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Abstract

In this article, the authors used two dimensional Laplace transform to solve non - homogeneous
sub - ballistic fractional PDE and homogeneous systems of time fractional heat equations.
Constructive examples are also provided.
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1. Introduction and Preliminaries

The problem related to partial differential equation commonly can be solved by using a special
integral transform, thus many authors solved the boundary value problems by using single
Laplace transform. Furthermore, two dimensional Laplace transforms in the classical sense for
solving linear second order partial differential equations were used by Ditkin [11], Brychkov
[13]. The Laplace transform, it can be fairly said, stands first in importance among all integral
transforms for which there are many specific examples in which other transforms prove more
expedient. The Laplace transform is the most powerful in dealing with both initial boundary
value problems and transforms [1-9]. The two dimensional Laplace transforms is a powerful tool
in applied mathematics and engineering.

The fractional derivative is one of the most interdisciplinary fields of mathematics, with many
applications in physics and engineering and deals with extensions of derivatives and integrals to
non-integer orders. It represents a powerful tool in applied mathematics to study a myriad of
problems from different fields of science and engineering, with many breakthrough results found
in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory,
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statistical mechanics, astrophysics, cosmology and bioengineering [13, 14, 15, 16]. Several
definitions have been proposed for a fractional derivative. We deal with Caputo fractional
derivatives only. In this section, we present the definition of this derivative.

Let us take f an arbitrary integrable function. By ,1“f (t) we denote the fractional integral of
f with order ¢ >0 on [0,t ] defined as follows

PPN L A €O
ST O=55 L oo

The above integral is sometimes called the left-sided fractional integral.

For an arbitrary real number ¢ >0 (n—-1<a <n,neN) the Caputo fractional derivatives are
defined as

_ 1 v fM(x)
CDaf t)=_|I" af(n)t —
DI O= OO =5 [ aoo)e

The Caputo fractional derivative is a regularization in the time origin for the Riemann-Liouville
fractional derivative by incorporating the relevant initial conditions. The major utility of the
Caputo fractional derivative is caused by the treatment of differential equations of the fractional
order for physical applications, where the initial conditions are usually expressed in terms of a
given function and its derivatives of integer (not fractional order), even if the governing equation
is of fractional order. If care is taken, the results obtained using the Caputo formulation can be
recast to the Riemann-Liouville version and vice versa.

Let f (t) be a function of t specified fort >0. Then the Laplace transform of function f (t) is
defined by

L{f (t)}:j:e-“f (t)dt:=F(s).
IfL{f (t)}=F(s),then L"{ F(s)} is given by

f(t):%j:i:e“F(s)ds, (t >0)

Where F(s) is analytic in the region Re(s)>c and f (t) =0 fort <O0.

This result is called complex inversion formula. It is also known as Bromwich's integral formula.
Whenn -1<a <n, we get the following [14, 15]

L{SD,“f (t)}:s“F(s)—nf s*kLf () (),
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Example 1.1. Let us solve the following fractional Volterra equation of convolution Type. The
Laplace transform provides a useful technique for the solution of such
Equations

A[1,(2B(t=&) D, "¢(£)d& =[%j2 @B v+a >l $0)=0.

Solution. Upon taking the Laplace transform of the given equation, we obtain

B B
E s o=,
S S
Solving the above equation, leads to
2B
lje s
©E) =~ | o

By applying the inverse Laplace transform, we get the formal solution

v+a—1

1t ) 2
¢(t)=;(ﬁj J,.oa(2\2p0).

Lemma 1.1  Let us consider the following system of fractional singular integro - differential
equations of convolution-type with the Bessel kernel:

Dg 9;(x) =1‘1(X)—/1Z(X _t)EJV(Z\/a(X —1)) g, (t)dt

a

—5Y25 (2\fa(x 1)) g, (t)dt

X
a

XCD:gz(x):fz(x)+/1?)(

Where g,(0)=9,(0)=0,v>-1,0<|4|<1land f,(x),f,(x) are known functions.
Then the above system has the following formal solutions
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9,00 = > (-2)" j I N TRy N3

