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Abstract 

Nonlinear Black-Scholes equations provide more accurate values by taking into account more 

realistic assumptions, such as transaction costs, illiquid markets, risks from an unprotected 

portfolio or large investor's preferences, which may have an impact on the stock price, the 

volatility, the drift and the option price itself. Most modern models are represented by nonlinear 

variations of the well-known Black-Scholes Equation. On the other hand, asset security prices may 

naturally not shoot up indefinitely (exponentially) leading to the use of Verhulst’s Logistic 

equation. The objective of this study was to derive a Logistic Nonlinear Black Scholes Merton 

Partial Differential equation by incorporating the Logistic geometric Brownian motion. The 

methodology involves, analysis of the geometric Brownian motion, review of logistic models, 

process and lemma, stochastic volatility models and the derivation of the linear and nonlinear 

Black-Scholes-Merton partial differential equation. Illiquid markets have also been analyzed 

alongside stochastic differential equations. 

The result of this study may enhance reliable decision making based on a rational prediction of the 

future asset prices given that in reality the stock market may depict a nonlinear pattern. 
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1. Introduction 

 
Logistic Geometric Brownian Motion Model 

In relaxing one of the assumptions of the Black-Scholes-Merton partial differential equation and 

using the Walrasian law and the excess demand function ED(S(t)) = QD(S(t)) - QS(S(t)), where 

ED(S(t)) represents the excess demand, QD(S(t)) and QS(S(t)) are the quantities demanded and 

supplied respectively, the price of an asset follows a logistic geometric Brownian motion given by 

equation; 
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Where S* is the Walrasian market equilibrium price, S is the stock price at any given time t,   is 

the drift rate and  is the volatility of the stock price at any given time t. Here, volatility  is 

constant, [37]. 

 
We use the Logistic Geometric Brownian Motion in equation (1) and a choice of portfolio in 

equation S
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We intend to derive a Logistic nonlinear Black-Scholes-Merton partial differential equations for 

the European call option with volatility depending on different factors, such as stock price, time, 

the option price and the respective derivatives. We therefore intend to take into account several 

effects that are not included in the linear models as well as the recent Nonlinear models. In 

particular we shall emphasize the logistic Brownian Motion. 

 
The methodology will involve, analysis of the geometric Brownian motion, review of logistic 

models, soIt 'ˆ process and lemma, stochastic volatility models and the derivation of the linear and 

nonlinear Black-Scholes-Merton partial differential equation. Illiquid markets shall also be 

analysed. An analysis of stochastic differential equations will also be done extensively. Finally, an 

attempt will be made to derive the Logistic Non-linear Black-Scholes-Merton Partial Differential 

Equation. 

 
2. The Logistic Nonlinear Black-Scholes-Merton Partial Differential Equation  

 

In this section we use the Geometric Brownian motion equation given by equation 1 above 
and the random walk in discrete time given by 

 

( )2
3

tOtStSd  ++=           (2) 

 
with the assumption that the portfolio is revised every t where t is a finite and a fixed time step 

and that the hedged portfolio has an expected return equal to that from a risk free bank deposit, 

which is the same as the valuation policy in discrete hedging with no transaction costs. 

 

Suppose the price of an asset follows a Logistic Geometric Brownian motion given by equation 

(1) given as 

 

dZSSSdtSSSdS )()*( * −+−=   
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then over a sufficiently small time interval t the change in stock price is given by 

 

( )2
3

)()( ** tOtSSStSSSd  +−+−=       (3) 

 
Where  is a random drawing from a normal distribution table. 

We set up a hedged portfolio  as 

 

( ) StSC −= ,           (4) 

 

Where ( )tSS
C ,
= . Henceforth we suppress dependance of  ,,C on t over t After a given time 

t therefore the portfolio becomes 
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from which it follows that 
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Expanding this in Taylor's series we obtain 
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Which has not accounted for the inevitable transaction costs that will be incurred on rehedging. 

The costs are  

kS|C|. 

 
The quantity C of the underlying asset that are bought is given by the change in the delta from a 

given time step to the next: 
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Which can be approximated by 
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Where all derivatives are now evaluated at(S,t). After two terms canceling we get the 

approximation 
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Subtracting the cost from the change in portfolio value gives a total change of || ckSd −=

which is 
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The mean of this is 
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Because 1][,0][ 2 ==  EE  and    2=E  

 

We also find that 
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since   0|| =E  

 

The variance of the portfolio change is therefore 
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to leading order. For finite hedging period t and finite cost k this cannot generally be made to 

vanish. However, the variance, or risk, can be minimized by choosing 
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to leading order. This quantity is an expectation allowing for the expected amount of transaction 

costs. We now set this quantity equal to the amount that would have been earned by a risk free 

account: 
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On dividing by  and rearranging we obtain the Logistic nonlinear Black Scholes Merton partial 

differential equation given by 
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3. Conclusions and Recommendations  

 
In this article we have managed to derive a Logistic nonlinear Black Scholes Merton Partial 

differential equation based on the model with transaction costs. This comes as an advancement in 

the study of the nonlinear Black Scholes Merton Partial differential equation and in its application 

in the prediction of future asset prices where transaction costs are considered together with the 

logistic geometric Brownian motion unlike in previous studies where the Geometric Brownian 

motion has been used. 

 

We recommend that interested scholars solve the differential equation in order to enhance 

prediction of future asset prices based on the model derived. 
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