased 
continuously. The reader can be informed about the literature 
on ALBPs through the comprehensive review studies of [3]-
[7]. 

This paper considers the single-model assembly lines, 
designed to produce high volumes of standardized products, 
and simple assembly line balancing problem (SALBP) [8] tries 
to calibrate such lines. In the relevant literature, SALBP has 
been tackled as SALBP-I and SALBP-II in order to give some 
decisions concerning the design and operational levels, 
respectively. SALBP-II (respectively SALBP-I) is related to 
assignment of assemble tasks to workstations in order to 
identify minimum cycle time (respectively minimum number 
of workstations) for a pre-determined number of workstations 
(respectively cycle time) while satisfying the problem 
constraints. Both SALBP-I and SALBP-II are NP hard [9], and 
SALBP-I is much more popular among the researchers than 
the SALBP-II [7]. The reader can be suggested to see the 
review paper of [8] for detailed discussions about the solution 
approaches of simple assembly line balancing problems. 

Solution approaches for SLABP-II can be evaluated as direct 
and iterative solution strategies. A direct solution method 
aims at identifying the optimum solution directly, while an 
iterative solution approach tries to identify the optimum 
solution by tackling SALBP-I for different trial cycle times. 
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Additionally, solution methods on SALBP-II can be grouped as 
exact and heuristic approaches. The exact methods developed 
in [10] and [9] are able to solve the SALBP-II iteratively, while 
the one developed in [11] is able solve the problem directly. 
Moreover, integer-programming formulations for SALBP-II 
were developed in [12] and [13]. Besides these exact methods, 
the SALBP-II literature covers many heuristic and meta-
heuristic approaches. A linear programming based two-stage 
heuristic was proposed in [14] while a Petri nets based 
heuristic was proposed in [15]. Another heuristic method that 
starts an initial solution and realizes trade, and transfer 
procedures to improve this solution was proposed in [16]. 
Genetic algorithms [17]-[19], tabu search procedures 
[20],[21], simulated annealing algorithms [22],[23], ant colony 
optimization algorithms [24],[25], particle swarm 
optimization algorithm [26], differential evolution algorithm 
[27],[28], beam search algorithm [28]-[30] and variable 
neighbourhood search [31],[32] were also used to solve 
SALBP-II. In this paper, we propose a large neighbourhood 
search (LNS) algorithm for solving the SALBP-II. The LNS 
algorithm and its variants have been successfully 
implemented to solve vehicle routing problems in literature 
(see Section 2). Vehicle routing problem and the SALBP-II 
have structural similarities as the vehicle routing problem is 
trying to optimally match a certain number of routes and a 
certain number of customers, while SALBP-II is trying to 
optimally match a certain number of workstations and a 
certain number of assembly operations. Therefore, LNS 
algorithm would also be a powerful method for solving  
SALBP-II due to the structural similarity between these two 
problems. To the best of our knowledge, this is the first 
attempt to solve the SALBP-II via the LNS algorithm, however 
a simulation-based adaptive large neighborhood search 
heuristic was developed in [33] for a specific case of assembly 
line balancing problem, designing of a footwear assembly line 
under stochastic task time and parallel workstations. 

The remainder of this paper is organized as follows. Basic 
steps of the LNS algorithm are given in Section 2. The 
proposed LNS algorithm for solving SALBP-II is presented in 
Section 3. Computational study is presented in Section 4. 
Conclusions are given in Section 5. 

2 Large neighbourhood search algorithm 

Nomenclature 

𝑠 A feasible solution, 

𝑠′ Solution under improvement, 

𝑠𝑏𝑒𝑠𝑡 Best solution, 

𝑓(𝑠′) Fitness value of the solution 𝑠′, 

𝑓(𝑠𝑏𝑒𝑠𝑡) Fitness value of the best solution, 

𝑞 and 𝑝 User defined parameters, 

𝐿 
An array sorting individual effects of tasks on a 
solution, 

𝑦 A random number from the interval [0, 1). 

