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1. Introduction and  Preliminaries 
 

The problem related to partial differential equation commonly can be solved by using a special 

integral transform, thus many authors solved the boundary value problems by using single 

Laplace transform. Furthermore, two dimensional Laplace transforms in the classical sense for 

solving linear second order partial differential equations were used by Ditkin [11], Brychkov 

[13]. The Laplace transform, it can be fairly said, stands first in importance among all integral 

transforms for which there are many specific examples in which other transforms prove more 

expedient. The Laplace transform is the most powerful in dealing with both initial boundary 

value problems and transforms [1-9]. The two dimensional Laplace transforms is a powerful tool 

in applied mathematics and engineering.  

 
The fractional derivative is one of the most interdisciplinary fields of mathematics, with many 

applications in physics and engineering and deals with extensions of derivatives and integrals to 

non-integer orders. It represents a powerful tool in applied mathematics to study a myriad of 

problems from different fields of science and engineering, with many breakthrough results found 

in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory, 
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statistical mechanics, astrophysics, cosmology and bioengineering [13, 14, 15, 16]. Several 

definitions have been proposed for a fractional derivative. We deal with Caputo fractional 

derivatives only. In this section, we present the definition of this derivative. 

 

Let us take f  an arbitrary integrable function. By ( )a tI f t  we denote the fractional integral of 

f  with order 0   on [ 0 , ]t  defined as follows 

 

1

1 ( )
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a t
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The above integral is sometimes called the left-sided fractional integral.  

 
For an arbitrary real number 0 ( 1 , )n n n N       the Caputo fractional derivatives are 

defined as 
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The Caputo fractional derivative is a regularization in the time origin for the Riemann-Liouville 

fractional derivative by incorporating the relevant initial conditions. The major utility of the 

Caputo fractional derivative is caused by the treatment of differential equations of the fractional 

order for physical applications, where the initial conditions are usually expressed in terms of a 

given function and its derivatives of integer (not fractional order), even if the governing equation 

is of fractional order. If care is taken, the results obtained using the Caputo formulation can be 

recast to the Riemann-Liouville version and vice versa. 

 
Let ( )f t  be a function of t specified for 0t  . Then the Laplace transform of function ( )f t  is 

defined by 

                                             
0

{ ( )} ( ) : ( ).s tL f t e f t dt F s


   

 

If { ( )} ( )L f t F s , then 1{ ( )}L F s  is given by 

 

                                                
1

( ) ( ) , ( 0)
2

c i
t s

c i
f t e F s ds t

i

 

 
   

 
Where ( )F s  is analytic in the region Re( )s c  and ( ) 0f t   for 0t  .  

 
This result is called complex inversion formula. It is also known as Bromwich's integral formula. 

When 1n n   , we get the following [14, 15] 
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Example 1.1.    Let us solve the following fractional Volterra equation of convolution Type. The 

Laplace transform provides a useful technique for the solution of such 

Equations 

2

0

0

(2 (t ) ( ) (2 ), 1, (0) 0.

t
t

I D d J t




          



 
     

 
  

 
Solution. Upon taking the Laplace transform of the given equation, we obtain 
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Solving the above equation, leads to 
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. 

 
By applying the inverse Laplace transform, we get the formal solution 
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Lemma 1.1    Let us consider the following system of fractional singular integro - differential 

equations of convolution-type with the Bessel kernel: 
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Where 1 2(0) (0) 0 , 1,0 1g g         and 1 2( ), ( )f x f x  are known functions. 

Then the above system has the following formal solutions 
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Proof - In order to solve the above system, by introducing we can rewrite the above system of 

partial fractional integro - differential equations in the following form 
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Where (0) 0, 1, 0,0 1g a       . 

By applying the Laplace transform of both sides of the above equation term - wise we obtain      
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Now,   using the fact that    
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Upon taking the inverse Laplace transform of the above term, yields  
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Finally, by taking the real and imaginary part of the above relation, we finally obtain the 

solutions of the system in the following forms 
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Similarly we get  
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Definition 1.1   Let ( , )f x y  be a continuous function defined on the square[0, ) [0, )   , 

which is of exponential order, that is, for some , R    

 

, 0

| ( , )|
sup .

x y
x y

f x y

e  


   

 
 Then the two dimensional Laplace transforms of ( , )f x y  is defined as 
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Definition 1.2    The one-dimensional convolution of ( )f x  and ( )g x  is as 
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Also, the two-dimensional convolution of ( , )f x y  and ( , )g x y  is given by 
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2. Evaluation of Integrals and Solution to Fractional P.D.E. By Means of  the Two 

Dimensional Laplace Transform 

 
In this section, we evaluate the integrals that their evaluations are not an easy task. But, by means 

of two dimensional Laplace transform we can evaluate these integrals.  