(2k+1) (az+v+1)+g
2 2

NI I © I @ s styser R D D) ()t

+f1(0)i (—A%)~ (ﬁ) ey (2</2kax )

2k (a+v+l)+a

X M(a+v+l)+g

SLOX D ARSI 2 ?3 Gty (2ABEK DX,

(2 +1) a
—t (atv+D)+ .
9,(x) = Z( D 23 j ((2k e 23k say(avoyra (NRK +D(x —0)) ()t

—_t k(a+v+ )+
+Z( A2)K j (—t) ' 3, (a+v+1)+a(2,/2ka(x —t))f,/(t)dt

(2k +1) a
(a+v+l)+—
(2k +1) 2 2
ALOYED AT 3 o iy (PR FDX)
S sk, X k(a+v+1)+2 \/_
RO NCONCES Doy (2 KE)

Proof - In order to solve the above system, by introducing we can rewrite the above system of
partial fractional integro - differential equations in the following form

1%
D g (x) =1 (x)+/1i)}(%)2\]v(24/a(x “1))g (t)dt
0

Whereg (0)=0,v>-1,a>0,0<|4|<1.
By applying the Laplace transform of both sides of the above equation term - wise we obtain

sG(s) = F(s) + Ai p( e =
1 1
G(s) = F(s)= F
T LA a— (s)
Sv+1 gtV exp(a)
_F@) < (A (A

=— sF(s)
Z S(a+v+1)k exp("a) Z (a+v+1)k+a+1 exp(‘%“)
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Now, using the fact that

LY pf; )y (X)ZJ (VA ), ()% = (D)%, (1)** = (-D)*i

Upon taking the inverse Laplace transform of the above term, yields
(a+v+1)k +a

g(x)= j Z(M) ( 2 J(awﬂ)km(&/ka(x —t))f ‘(t) dt
Ok =0

(a+v+D)k +a

HOXEC) 2 Il @ka)

Finally, by taking the real and imaginary part of the above relation, we finally obtain the
solutions of the system in the following forms

(a+v+1)+

g,(x) = z< 20 j (—) 23 o1 avstyea (22/2KA0C 1)) F(t)clt

(Zk +1)(a+v+1)+g

DIACUR J <(2k +1)a i 23 o sty (2REK DX D))t

k (a+v+1)+

+f1(0)§ (_lz)k (ﬁ) 2J 2k (a+v+l)+a (2v2kax )

(2k+1) (a+v+1)+%

~f «»Z( DA I @est(avtyea (2yREK +DX).

Similarly we get

(2k +1) -t (2 1)(“+V 1)+§
g,(x)= Z( D2 -[((Zk 1)a J 2k ) (@rvit)ra

(2\/a(2k +1)(x —t))f,(t)dt

X —t . K (a+v+1)+

+Z( 22) j (—) Jok arvstyea (2K —D) ()l

(2k +1) a
(a+v+D)+—
(2k +1) 2 2 [
+f (O)Z( 1) AT ((Zk 1)3.) J(2k+1)(a+v+1)+a(2 a(Zk +1)X)
o ok, X k(a+v+1)+
+f2(0)k§(_ﬂ) (2 ) 2k(a+v+1)+a(2"2k )-
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Definition 1.1 Let f (x,y ) be a continuous function defined on the square[0,) x [0,x),
which is of exponential order, that is, for some 1,£eR"

ACRDI

Sup AX+EY

x,y>0 €

Then the two dimensional Laplace transforms of f (x,y ) is defined as

LA O, y)3=[ [ e ™ f(x,y)dxdy =F(p,q).

IfL{f (x,y)}=F(p,q),then L;*{ F(p,q)} is given by

1 o+ petico o
f(x,y)z(zm)zjg_iw [ e 9F(p,q)dpda.

Definition 1.2 The one-dimensional convolution of f (x ) and g(x) isas

(f *g)0) =] f(x-2)g(z)dz,
Also, the two-dimensional convolution of f (x,y ) and g(x,y) isgiven by
(f **g)0xy) =] [)f(x=&y-n)g(&n)dndé

2. Evaluation of Integrals and Solution to Fractional P.D.E. By Means of the Two
Dimensional Laplace Transform

In this section, we evaluate the integrals that their evaluations are not an easy task. But, by means
of two dimensional Laplace transform we can evaluate these integrals.