𝑟 Task to be removed from a solution  

Shaw [34] initially proposed the LNS algorithm for solving 
vehicle routing problem with time windows (VRPTW). The 
LNS algorithm tries to explore the solution space of an 
optimization problem through two successive operators: 
destruction of a solution by a removal heuristic and reparation 
of the destroyed solution by an insertion heuristic. A removal 
heuristic generates an infeasible solution by removing some 

components of a solution, while an insertion heuristic turns 
this infeasible solution to a feasible solution by reinserting the 
removed components with the guidance of a rule. Then, LNS 
algorithm accepts or declines this solution via an acceptance 
function. LNS algorithm executes these steps successively as 
can be seen from Figure 1 until the stopping condition is met. 

Initialize 𝑠 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠}  and  𝑞 ∈ ℕ 

   𝑠𝑏𝑒𝑠𝑡 ← 𝑠 

     repeat 

         𝑠′ ← 𝑠 

         project 𝑞 components out of 𝑠′ 

         reinsert removed components into 𝑠′ 

         if (𝑓(𝑠′) < 𝑓(𝑠𝑏𝑒𝑠𝑡))  then 

              𝑠𝑏𝑒𝑠𝑡 ← 𝑠′ 

         if accept(𝑠′, 𝑠) then 

              𝑠 ← 𝑠′ 

     until termination condition met 

report 𝑠𝑏𝑒𝑠𝑡 

Figure 1: Main steps of the LNS algorithm [35]. 

LNS algorithm and its variants are powerful methods for 
routing and scheduling problems in general [36]. Ropke and 
Pisinger modified the basic LNS algorithm and they named the 
modified algorithm as adaptive large neighbourhood search 
(ALNS) algorithm [35]. ALNS has many successful 
implementations in literature [37]-[44]. Within the scope of 
this current paper, we have the aim of tackling the SALBP-II 
via a LNS algorithm and this attempt will be the first one for 
solving an ALBP via a LNS algorithm in literature as far as we 
know.   

3 A large neighbourhood search algorithm for 
SALBP-II 

This section introduces the proposed LNS algorithm for 
solving SALBP-II in depth. The proposed algorithm initializes 
itself by randomly generating a feasible solution and tries to 
improve this solution through removal and insertion 
heuristics. The algorithm terminates itself when the stopping 
condition is achieved. The following sub-sections introduce 
the main steps of the proposed LNS algorithm for SALBP-II. 

3.1 Solution representation 

In the proposed LNS algorithm, we used task based 
representation [45],[46], which is used for type-I ALBPs in 
general. The number of tasks defines the length of the 
representation schema; however, the situation is different for 
type-II problems. A solution representation schema of type-II 
ALBPs must contain the information about the pre-determined 
number of workstations.  Because of this reason, the original 
task based representation must be modified to code a solution 
of the SALBP-II. Within this context, we modified the original 
task based representation as illustrated in Figure 2. 
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1 2 5 0 4 6 7 3 0 8 9 0 10 11 

Figure 2: Solution representation for SALBP-II. 

Figure 2 represents a SALBP-II solution of an assembly line 
having 11 tasks and these tasks must be performed within 
four workstations. In addition to the original task based 
representation, the modified version contains separators as 
“0” for determining tasks assignments to a pre-defined 
number of workstations. As can be seen from Figure 2, three 
separators used for determining tasks assignments to four 
workstations. Thus, the representation schema for 11 tasks 
and 4 workstations problem has 14 digits. According to this 
representation, tasks 1, 2 and 5 are performed in workstation 
1, tasks 4, 6, 7 and 3 are performed in workstation 2, tasks 8 
and 9 are performed in workstation 3, and finally tasks 10 and 
11 are performed in workstation 4. The workload of each 
workstation is calculated as the summation of task times 
assigned to the related workstation and the maximum 
workload specifies the occurred cycle time on the line 
according to the related solution.  