 

Lemma 2.1    The following integral relations hold true 
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Proof. ( )a : By change of variable tant  , we get 
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Using the fact that  
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Let us assume that 
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The inverse two dimensional Laplace transform of the above relation yields 
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Which concludes that? 
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Theorem 2.1 (Sub Ballistic Fractional PDE) The following non - homogeneous partial 

fractional differential equations [17]. 

 

0 0( , ) ( , ) 1 : , 0C C
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Where 0 , 1    with the boundary conditions (0, ) ( ,0 ) 0u t u x  , 

We get the following formal solution 
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Proof: At first, we assume that 0 1   and 0 1  , then applying the two-dimensional 

Laplace transform term wise to P.D.E, yields 
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The inverse two-dimensional Laplace transforms yields 
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For the special case 0.5   , we have 
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And the figure is shown as follows. 
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Note that when 0 1   and 1  , by using the two-dimensional Laplace transform, we may 

calculate ( , )U p q  as follows,  
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So that 
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For 1   and 0.5  , we have the following  

 

 
 

In special case, let us take 1   , the Laplace transform with respect to t  gives 
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3. Solving System of Time Fractional Heat Equations 
 

In this section, the authors considered certain homogeneous system of time fractional heat 

equations which is a generalization to the problem of thermal effects on fluid flow and hydraulic 

fracturing from well bores and cavities in low permeability formations [12]. In this work, only 

the Laplace transformation is considered as it is easily understood and being popular among 

engineers and scientists. 

 

Problem3.1   Solving the homogeneous systems of time fractional heat equations [12]  
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Where 0 1  , 0 x  , 0t   with the boundary conditions, 

 

(0, ) 1 , lim ( , ) , (0, ) 1 , lim ( , )x
x x

u t u x t v t v x t
 

      

 
And the initial conditions are ( ,0) ( ,0) 0u x v x  . 

 
Solution: Application of the Laplace transform to the first equation and the initial conditions, 

yields 
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That leads to 
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The special case 1   gives  

( , ) ( ).
2

x
u x t erfc

k t
  

 
Similarly, applying the Laplace transform of the second equation and using the initial conditions, 

we arrive at 
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 Using the boundary conditions, solution of the above differential equation is as 
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The Laplace transform inversion formula leads to the following formal solution 
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For the special case 1  , we obtain 
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We have shown the solutions in the following figures for 1,0.5   and 1k    
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4. Effect of a Uniform Overburden on the Passage of a Thermal Wave  

 
In this section, the authors considered certain homogeneous time fractional heat equations which 

are a generalization of the problem of the effect of a uniform overburden on the passage of a 

thermal wave and the temperatures in the underlying rock studied by D.S. Parasnis [16]. 

 
Problem 4.1 Let us find the fractional heat flow in a two-layer earth [12]  
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Where 0 1   and ia  denotes the diffusivity of the layer, iu  denotes the temperature and x

denotes the distance down from the surface. At the earth's surface, there is a diurnal cycle

1 0(0, ) sinu t T t , while at the interface between the two layers, 
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Where ik  denotes the thermal conductivity. We also require that 2lim | ( , )|
x

u x t


  . The initial 

conditions are 1 2( ,0) ( ,0) 0u x u x  . 
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Solution: Taking the Laplace transform of two equations, we get 
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Therefore, using the initial and boundary conditions, we get the following 

 

10
1 2 2

1

1

exp( 2 )

( , ) exp( )

1 exp( 2 )

s
h

aT w s
U x s x

s w a s
h

a
















 

10

2 2

1

exp( )

1 exp( 2 )

s
x

aT w

s w s
h

a












 

 

 
And 

 

2 1 2
0

2 2 2

1

exp ( )
(1 )

( , ) ,

1 exp( 2 )

s s s
h x

a a aT w
U x s

s w s
h

a

  







 
  

   


 

 

 

Where 1 2 2 1

1 2 2 1

k a k a

k a k a






. To invert 1U  and 2U , we observe that   
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We can show (by using convolution) that the inverse of 
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Is as 
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Where  (.,.)W  stands for the Wright function. The final solutions are  
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5.    Conclusion 
 

In this paper, analytic solution of the space - time fractional sub - ballistic and heat equations are 

derived using the integral transform method. The authors implemented two dimensional Laplace 

transform to solve non -homogeneous sub ballistic fractional PDE and homogeneous systems of 

time fractional heat equations. Illustrative examples are given.  
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