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Abstract  Öz 

Adaptive smoothing methods were suggested to improve forecast 
results on the characteristic changes of time series. The existing 
adaptive smoothing methods have been diversified over the years. 
Many of them are comprised of complicated logical or mathematical 
propositions for improving forecast accuracy, which are very different 
from the original simple method called Trigg and Leach method. A new 
method named Fuzzy Tuning Exponential Smoothing is introduced in 
this paper introduces. This method is successful in improving the 
forecast accuracy, especially for the time series including level shift or 
level shift with outlier deflection. The empirical application carried out 
on ‘The M2-Competition Time Series’. The statistical analysis results 
demonstrate that the method outperforms classical adaptive 
smoothing method in terms of forecasting accuracy. In addition, the 
proposed method is relatively simple compared to other advanced 
adaptive methods. 

 Uyarlamalı düzleştirme metotları zaman serilerinin karakteristik 
değişimleri üzerindeki tahmin sonuçlarını iyileştirmek için 
önerilmişlerdir. Zaman içerisinde var olan uyarlamalı düzleştirme 
metotları çeşitlenmiştir. Birçoğu Trigg & Leach olarak isimlendirilen 
orijinal basit metottan çok farklı olup, doğruluğu artırmak için 
karmaşık mantıksal veya matematiksel önermeler içermektedir. Bu 
makalede Bulanık Ayarlamalı Üstel Düzleştirme olarak isimlendirilen 
yeni bir metot sunulmaktadır. Bu metot özellikle seviye kayması veya 
seviye kaymasıyla beraber aykırı sapmaların bulunduğu zaman 
serileri için tahmin doğruluğunun iyileştirilmesinde başarılıdır. 
Ampirik uygulama ‘The M2-Competition Time Series’ üzerinde 
gerçekleştirilmiştir. İstatistiksel analiz sonuçları tahmin doğruluğu 
açısından bu metodun klasik uyarlamalı üstel düzleştirme metodunu 
geride bıraktığını göstermektedir. Buna ek olarak önerilen metot diğer 
gelişmiş uyarlanabilir metotlarla karşılaştırıldığında oldukça basittir. 

Keywords: Adaptive exponential smoothing, Deflection, Forecasting, 
Fuzzy logic, Level shift, Time series 

 Anahtar kelimeler: Uyarlamalı üstel düzleştirme, Sapma, Tahmin, 
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1 Introduction 

Exponential smoothing and its derivatives have been 
commonly used by researcher dealing with the forecasting 
process covering a widespread area from engineering to social 
sciences for a long time [1]-[5]. Theoretically, these forecasts 
are carried out from an exponentially weighted average of 
past observations. These methods can be investigated in two 
parts as adaptive and non-adaptive approaches. Adaptive 
exponential smoothing technique introduced by Trigg & Leach 
in 1967 (T-L) is pioneer work in the adaptive approaches and 
it is preferred for its intelligibility [6]. Adaptive smoothing 
approach is presented to overcome insensitivity problems on 
the time series changes (these are level shifts, ramp shifts, and 
etc.) as a result of certain events such as economic, politic, 
natural, technological changes [7],[8]. However, it is reported 
that some in cases this technique delivers unstable forecasts 
compared to non-adaptive smoothing techniques [9]-[11]. 
Therefore, researchers have strived to develop effective 
adaptive smoothing techniques and consequently, the 
numbers of these techniques have increased over the years.  

In classical adaptive approach, smoothing parameter is 
adaptively adjusted depending on the last forecasting error 
magnitude to track time series changes and this process is 
performed on simple exponential smoothing (SES) [8],[9]. 
Also, several adaptive techniques considering trend and 
seasonality are developed such as Evolutionary Operation 
(EVOP) by Chow and its extended version Self-Adaptive 
Forecasting Technique (SAFT) by Roberts & Reed [12],[13]. 

