
1  938 

88 
 

 

 

16.831 

HEMORRHAGIC STROKE AS POST-INTRACEREBRAL 
HEMORRHAGE INFLAMMATION 

 
Department of Surgical Research, University College London, United Kingdom 
 
Intracerebral hemorrhage remains one of the less studied problems in modern neurology. Later pub-

lications suggest that inflammatory processes play a significant role in hemorrhagic stroke; however, most of 
these reports represent fragmentary information on the local and less system levels of inflammation, and do 
not show the correlation between these levels. In this review the attention is focused on the compensatory, 
adaptive and restorative nature of the inflammation in the post-intracerebral hemorrhage damage. Non-
complicated and complicated forms of inflammation are discussed regarding their influence on the course and 
outcomes of hemorrhagic stroke. Optimization of complicated inflammation could be one of the approaches 
for improving the outcomes of hemorrhagic stroke.  

KEY WORDS: hemorrhagic stroke, intracerebral hemorrhage, inflammation, pathogenesis, outcome, 
treatment 
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Introduction 
Stroke is the second main cause of death 

worldwide and a major cause of mortality and 
morbidity [1 3]. Among the different types of 
stroke, hemorrhagic stroke remains the one that 
is less studied as it develops after the rupture of 
the blood vessel in the brain [4 6].  

Hemorrhagic stroke is accounted in 20 % of 
stroke cases  [7, 8]. Thirty percents of the pati-
ents die within the first month after the occur-
rence of hemorrhagic stroke, 23 percents of pa-
tients die after a year and 65 % of survivors can 
function independently [9 11]. The rest of the 
patients remain significantly disabled and may 
need considerable help with daily tasks [12 15].  

Stroke costs the National Health System 

-
lion of informal care costs (e.g. the costs of 

to productivity and 
disability [16] . The total costs of stroke care 
are predicted to rise in real terms by 30 per cent 
between 1991 and 2010 (Reducing Brain Dam-
age: Faster access to better stroke care. National 
Audit Office 2005, http://www.stroke.org.uk). 

In the pathogenesis of hemorrhagic stroke 
the most significant attention is given to hema-
toma expansion [17], cell death processes 
(apoptosis and necrosis) [18 20], the effects of 
blood degrading components on surrounding 
tissues (erythrocytes, hemoglobin, iron) [21
23], thrombin-toxicity effects [24 28], pro-
teases activity (mainly represented by studies 
done on matrix metalloproteinases activity) 
[29 32]  and  perihematoma oedema formation 
[33 36], Only in recent years studies started to 
pay interest to the contribution of inflammatory 
processes into the progression of stroke [37 40, 
1, 41]. Although  reports are limited the impli-
cations of some inflammatory markers from 
activated neutrophils and microglia have been 
evaluated. These include primarily cytokines 
such as TNF-a, ICAM-1, IL-6 and NF-kB as 
well as vasoactive mediators such as superoxide 
anion, thromboxane A2, endothelin-1, prosta-
glandin I2 and prostaglandin H2 [42 48]. 
However, most of the studies so far have focu-
sed   mainly on the local processes not taking 
into account the contribution of  system reac-
tions, which are responsible for organization 
and supply of any inflammatory response [41, 
49, 38, 50]. From a basic perspective, it is 
understandable to consider hemorrhagic stroke 
as a recovery process involving inflammatory 
reactions in response to intracerebral bleeding, 
which is realized at the local and system levels, 
what we suggest in our review. 

Intracerebral hemorrhage 
An intracerebral hemorrhage is bleeding in 

the brain caused by the rupture of a blood 
vessel and commonly occurs in the cerebral lo-
bes, basal ganglia, thalamus, brain stem (pons) 
and cerebellum [51 53].  

In most of the cases intracerebral he-
morrhage results from rupture of small pene-
trating arteries, which originate from basilar 
arteries or middle, anterior, or posterior cerebral 
arteries. Microscopial studies suggest that most 
of ruptures occur at or near the bifurcation of 
affected arteries [54].   

Formation of hematoma was shown to be 
not a monophase process, as in some cases the 
bleeding continues up to 24 hours [55, 56]. 
Beside the damage from hematoma to the brain 
tissues, its extending also results in midline 
shift, pressing healthy brain tissues against the 
skull and thus promoting ischemic processes 
that ultimately  contribute to neurological de-
terioration [33] and brain atrophy [57]. 

The distribution of the blood into the tissue 
surrounding the brain has a space-occupying 
effect, moving tissues apart and filling space in 
between them or distributing in between cells, 
thus disturbing the natural conductive pathways 
resulting in clinical outcomes [57, 58].  