3.2 Initial solution 

As mentioned before, the proposed LNS algorithm starts with 
a randomly generated initial feasible solution and tries to 
improve this solution through its operators. For the SALBP-II, 
the initial solution generation mechanism firstly determines a 
task sequence that satisfies the precedence relations between 
tasks.  After that, it divides the related task sequence into s 
number of workstations by inserting s-1 separators into 
randomly selected positions within the task sequence.  Figure 
3 illustrates the initial solution generation mechanism for an 
assembly line having 11 tasks and 3 workstations. 

 

Figure 3: Initial solution generation mechanism. 

The precedence relations and the task performing times are 
shown in Figure 3a and the Figure 3b illustrates a feasible task 
sequence according to precedence relations among tasks. For 
determining tasks assignments to three workstations 2 
separators are inserted into the randomly determined 
positions within the feasible task sequence as can be seen 
from Figure 3c. According to the randomly generated solution 
in Figure 3c, tasks 1, 4, 8 and 5 are performed in workstation 
1, tasks 3, 2 and 9 are performed in workstation 2, and tasks 6, 
10, 7 and 11 are performed in workstation 3. These 

assignments of tasks result to workloads for workstations 1, 2 
and 3 as 20, 10 and 15, separately. As a result, the cycle time of 
the assembly line is determined as 20 due to the solution 
depicted in Figure 3. 

3.3 Removal heuristic 

The proposed LNS algorithm realizes a removal heuristic 
based on the worst removal heuristic [35] in order to destroy 
the current solution. This main idea of this heuristic is 
specifying the misplaced tasks within a solution and inserting 
them into another position in the current solution. Within this 
scope, the proposed removal heuristic calculates a cost value 
of performing task 𝑖 in its current position in the current 
solution as 𝑐𝑜𝑠𝑡(𝑖, 𝑠) = 𝑓(𝑠) − 𝑓−𝑖(𝑠) where 𝑓(𝑠) is the cost of 
the complete solution and 𝑓−𝑖(𝑠) is the cost of the solution 
without task 𝑖. For the SALBP-II implementation of the worst 
removal heuristic, we considered the total idle time occurring 
on the assembly line. Hereby, the proposed removal heuristic 
aims at identifying the tasks causing high idle times within the 
assembly line according to current solution. In other words, 
the proposed removal heuristic aims at specifying the tasks 
inducing high cycle time in its current position in the current 
solution. The algorithm of the worst removal heuristic is 
depicted in Figure 4. 

Inputs: 𝑠 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠}, 𝑞 ∈ ℕ, 𝑝 ∈ ℝ+ 

 while 𝑞 > 0 do 

   Array: 𝐿= Sorted tasks by decreasing 𝑐𝑜𝑠𝑡(𝑖, 𝑠) 

   generate 𝑦 randomly from the interval [0, 1) 

       𝑟 ← 𝐿[𝑦𝑝|𝐿|] 

       remove task 𝑟 from solution 𝑠 

       𝑞 ← 𝑞 − 1 

 end while 

Figure 4. Worst removal heuristic  

As can be seen from Figure 4, removal heuristic uses two 
parameters as 𝑞 and 𝑝 for determining the number of tasks to 
be removed and avoiding repeatedly removing same tasks, 
respectively. As mentioned before, this heuristic tries to 
specify the misplaced tasks in a solution and therefore 
identifies the tasks required to move to another position in the 
current solution. Various removal heuristics were developed 
especially for the adaptive versions of the LNS algorithm, but 
there is no information about the best removal heuristic in 
literature. Therefore, we select the more reasonable removal 
heuristic for us, since our focus is to implement the LNS 
algorithm for SALBP-II not identifying the best removal 
heuristic within the context of this paper. 