Lemma 2.1 The following integral relations hold true

2) 1 =2[> 2 pei (———)dar=3,(2)
No

Tz tana Jta

3ri

Where bei (z )=Im(J,(ze * )) and

_ 2w .icostdtz“”(—l)"
b)I_ﬂjobm(JF) t 2
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Proof. (a) : By change of variablet = tan «, we get

————Dbei (—=)dt.

__j t(t +1) \/_

L(pQ){tbel(Zr)}—
p’q’ +

Using the fact that

Let us assume that

1 . X
Then, we get
dt 1 1 1

0 1 1+
t*+1)(t° + Pa g A
( )( pzqz) p q

LI (X, y) b= —o |
7pq

The inverse two dimensional Laplace transform of the above relation yields

L(x,y)=3,(2xy),
Which concludes that?
I =1(1,1)=J,(2).

Proof (b ) : Similarly, we obtain

-y

n=0

Theorem 2.1 (Sub Ballistic Fractional PDE) The following non - homogeneous partial
fractional differential equations [17].

SDiu(x,t)+5Dfu(x,t)=1 : x,t>0

Where 0 < «, <1 with the boundary conditionsu (0,t ) =u(x ,0) =0,
We get the following formal solution
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B 0 (_1)n anatn+l
uxH=2, T(1-na)C(n+2)

Proof: At first, we assume that O<a <1 and0<f <1, then applying the two-dimensional
Laplace transform term wise to P.D.E, yields

3 1
p“U(p.,q)+q”’U(p,q)=—o,
pq

with L,{u(x,t)}=U(p,q). Therefore

1 1 0 (_1)nqnﬂ—l
U(piq):pq(pa_'_qp): qﬂ :Z p(n+l)a:+1 '
pa+1q (1+ pa) n=0

The inverse two-dimensional Laplace transforms yields

& (A xOhes
u(x 1”‘% T(na+a+1)T(1-ng)

For the special caseax = # =0.5, we have

2

\/;(\/?_\/?+)\(/ﬁ _t)’

u(x,t)=

And the figure is shown as follows.

alpha=beta=0.5
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Note that when O<a <1 and =1, by using the two-dimensional Laplace transform, we may
calculate U (p,q) as follows,

1 1 E (_1)n pno:—l
=2

P - a 42
pa(p”+q) pqz(1+r;) "o d

U(p.a)=

So that

B © (_1)n X—natn+l
UG =2 T 2)

For ¢ =1 and g =0.5, we have the following

alpha=1 , beta=0.5

In special case, let us take @ = # =1, the Laplace transform with respectto t gives
1
Ux(x 1q)+qU (X aQ):a,

Therefore
1 _ax
U (x ,Q)=q—2(1—e )

At this point, the inverses Laplace transform yields

X >t
DX <t

u(x,t)=t—(t-x )H(t—x):{i
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alpha=beta=1

3. Solving System of Time Fractional Heat Equations

In this section, the authors considered certain homogeneous system of time fractional heat
equations which is a generalization to the problem of thermal effects on fluid flow and hydraulic
fracturing from well bores and cavities in low permeability formations [12]. In this work, only
the Laplace transformation is considered as it is easily understood and being popular among
engineers and scientists.

Problem3.1 Solving the homogeneous systems of time fractional heat equations [12]

o’u
ox?

Cha 2
DU =Kk

k262
ox?

‘Dfv = +A2$Dfu

WhereO<a <1,0<x <o, t >0 with the boundary conditions,

u(0,t)=1, limJu(x,t)|<oo, v, (0,t)=-1, lim|v(x,t)|<oo

And the initial conditions areu(x ,0) =v (x ,0)=0.
Solution: Application of the Laplace transform to the first equation and the initial conditions,
yields

s“U(x, s)=k*U,_ (X, s).