Characteristics of the blood leakage are 
determined by many risk factors, concomitant 
diseases, location and distribution of the hema-
toma and general state of the body (stressed, 
distressed) [4, 3].  

Post-hemorrhage clots undergo enzyme 
destruction and evacuation with further 
connective-tissue replacement through inflam-
mation [59 62]. During clot destruction a 
variety of products are released [63] modulating 
inflammation and thus having an impact on the 
type of outcomes.  

Inflammation 
Intracerebral hemorrhage, being a pure 

injury by its nature, triggers inflammatory 
responses [64, 40, 65, 66, 1].  

Inflammation is a protective process evol-
ving as a reaction of the organism to injury and 
represents an integrated adaptive mechanism 
aimed at maximizing the recovery and restore 
the integrity and functionality of damaged 
tissues. Inflammation is characterized by a 
biphasic response involving stress and  adap-
tation  and it is controlled at local and systemic 
levels with the aim to eliminate and replace 
necrotizing and destroyed tissues with con-
nective ones [67, 39, 68, 69].  

Pain, redness, swelling, heat and loss of 
function are classical markers representing local  
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symptoms of inflammation. In contrast, syste-
mic symptoms of inflammation are represented 
mainly by fever, leukocytosis, immunological, 
humoral and neural reactions that are known as 
adaptation syndrome .  

Local level of inflammation 
Local inflammation is developed as a reac-

tion to rapid formation of hematomas and 
realized through buffer perihematoma zone, 
which undergoes certain changes due to its de-
mands.  

 Most of studies aimed at understaning pe-
rihematoma it was suggested to be the same as 
ischemic penumbra in the conditions of ischemic 
stroke [70, 57, 71]. However, numerous later 
studies proved it wrong, showing an absence of 
ischemic processes in perihematoma zone and 
indicating hypoperfusion only [72 74].  

The size of perihematoma and hematoma 
zones have also been one of the reason of 
discussions and remain controversial till today 
[70], as sometimes perihematoma could be 
found even bigger than hematoma itself. From 
perspective of inflammatory response in he-
morrhagic stroke zone, it is important for 
perihematoma zone to be of the proper size for 
providing inflammatory response running. As it 
was shown on the example of myocardial 
infarction the size of peri-infarction zone play 
an important role in outcomes [75 77]. Com-
municative properties of perihematoma zone 
are mainly represented by vascular changes in 
the region.  

Vascular changes 
Local level of inflammation include vascular 

changes such as vasodilatation, increased per-
meability of vessels,widened intracellular 
junctions and contraction of endothelial cells 
due to the release of several substances such as 
histamine, VEGF, bradykinin, nitric oxide and 
other bioactive molecules [78 79, 57, 80 81]. 
Most of the vascular changes in response to 
inflammation take place in the perihematoma 
zone and are aimed at facilitating the entrance 
of responsible competent cells. For example, 
adhesion between leukocytes and endothelial 
cells can be elicited by a number of agents such 
as superoxide, lactoferrin, histamine, Il-1, 
hydrogen peroxide, and others produced in the 
perihematoma zone [82, 23, 45, 83 85]. 

Nitric oxide (NO), a biologically active gas 
synthesized by a variety of cells including the 
vascular endothelium, is an important mediator 
of vascular events such as vasodilatation [86
88], inhibition of platelet aggregation and mo-
dulation of platelet-leukocyte adhesion [89]. 

Carbon monoxide (CO), another gas 

produced endogenously from heme degradation 
by heme oxygenase pathways also possesses 
important  vasodilatory properties [90 92], thus 
contributing to cell adhesion and migration 
from main blood stream into the region of in-
jury [93]. Notably, an increase in CO concen-
trations in the brain tissue surrounding hema-
toma is commonly observed in patients [94].  

Oedema 
Oedema develops straight after intracerebral 

hemmorhage [45, 95 96, 20, 97]. In animal 
experimental models of hemorrhagic stroke, 
oedema was shown to peak around day 3 4 and 
to decrease slowly after. In humans, oedema 
peaks on day 3 and decreases by day 10 20 af-
ter the occurrence of hemorrhagic stroke. 
Whether perihaematomal  oedema contributes 
to the hemorrhagic stroke damage still remains 
unclear. As it was shown in various reports 
[33 34] oedema formation is associated with 
poor outcome in patients. However, Gebel et al. 
showed that the presence of oedema in the first 
few hours after hemorrhagic stroke results in 
good outcome [35]. 