3.4 Insertion heuristic 

In this paper, we used an insertion heuristic based on the 
ranked positional weight technique (RPWT) [47], which 
calculates positional weights for all the tasks of an assembly 
line according to the precedence relations and task performing 
times. The positional weights are then used as priority values 
while assigning tasks to workstations. For the SALBP-II 
implementation of the LNS algorithm, it is required to 
determine the order of reinserting the removed tasks by the 
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removal heuristic. Within this scope, the insertion heuristic 
used in this paper firstly ranks the removed tasks according to 
their positional weights in descending order. After that, the 
insertion heuristic tries to reinsert the removed tasks in its 
best position in accordance with their ranks. Various insertion 
heuristics because of different priority values can be used for 
the SALBP-II implementation of the LNS algorithm, however 
we mainly focus on the implementation of LNS algorithm to 
SALBP-II not selecting the best insertion heuristic within the 
context of this study. 

3.5 Solution acceptance and stopping criteria 

The original LNS algorithm accepts only the improving 
solutions; however, this may cause to be trapped in a local 
optimum.  Therefore, the later variants of LNS algorithm 
realize an acceptance function in order to specify the current 
solution. In our implementation of LNS algorithm to SALBP-II, 
we use an acceptance criteria based on the simulated 
annealing algorithm’s acceptance criteria as realized in [35]. 
That is, the proposed LNS algorithm accepts a solution 𝑠𝑜𝑙’ in 
comparison to the current solution 𝑠𝑜𝑙 with the probability of 

𝑒−(𝑓(𝑠𝑜𝑙’)−𝑓(𝑠𝑜𝑙))/𝑇 where 𝑇 > 0 defines the current iteration’s  
temperature. The temperature has an initial value as 𝑇𝑠𝑡𝑎𝑟𝑡 and 
it decreases via the rule 𝑇 = 𝑇. 𝑐𝑟, where 0 < 𝑐𝑟 < 1 is the 
cooling ratio. The proposed LNS algorithm terminates itself 
after executing a pre-determined number of iterations or 
achieving the previously known optimal solution of a problem.  

4 Computational study 

This section evaluates the performance of the proposed LNS 
algorithm. For this purpose, we used the benchmark data sets 
downloaded from the website of http://alb.mansci.de/. The 
benchmark sets contain 302 instances in total. 128 instances 
based on 9 different precedence graphs belong to the data set 
1 with the number of tasks varying from 29 to 111 and the 
rest of the 174 instances based on 8 different precedence 
graphs belong to the data set 2 with the number of tasks 
varying  from 53 to 297. Each SALBP-II instance is defined 
with the precedence relations between tasks illustrated via a 
precedence graph 𝐺 and the processing times of each task. 
Moreover, 𝑛 number of tasks must be assigned to a pre-
determined number of 𝑚 workstations in order to identify the 
existing minimal cycle time 𝑐∗. 

4.1 Results and Discussion 

In this sub-section, we have directly compared the proposed 
LNS algorithm to 15 formerly developed SALBP-II methods, 3 
versions of genetic algorithm (pGA [48], rGA_prb and rGA_rks 
[49]), 4 versions of differential evaluation algorithm (DE-prb 
and DE_rks [27], IDEA_rd2 and IDEA_opt [28]), 3 petri net 
based heuristics (PNA_for, PNA_back and PNA_bid [15]),  
4 versions of particle swarm optimization (PSO1, PSO2, PSO3 
and PSO4 [26]) and iterated beam search (IBS [29]). The 
proposed LNS algorithm was coded in Matlab 7.9 and then the 
results were obtained by running the coded LNS on a 
Core(TM) i7-2640 CPU 2.80 GHz personal computer. 
Additionally, LNS requires tuning some parameters as 
summarized in Table 1 with their values and definitions. 

The values of the parameters were determined through a 
preliminary experimental study executed on the problem of 
Killbridge with 45 tasks and 11 workstations. This preliminary 
study was performed with three levels of 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ∈
{50, 100, 150}, three levels of the lower limit (LL) and upper 

limit (UL) for the rule that randomly selects the number of 
tasks to be removed as 𝐿𝐿 ∈ {4, 8,12} and 𝑈𝐿 ∈
{min (50, 0.2𝑛), min (50, 0.4𝑛), min (50, 0.6𝑛)}, and three levels 𝑝 ∈
{4, 6, 8}. The values for the parameters Tstart and cr were taken 
from [50]. This experimental study done for parameter tuning 
resulted with the parameter values given in Table 1 by 
considering the quality of the generated solutions and 
computational time spent by the algorithm.  