SAFT makes the best forecast by using heuristic technique that 
tries each combination of level, trend, and seasonality 
smoothing factors to reach the lowest mean absolute 
percentage error (MAPE) value for each period [14]. This 
methodology has been modified by Mentzer several times, 
using T-L approach for the smoothing factors [14],[15]. Thus, 
the technique has become more sensitive towards to the end 
of the series.  However, it is widely accepted in the literature 
that only the level smoothing factor should be adaptive 
without other parameters belonging to trend and seasonality 
to prevent instability on the forecast and that is why the SES 
has been generally preferred [9]. There are some conservative 
models developed by Whybark, Dennis, which smoothing 
factor changes according to the control limits [16],[17]. The 
other one developed by Rao and Shapiro which uses the 
spectrum of the time series to determine level smoothing 
factor [18]. Kalman filter has been used as an alternative 
model to adjust to the parameter of SES.  However, this model 
has some limitations and also the empirical evidence is not 
enough for verifying an ideal approach [9]. Pantazopoulos and 
Pappis have proposed a simpler method (named as P-P in this 
paper) which adapts to the level smoothing factor dividing 
absolute value of the two steps ahead forecast error by the one 
step ahead error [19]. However, empirical results indicate that 
smoothing factor often takes a value of 1 [20]. Another method 
is Taylor’s smooth transition exponential smoothing (STES) 
which enables a smoothing parameter to be adapted to a 
logistic function of user-specified variables [9],[21]. The origin 
of STES is based on the smooth transition generalized auto 
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regressive conditional heteroskedastic (GARCH) models and 
the numerical simulation results are satisfactory for this 
model [20],[21]. The drawback of the STES is that model-
fitting is needed to estimate some parameters used in the 
function [20]. A recent study by Monfared et al., revised simple 
exponential smoothing (RSES) is introduced as an alternative 
method to recognize non-stationary level shifts in the time 
series and to adopt the weight coefficients accordingly [8]. 
This method does not require transitional variables or any 
judgmental information. However, there is no comparative 
analysis with other adaptive methods. Apart from these 
methods, some hybrid approaches have been proposed to set 
smoothing factors adaptively, using some expert system and 
algorithms [22]-[26]. In practice, these approaches have 
achieved successful results in industry where they have been 
used, but they have stayed private due to the difficulty of 
application. It is obvious that the developments carried out on 
the adaptive versions become complicated and difficult to 
understand in time. Easily applicable methods are still being 
preferred in industry. 

A new method named fuzzy tuning exponential smoothing 
(FTES) is evolved taking into account the above assessments 
in this study. This method has three main features. The first is 
being simple and straightforward. The second is quickly 
responding to the series changes especially in level shifts, and 
the last feature is preventing the deviation effects of outlier 
changes. In the following section, the theoretical base of FTES 
method is primarily described. In Section 3, the discussions of 
forecasting results on numerical examples are presented and 
the performance of the method is evaluated in terms of 
validity. Finally, a conclusion is given in Section 4. 

2 Theoretical statement of the FTES method 

The proposed method includes a fuzzy logic controller to set 
the smoothing factor. It is known that the adaptive smoothing 
factor can be any rational number between 0 and 1 band 
ranges. However, the success of the proposed method depends 
on the determination of ideal adaptive smoothing factors 
minimizing the future forecast errors. The advantage of the 
fuzzy logic approach is also being capable of including 
experience by using linguistic expressions in the decision-
making process. Thus, the adaptive forecasting process, 
normally complex quantitative functions are simplified with 
the linguistic terms qualitatively.  FTES method is comprised 
of three simple parts as shown in Figure 1.  In the first part, 
the variance-sensitive variables called φt  in period (t), and 
φt−1  in period (t-1) are determined. The second part is fuzzy 
logic controller which sets the smoothing factor 𝛼𝑡 and the last 
part is the adaptive forecasting based on  a  SES  equation  as 
given:  

𝐹𝑡+1 = 𝛼𝑆𝑡 + (1 − 𝛼)𝐹𝑡 (1) 

As well known, in this static equation, the smoothing factor 𝛼 
is a constant selected optimally by minimizing the sum of 
squares errors or any suitable error function for the next 
forecasts [15]. 𝐹𝑡+1 is the next period forecast and 𝑆𝑡 is the 
observed value. However, the smoothing factor should be 
renewed for each period in the adaptive version {∀𝛼𝑡:   𝛼𝑡 ∈
𝑄+, 0 ≤ 𝛼𝑡 ≤ 1} as defined in equation 2. 