Now, the boundary conditions give

7)(

U(x, s)_—e ko =

3
M8
=]

N
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That leads to

R L

0 t 2

uix, =Zo nk! ra- "y
2

The special case a =1 gives
X

2k [t

Similarly, applying the Laplace transform of the second equation and using the initial conditions,
we arrive at

u(x, t)=erfc(

).

a

52

V, (X, $)=s“V(X, s)=—s""e .

Using the boundary conditions, solution of the above differential equation is as

a

2 2 2
V(X,s)= /1_+ l( 4 XA e k.
S

—+1 @
s2 2ks 2

The Laplace transform inversion formula leads to the following formal solution

X na a na a na
) (—*)n 2 T2 2 2 2 27
v(x, t)=>" kl At ——+k t - JL2x -
o N2 g Ny g @ Nay 2K pq @ Nay
2 2 2 2 2

For the special case @ =1, we obtain

A2 X t A% X .
v(x,t)=(=—-x)erfc(——=)+| 2k,[—+—=— |e .
D=5 =X (2kﬁ) { \ 7 Zkﬂ/ﬂ'tJ

We have shown the solutions in the following figures for « =1,0.5 and A=k =1
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alpha=1 alpha = 0/5

alpha = 0/5

J
s 20
4 06 08 10 12 14 16 12

z

4. Effect of a Uniform Overburden on the Passage of a Thermal Wave
In this section, the authors considered certain homogeneous time fractional heat equations which
are a generalization of the problem of the effect of a uniform overburden on the passage of a
thermal wave and the temperatures in the underlying rock studied by D.S. Parasnis [16].

Problem 4.1 Let us find the fractional heat flow in a two-layer earth [12]

2
°Dfu,(x ,t):q% :0<x<h ,t>0
2
“Du,(x ,t)=a2% th<x ,t>0

Where O0<a <1 and a, denotes the diffusivity of the layer, u, denotes the temperature and x
denotes the distance down from the surface. At the earth's surface, there is a diurnal cycle
u,(0,t)=T,sinwt , while at the interface between the two layers,

ou,(ht ou,(h,t
u,(h,t)=u,(h,t), k, 18(x ):k2 26(x )

Where k; denotes the thermal conductivity. We also require that lim|u,(x ,t)| <co. The initial
X —o0

conditions areu,(x ,0) =u,(x,0)=0.
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Solution: Taking the Laplace transform of two equations, we get
2 a
AU (.8) Sy (x,5)=0 (i =1,2).
d x a,

Therefore, using the initial and boundary conditions, we get the following

ﬁexp( 2h f exp(—x\/sT)

exp(x / . 2
1+,Bexp( 2h , ) S W 1+,8exp(—2h\/57a)
4 &

exp{h( ) X S}
T,w (1+,B) V \/ \J a
sTHw 1+ pexp(—2h )
\} a

k -k
Where g = 1\/a_2 “/a . Toinvert U, andU,, we observe that
kiya, +k, 2,

1

Z( 1)" B" exp(- 2nh4/ )
1+ Bexp(- Zh/ ) "o %
&
f| Sexp(—2h i)
\ &

U,(x, s)— Zi( 1)y ,H”“exp{ (2nh+2h—x)\/§}

Sa
5 W Z( p)" exp{ (2nh+x) /g}
Uz(X,S):wi(_ﬂ)nexp{ |:(2n+l)h+(h ) } s }
STHWT oo /—ai

U,(x, s)_

And

U,(x,s)=

<1. Then we get the following relations

And
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We can show (by using convolution) that the inverse of

Is as

F(2,8)= (5 )exp(- zs")

f(z ,t)=t1j; sin(e(t —7) W (—%,O;—Z—a)dr.

T2

Where W (.,.) stands for the Wright function. The final solutions are

And

2nh+2h—x 2nh+x

(0 =T 2 (1 41 (R 0T, 3 () (R )

} (2n+1)h+(h—x)\/§
u,(x,t) =T, (1+8) 2, (= B)" f( =, ).
% e

5. Conclusion

In this paper, analytic solution of the space - time fractional sub - ballistic and heat equations are
derived using the integral transform method. The authors implemented two dimensional Laplace
transform to solve non -homogeneous sub ballistic fractional PDE and homogeneous systems of
time fractional heat equations. Illustrative examples are given.
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