Table 1: Parameters of the proposed LNS. 

Parameter Definition Value 

MaxIter 
Maximum number of 
iterations 

100*n 

q 
Number of tasks to be 
removed 

4 ≤ 𝑟𝑎𝑛𝑑𝑖()
≤ min (50, 0.4𝑛) 

p 

Parameter used to 
avoid repeatedly 
selecting same task for 
removal 

6 

Tstart Initial temperature 100 

cr Cooling ratio 0.99975 

Through this preliminary study we can provide following 
observations. The higher values of 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 caused redundant 
iterations while its smaller values result with disappointed 
performance of the algorithm. Higher values of the LL of the 
random selection rule caused unsatisfactorily level of 
intensification., while the lower values of the UL of the random 
selection rule caused unsatisfactorily level of diversification. 
Finally, lower values of  𝑝 cooresponds to much randomness 
as stated in [35]. The results obtained via the proposed LNS 
algorithm and the provided results of the other 15 algorithms 
on the benchmark sets are reported in Table 2. We ran the 
proposed LNS algorithm 10 times for all the test problems, 
since the reported results for the majority of other methods 
had also been obtained through 10 independent runs of 
algorithms for each problem. Table 2 provides the following 
information for all the methods. 

 c%dev: The average relative deviation from the 
known optimum solution (previously known 
minimal cycle time c*) in percentage; calculated as 

 ((𝑐 − 𝑐∗)/𝑐∗)100; where c is the best cycle time 

achieved by the solution algorithm. 

From the observations of Table 2, it can be clearly seen that 
the proposed LNS algorithm outperformed the variants of 
genetic algorithm, differential evaluation algorithm, particle 
swarm optimization and petri net based heuristics with 
respect to the c%dev achievements, which is related to the 
main optimization criteria of cycle time. However, IBS 
outperforms all the other algorithms, as well as LNS as can be 
obviously seen from Table 2. The results of all the algorithms 
are visualized in Figure 5, which displays the fluctuations of 
c%dev values over the benchmark problems, in order to 
emphasize the effective performance of the proposed LNS 
algorithm in solving SALBP-II instances. 

The effectiveness of the LNS algorithm in solving the SALBP-II 
instances can be clearly seen if the average %cdev values 
provided for the data sets seperately taken into consideration. 

http://alb.mansci.de/
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LNS was able to generate solutions for data set 1 and data set 
2 with an average %cdev value of 0.78 and 1.02, respectively. 
Therefore, we can conclude that LNS is a powerful method for 
solving SALBP-II instances. Finally, average %cdev values in 
comparison to other methods are visualized in Figure 6 in 
order to provide a better undestanding. 

5 Conclusions 

The main idea of this study was to tackle SALBP-II with a LNS 
algorithm for the first time in literature as far as we know. The 

original LNS algorithm and its later variants were generally 
used to tackle vehicle routing and scheduling problems. 
Especially for the vehicle routing problems, variants of the 
LNS algorithm is able to produce satisfactory results. Due to 
the similar nature of vehicle routing and type-II ALBP, it was 
thought that the LNS algorithm would be a satisfactory 
method in solving type-II ALBPs. Within this context, a LNS 
algorithm was developed to tackle a well-known assembly line 
balancing problem of SALBP-II. 

 

Table 2: Computational results over the benchmark set. 