𝐹𝑡+1 = 𝛼𝑡𝑆𝑡 + (1 − 𝛼𝑡)𝐹𝑡  (2) 

In FTES method, the smoothing factor 𝛼𝑡 determined by multi-
input, single-output (MISO) fuzzy controller. The inputs called 
variance-sensitive variables 𝜑𝑡  and 𝜑𝑡−1  are updated for each 
period and defined as the following formulas:  

𝜑𝑡 =
|𝜎𝑡

2 − 𝜎𝑡−1
2 |

𝜎𝑡
2̅̅̅̅

 (3) 

𝜑𝑡−1 =
|𝜎𝑡−1

2 − 𝜎𝑡−2
2 |

𝜎𝑡−1
2̅̅ ̅̅ ̅̅

 (4) 

Where, 𝜎𝑡
2 denotes the population variance, 𝜎𝑡

2̅̅̅̅  is the variance 
average of the whole series up to (𝑡) time. The population 

consists of the 𝑡 elements 𝑆1 …  𝑆𝑡 ∴ the average is 𝜇 =
1

𝑡
∑ 𝑆𝑖

𝑡
𝑖=1  

and the variance equation is given by 

𝜎𝑡
2 =

∑ (𝑆𝑖 − 𝜇)2𝑡
𝑖=1

𝑡
 (5) 

In this study, the variance calculations are performed as the 
following form; 

𝜎𝑡
2 = [

(𝑆𝑡 − 𝜇𝑡)2 + (𝑆𝑡−1 − 𝜇𝑡)2 + (𝑆𝑡−2 − 𝜇𝑡)2

3
] (6) 

In this form, the last moving 3 observed values are taken into 
account in the series and thereby the reduction of the variance 
changing in time is prevented. Where 𝜇𝑡  is the moving trio-

average and it is computed as 𝜇𝑡 =
1

3
∑ 𝑆𝑖

𝑡
𝑖=𝑡−2  for each period. 

The variance-sensitive variable φt  changes depending on 
whether the series is wavy or not. If a level shift or an outlier 
deflection has been occurred in the series, φt  increases. 
Theoretically, φt  can reach very high values for some peak 
points according to the characteristics of the series. However, 
in normal conditions, φt  circulates around the average of the 
variance-sensitive variable φt ̅̅ ̅̅ , generally. The limits of the 
input membership functions are defined as multiples of 
average of the variance-sensitive variable φt ̅̅ ̅̅  for both inputs. 
These input limit values can be continually updated in each 
cycles if desired. But it is not practical to do this without big 
character change in the series. Therefore, φt ̅̅ ̅̅  value could be 
selected fixed average level according to the time series 
characteristic and updated occasionally at certain intervals. 
The most important point to be considered in this process is 
that the peak points are not included in the value of average in 
order to avoid deviations from the mean. The input 
membership functions are composed of four intervals called 
low, mean, high and peak as shown in Figure 2(a) The limits of 
the output membership functions created for the smoothing 
factor are defined as fixed four intervals called v-low, low, 
high, and v-high in the range of [0,1] as shown in Figure 2(b). 