The formation of oedema occurs in  several 
phases. The first few hours after intracerebral 
hemorrhage are characteirzed by hydrostatic 
pressure and clot reactions with movement of 
serum from the clot into the surrounding tissues 
36. Thrombin production and the coagulation 
cascade are the next processes being  activated. 
Besides having vasogenic nature, oedema also 
develops as a result of toxicity of certain blood 
degrading components and cell metabolites, 
such as heme and TNF- , 17, 98 100]. 

Indicated hypoperfusion in perihematoma 
zone may contribute to leukocyte rolling, 
adhesion and extravasation and it has been 
suggested that slow flow rate may contribute to 
neutrophil recruitment [80] and further necro-
tized tissues evacuation and replacing it with 
neuroglial scar. Later studies suggested that 
oedema is represented mainly by the predomi-
nant cellular component [101], which is ne-
cessary factor in inflammatory recovery of the 
post-hemorrhagic brain damage. The quality of 
the scar is also determined by lots of the 
factors, including microcirculation and oedema. 

The importance of brain oedema in the con-
ditions of intracerebral hemorrhage was also 
indirectly shown by Bereczki et al. in their 
study using mannitol, an osmotic agent and a 
free radical scavenger, which did not have any 
major effect [102].   

Chemotaxis, cell kinetics and dynamics 
Blood vessel wall rupture, blood leakage and 

hematoma formation lead to the process called 
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alteration, the first stage of the hemorrhagic 
stroke and very beginning of generation of 
stress signals which are represented by sym-
pathetic activation and increased functional 
activity of a hypothalamo-pituitary and adrenal 
system with the change of functions of all target 
organs [103 106]. Entry of affected metabolic 
products from the hemorrhagic stroke  zone to 
the system circulation, further hormones acti-
vation, ejection of leukocytes from the bone 
marrow depot to the systemic blood flow and 
their further activation and readiness to follow 
the chemotaxis [107 109]. Since the bone 
marrow depot mainly contains neutrophils, 
leukocytosis appears as the shift in cell count; 
neutrophils are activated and migrate to the he-
morrhagic stroke zone by positive chemotaxis 
[110]. 

Neutrophil infiltration can be observed 
within 6 hours after ictus and increases gra-
dually at 6-12 hours and reaches peak at 12-72 
hours [45, 40, 111, 48] with slight decrease at 
day 7 [42]. MacKenzie and Clayton (1999) in 
study of early cellular events in the perihe-
morrhage zone in 33 fatal cases of spontaneous 
hemorrhagic stroke  found leukocyte infiltration 
to be present as early as 5 to 8 h and disappea-
red by 72 h [112 113]. Granulocytes were 
shown to play role not only in destruction of 
necrotized tissues, but also in stimulation of 
subsequent recovery processes in the post-
hemorrhage conditions [114]. 

Alteration in hemorrhagic stroke zone 
triggers further inflammation processes, such as 
structural and immune blood cells migration, 
proliferation, which are activated by stress.  

Immune system cells together with cells 
involved in the area (neurons, astrocytes, dama-
ged cells) release a variety of bioactive sub-
stance which play role of positive chemotaxis, 
attracting more specific and area-appropriate 
cells from depots, with aim to destroy and 
eliminate damaged area by phagocytosis (lyzo-
somal enzymes, free radicals, oxidative burst) 
[40, 115 116], and at the same time playing 
role of chemoreppelents, thus regulating inflam-
matory response to correspond destructive, 
eliminative and healing processes.  

Activated microglia/macrophages are pre-
sent in perihematoma zone 1 4 hours after he-
morrhagic stroke incidence [117 118, 42], 
reaching the peak on day 7 [119 121].  

Reactive gliosis as a part of healing process 
can be already observed at 24-72 hours post-
ictus [39, 68], reaching peak at day 14-21 with 
following decrease, leaving numerous resting 
astrocytes [67]. It was shown that mesynchemal 
stem cells, that are present in a bone marrow, 
can differentiate not only into mesodermal, 

endodermal, ectodermal cells, but also into 
neuronal and glial lineage [122]. Activated 
neural stem cells were observed already on day 
2 around hematoma, increasing at day 4 7, 
reaching the peak at day 14 with slow decrease 
after [123 124]. Observing the stem cells acti-
vation around hematoma and their migration 
into the hematoma region also suggest the im-
portance of perihematoma zone, as stem cells 
might be activated by the local humoral factors 
[125].  