Problem 
Name 

n pGA 
rGA_ 
rks 

rGA_ 
prb 

DE_ 
prb 

DE _ 
rks 

IDEA
_ rd2 

IDEA
_ apt 

PNA_ 
for 

PNA_ 
back 

PNA_ 
bid 

PSO1 PSO2 PSO3 PSO4 IBS LNS 

Data Set 1 

Buxey 29 3.26 2.15 2.46 2.69 1.16 2.21 3.07 3.07 2.92 3.76 1.96 5.88 1.55 5.01 0 0.55 

Sawyer 30 2.61 4.51 3.67 3.52 2.27 3.34 3.52 4.00 4.39 5.24 2.24 6.62 1.60 5.61 0 1.22 

Lutz1 32 0.32 0.71 0 0.35 0.32 0.35 0.71 4.09 2.93 4.09 - - - - 0 0.32 

Gunther 35 0.64 1.71 1.21 1.02 0.14 1.02 1.27 1.27 2.99 1.27 0.87 3.88 0.64 3.92 0 0.42 

Kilbridge 45 1.38 0.96 0.8 0.6 0.66 0.60 0.60 2.19 1.46 1.91 0.80 1.64 0.68 1.78 0 0.07 

Tonge 70 2.75 3.63 3.63 2.07 1.88 2.07 1.78 2.53 3.41 2.92 2.91 5.99 2.03 5.82 0 1.03 

Arcus1 83 1.65 1.96 1.48 0.83 0.99 0.98 0.78 2.47 2.57 2.25 1.42 3.20 0.70 3.04 0.0287 0.70 

Lutz2 89 3.13 3.76 2.84 2.54 3.08 2.64 1.99 2.99 4.44 3.92 - - - - 0 0.85 

Arcus2 111 5.02 5.27 5.11 4.98 4.96 4.98 4.64 2.06 4.61 2.25 3.79 6.67 2.02 5.77 0.0066 1.82 

Average 2.31 2.74 2.36 2.07 1.72 2.02 2.04 2.57 3.51 2.88 2.00 4.84 1.32 4.42 0.0058 0.78 

Data Set 2 

Hahn 53 0 1.27 0 0 0 0 0 2.52 2.08 2.61 - - - - 0 0.50 

Warnecke 58 4.29 6.40 5.25 3.31 3.74 3.98 3.51 5.57 5.90 6.01 - - - - 0.0579 0.35 

Wee-Mag 75 2.61 2.37 2.44 1.39 1.23 1.63 1.39 1.56 1.63 1.57 - - - - 0 0 

Lutz3 89 2.54 3.20 2.19 1.58 1.68 2.88 1.57 2.59 2.88 2.94 - - - - 0 0.78 

Mukherje 94 - - - - - - - 1.04 1.41 1.21 - - - - 0 0.64 

Barthold1 148 0.85 0.76 0.58 0.24 0.26 0.46 0.26 1.02 0.46 0.48 - - - - 0 0.64 

Barthold2 148 9.64 9.77 9.88 7.37 6.85 4.79 4.79 3.97 4.79 4.32 - - - - 0 2.14 

Scholl 297 10.16 11.76 10.31 9.87 9.51 10.16 9.24 3.21 2.90 2.75 - - - - 0.0028 3.13 

Average 4.27 5.08 4.38 3.39 3.32 3.41 2.97 2.85 3.01 2.93 - - - - 0.00071 1.02 

 

 

Figure 5: The average relative deviations over the benchmark instances. 
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Figure 6: Average %cdev values according to different algorithms. 

 

The performance of the proposed LNS algorithm was 
evaluated on a set of SALBP-II instances against 15 formerly 
developed SALBP-II methods, 3 versions of genetic algorithm, 
4 versions of differential evaluation algorithm, 3 petri net 
based heuristics, 4 versions of particle swarm optimization  
and iterated beam search. Computational results demonstrate 
that the proposed LNS algorithm is capable to SALBP-II 
instances with a satisfactory performance. 

Future researches will focus on tackling the different versions 
of ALBP via the proposed LNS algorithm and developing some 
other variants of the LNS algorithm for the ALBPs in order to 
improve the effectiveness of the proposed LNS algorithm. 
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