 

Figure 1: FTES method forecasting cycles. 
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The variance-sensitive variable φt  takes smaller value for 
stationary or low volatility characteristics of the series. In 
these cases, it is reasonable to select low 𝛼𝑡 values. If the 
volatility rises, φt  takes higher values with 𝛼𝑡 to catch 
significant changes in the series. In some cases, non-
permanent very high leaps (spike, peak, etc.) may occur in the 
time series under abnormal conditions. For example, the 
majority of the electricity spot-price series are non-stationary 
and they include spikes with seasonal variations [27]-[29]. 
However these spikes are not permanent unlike level shift. 
Therefore, the forecasting errors are increased in these events. 
To overcome of this problem by the proposed method, when 
such a situation occurs, the 𝛼𝑡 value is set as v-low instead of 
just setting v-high value. In the next step, it is observed that 
whether the situation is permanent or not, by checking the 
current φt  and the previous φt−1 values. If the level of the 
current φt  are large (~9φt ̅̅ ̅̅ < φt ) the adaptive smoothing 
factor 𝛼𝑡 should be selected as small value (close to 0), again. 
But, how much 𝛼𝑡 would be close to 0 is determined by the 
size of the φt−1 value. If the peak situation is not permanent, 
this time the adaptive smoothing factor 𝛼𝑡 should be selected 
according to the value of current φt . Through this simple logic, 
very large forecast errors arising from abnormal situations are 
automatically eliminated. In order to perform these processes, 
7 rules are defined in the fuzzy rule base respectively and the 
surface graphic belonging to changes of the smoothing factor 
𝛼𝑡 depending on the input variables is shown in Figure 3, as 
follows: 

3 Verifying of the proposed method 

3.1 Graphical validation 

In this section, the validity of FTES method is demonstrated by 
using two time series. The first series includes level shifts and 
it is obtained a reference called M2-Competition (M2C88, 2 
monthly series) [30]. The second series is actually similar to 
the first series except one peak point (formed on the same 
series). Figure 4(a) shows forecasts belonging to the first 
series for all methods. Smoothing parameter αt takes different 
values for the adaptive methods except for the SES in each 
period as shown in Figure 4(b), 4(c) and 4(d) respectively. The 
diversity of the smoothing parameter changes for the FTES 
method is less than the other adaptive methods and it is stable 
at the point where no more change in the series. When a 
remarkable increase or decrease occurs in the series, it varies 
depending on fuzzy controller which is sensitive to the 
variance changes. However, the response speed of the FTES 
method is much faster than the T-L, except in cases of peak. 
Similarly, the response speed of the P-P is fast, but it is not 
stable due to the lack of variation range evaluation. The 
superiority of the FTES method is better understood when 
APE changes are investigated with other methods as shown in 
Figure 4(f), 4(g), 4(h) and 4(i) respectively. For the first series 
(level shift only), APE changes of the SES method are lower 
from the adaptive methods up to (point 56). However, it is 
quite normal, because the smoothing factor has been 
determined to be optimal value using the past data up to 
(point 56). During the level shift, APE changes of the FTES 
method are lower than the other methods. For the second 
series (level shift with outlier deflection), the advantage of the 
FTES method is revealed more clearly when the last group of 
figures located in Figure 5 is examined. During the outlier 
deflection (at point 83), all APE results are similar for all 
methods. But from that point (point 84 and after), APE results 

of the FTES method is significantly lower compared to the 
other methods as shown in Figure 5(f). The outlier deflection 
occurring at any point of the series has an inevitable impact on 
the estimation based on P-P method as shown in Figure 5(g). 
FTES method detects the outlier deflections which do not 
conform to the character of the series and reduces the forecast 
error; it adjusts the smoothing parameter αt a small value for 
the next forecast as shown in Figure 5(b). The smoothing 
parameter αt at this point takes as 0.2 value for the FTES 
method while it takes as 0.55 value for the T-L method and 1 
value for the P-P method. Even if there are small errors caused 
by the outlier deflections, these errors are attempted to be 
minimized by the nature of the FTES method. 

 

(a) 

 

(b) 

Figure 2: (a): Input membership functions and  
(b): Output membership functions. 

 

 

 

Figure 3: Fuzzy rules with surface appearance. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 4: (a): Comparative forecasts produced by all methods named as FTES, T-L, P-P and SES, respectively. These forecasts are 
carried out for only level shift in the series, (b): Smoothing parameter αt changes for the FTES method, (c): Smoothing parameter αt 
changes for the T-L method, (d): Smoothing parameter αt changes for the P-P method, (e): Optimized and fixed smoothing parameter 
α for SES method for the whole series and this value obtained using the past data of up to 56 points, (f): Absolute percentage error 
(APE) changes at each forecast point for the FTES method, (g): APE changes at each forecast point for the T-L method, (h): APE 
changes at each forecast point for the P-P method, (i): APE changes at each forecast point for the SES method. 