The fact that neural stem cells can migrate 
into the post-hemorrhagic zone only at the de-
fined time after the disposal of damaged tissues 
was indirectly being proven in the study by 
[126 128] 
results being trying to saturate hematoma zone 
with neural stem cells 2 and 24 hours post-ictus.  

These processes play an important role in 
both freeing the zone from necrotized tissues 
and forming on its place the primary connective 
tissue with further organization into one of the 
variety of neuroglia. 

Importance of local humoral factors 
NMDA and Calcium 
On the molecular level perihematoma zone 

around hematoma is greatly influenced by 
overreaction of glutamate and aspartate, which 
in normal state are stored in synaptic terminals, 
are rapidly ejected from extracellular space 
[129 131]. This process is called excitotoxicity 
and leads to opening of the calcium channels 
associated with N-methy1-D-asapartate 
(NMDA) and alpha-amino-3-hydroxy-5-me-
thyl-4-isoxanole propionate (AMPA) receptors 
[132]. Intracellular calcium is responsible for 
activation of several destructive enzymes such 
as proteases, lipases, and endonucleases that 
allow release of cytokines and other mediators 
of inflammation [133 135].  

Cytokines 
Cytokines are bioactive molecules secreted 

in stress region by activated cells, which play a 
role in regulation of immune response on all the 
levels of its progression [40, 136]. Cytokines 
provide a variety processes such as proliferation 
and differentiation of cells, chemotaxis, antigen 
expression of different markers, activation of 
immunoglobulin secretion, macrophages cyto-
toxicity induction, etc. [132, 136]. These mo-
lecules are usually classified as pro- and anti-
inflammatory cytokines.  

It was shown that cytokines are produced by 
many cells in the brain, such as microglia, 
astrocytes, neurons, endothelial cells [137 138, 
44, 139]. However, the principal source for 
cytokines in the brains is activated microglia/ 
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macrophages [65]. However, there is also an 
evidence of involvement of peripherally derived 
cytokines [140]. After hemorrhagic stroke ictus 
the permeability of blood-brain-barrier increa-
ses [141] thus leading to migration of mono-
nuclear phagocytes, T-lymphocytes, natural kil-
ler cells, and polymorphonuclear neutrophilic 
leukocytes, which produce and secrete 
cytokines [142]. 

It was shown that pro- and anti-inflamma-
tory cytokines can induce and potentiate other 
cytokines and activate positive and negative 
feedback [1]. It should be considered that many 
of cytokines, e.g. TNF-
inflammation, acting as pro- and as anti-in-
flammatory cytokine.  

In studying of hemorrhagic stroke patho-
genetic mechanisms the most important role 
was given to TNF- -1b, IL-6 and IL-8 [40]. 
It was shown an elevation of IL-1b and TNF-
level at 3-24 hours post ictus in a double-
injection autologous blood injection rat model 
of hemorrhagic stroke [143]. It the collagenase 
hemorrhagic stroke model it was observed an 
increase in TNF- -8 hours post ictus 
[144].  Studies done by Maine et al. reported 
that intrastriatal infustion of TNFa-specific 
antisense oligodeoxynucleotide or adenosine 
A2A receptor agonists in rats reduced TNF-
mRNA and protein production in brain tissue 
surrounding a collagenase-induced hematoma 
[144 145]. The results showed the reduction in 
perihematoma cell death and improvement in 
neurobehavioral scoring. However the dual role 
of TNF-  should be taken into account, as TNF-

tissue [146]. 
To date only few studies have been done in 

patients evaluating cytokines level after he-
morrhagic stroke. In a study of 29 patients IL-6 
levels have been reported to be increased signi-
ficantly at day 1 with gradual decrease after-
wards [147]. Another study of 124 patients with 
hemorrhagic stroke  showed that elevated 
plasma concentration levels of TNF- -
6 [148] correlated with the magnitude of the 
subsequent perihematoma brain oedema.  

Studies dedicated to correlation of cytokines 
levels to local inflammatory response in the 
conditions of hemorrhagic stroke have not been 
done yet [149].  

Metalloproteases 
Metalloproteases have complex properties in 

the brain in normal and pathological conditions. 
Matrix metalloproteinases (MMPs) are a family 
of zinc-dependent proteolytic enzymes involved 
in the reorganization of the extracellular  
matrix [32].  

A lot of published data show that extra-
cellular proteases are involved in cell death in 
many neurological diseases [150 151]. The 
activity of MMPs can be controlled by lots of 
the factors among which are free radicals, either 
acting through latent forms or by mRNA induc-
tion trhough factor-kappaB factor site pathway 
[152 153]. MMPs increase permeability of 
capillaries, contributing to brain oedema [1, 
154] and, most probably, facilitating entrance of 
time-competent cells into the region.  