Optimized value (0.3) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 5: (a): Comparative forecasts produced by all methods named as FTES, T-L, P-P and SES, respectively. These forecasts are 
carried out for level shift and level shift with outlier deflection cases in the series, (b): Smoothing parameter αt changes for the FTES 
method, (c): Smoothing parameter αt changes for the T-L method, (d): Smoothing parameter αt changes for the P-P method,  
(e): Optimized and fixed smoothing parameter α for SES method for the whole series and this value obtained using the past data of 
up to 56 points, (f): Absolute percentage error (APE) changes at each forecast point for the FTES method, (g): APE changes at each 
forecast point for the T-L method, (h): APE changes at each forecast point for the P-P method, (i) : APE changes at each forecast point 
for the SES method. 
 

Optimized value (0.3) 
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3.2 Statistical validation 

The statistical evaluation and benchmark of the proposed 
method is demonstrated by using two criteria, namely the 
MAPE and the RMSE. The evaluations are carried out on two 
parts of the series for before and after the level shift point. The 
statistical results of level shift only and level shift with outlier 
deflection cases are given in Table 1, separately. 

𝑀𝐴𝑃𝐸 =
1

𝑇
∑ |

𝑒𝑡

𝑆𝑡
|

𝑇

𝑡=1

 (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ 𝑒𝑡

2
𝑇

𝑡=1
 (8) 

Where, 𝑒𝑡 = 𝑆𝑡 − 𝐹𝑡, corresponds to (t) and T is the number of 
forecast.  

For all methods, the MAPE and RSME rates are close to each 
other before level shift, but FTES method has a slightly better 
result than the other adaptive methods as shown in Table 1. 
Actual major advantage of the FTES method can be observed 
after the level shift and/or outlier deflection. The proposed 
method, FTES produces better results compared to the other 
methods for the first case (level shift only). The percentage 
MAPE result belonging to FTES method is determined as 
6.24% for the whole series in the first case while it is 
determined as 6.71% for the T-L method and as 7.34% for the 
P-P method. For the second case, the increases of the 
percentage MAPE and RMSE levels are expected due to the 
outlier deflection in the series. However, the minimum 
increases of these values are observed for the FTES method. 
The difference of percentage MAPE values between first and 
second cases after the level shift is determined as 0.55% for 
the FTES method while it is determined as 1.48% for the T-L 
method and as 3.22% for the P-P method. These results clearly 
reveal that the proposed method, FTES is particularly 
appropriate for the time series comprising level shift, outlier 
deflection or both of them. 

4 Conclusion 

In this paper, a new adaptive exponential smoothing method, 
FTES is introduced for the short-term forecasts. FTES method 
uses the fuzzy logic approach to set the smoothing factor 
adaptively depending on the variance changes of the time 
series. In this context, the new method is more advantageous 
in 

terms of simplicity and applicability compared with many 
existing methods in the literature. 

The validity of the proposed method is illustrated by using the 
data of M2-Competition time series. The FTES method is 
successful in improving the forecast accuracy, especially for 
the time series including level shift or level shift with outlier 
deflection. The method identifies outlier deflection in the 
series and it is isolated for the next forecast. The response rate 
of the method corresponding to the significant changes of the 
series is satisfactory. The success rates of the FTES method 
generally condense within a range between 5%-15% on the 
basis of MAPE results for various time series pattern 
compared to the other non-adaptive and adaptive methods 
specified in this study.  

However, a limitation exists despite the advantages of the 
proposed method. If the number of data set is less, the 
averages of the variance-sensitive variable φt ̅̅ ̅̅  may fluctuate. 
In such cases, a fixed optimal variable φt ̅̅ ̅̅  can be chosen for the 
first few forecasts until it becomes stable. 
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