It was also shown that MMPs are essential 
for neurogenesis, myelin formation, and axonal 
growth [155 156], thus the ideas of MMPs 
inhibiting remain controversial. Last studies 
suggest that inhibition of MMPs facilitates cell 
death in vivo [157]. 

Heme-oxygenase and heme metabolism 
Heme-oxygenase (HO) a rate-limiting enzy-

me in heme degradation has two active iso-
forms, among which are inducible HO-1, also 
known as heat shock protein, HSP32 (Dwyer et 
al., 1992; Ewing and Maines, 1991; Maines, 
1997), and constitutively active HO-2. In nor-
mal conditions HO-1 is barely can be deter-
mined in the brain (Chang et al., 2003).  

Heme catabolism by HO results in release of 
ferrous iron, carbon monoxide and billiverdin, 
which is converted into billirubin by billiver-
din-reductase. Billirubin as a result of HO-1 
activity was found to be present in neurons and 
astrocytes and may prevent them from the 
toxicity [158 160]. Nanomolar concentrations 
of bilirubin protect neuronal cells from ROS 
activity [91]. Bilirubin, released from heme 
metabolism, was also suggested to play certain 
role in vasodilation in the region hematoma 
after subarachnoid hemorrhage [161]. 

The release of ferrous iron, which remains 
toxic to brain tissues in high concentrations, 
usually goes in parallel with an increase in 
ferritin level, the main iron-storage protein in 
the brain [21].  

In the study of hemorrhagic stroke modu-
lation with lysed blood injection, the induction 
of HO-1 protein was observed in glia 
surrounding hematoma and immunoreactivity 
for HO-1 persisted over 4 days [163]. Later, in 
vivo experiments suggested that HO-1 acti-
vation in brain in the conditions of hemorrhagic 
stroke  exacerbates brain injury [164] in early 
stages. However in later stages, WT animals 
showed better improvement comparing to HO-1 
knock-out animals, suggesting that HO-1 
activation might contribute to recovery in later 
stages of hemorrhagic stroke . HO-1 was shown 
to reach its peak on day 3 and last for a long 
period and to be mostly of microglia type [21]. 
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Activity of HO-1 protein also correlates with 
activation and migration of polymorphonuclear 
leukocytes, which is observed at 3-7 days, at 
the time when the recovery processes begin 
[165 166]. 

CO, carbon monoxide, small molecular gas 
that is released from heme catabolism by HO 
activity, functions as a soluble messenger [167, 
91]. Study done by [91, 167] presented inhibi-
tory properties of exogenous CO administration 
on TNF-a in wild type RAW 264 cells after 
lipopolysaccharide treatment, suggesting that 
CO may contribute to modulation of inflame-
mation. [168 170] have suggested that CO 
activates anti-
inhibiting the synthesis of the pro-
cytokines under stress conditions. A CO-relea-
sing molecule (CORM), dimanganese decacar-
bonyl, was also found to dilate isolated, 
pressurized cerebral arterioles derived from 
newborn pigs [89].  

Reactive oxygen species 
In the conditions of brain injury, reactive 

oxygen species (ROS) are released by variety of 
cells, such as neutrophils, endothelium, acti-
vated microglia/macrophages [171, 1].  

Being an important part of oxidative meta-
bolism, the high concentrations of ROS can 
lead to lethal circumstances [83]. Reactive oxy-
gen species were shown to contribute to 
ischemic brain injury (Crack and Taylor, 2005; 
Saito et al, 2005) and might also contribute to 
the outcome of hemorrhagic stroke [172 173]. 

 As a result of hemorrhage, the extracellular 
spaces of the brain become exposed to hemo-
globin and its breakdown products. Iron and 
iron-related compounds, including hemoglobin, 
catalyze hydroxyl radical production and lipid 
peroxidation (Sadrzadeh et al, 1987; Sadrzadeh 
and Eaton, 1988), which expose the brain cells 
to increased levels of oxidative stress. Indeed, 
high levels of oxidative stress, as measured by 
protein carbonyl formation, have been found 
shortly (within minutes) after the onset of 
autologous blood injection in pig (Hall et al, 
2000; Wagner et al, 2002). In addition, intra-
cerebral infusion of lysed erythrocytes into the 
rat striatum induced marked brain oedema and 
profound neurologic deficits (Wu et al, 2002b).  

In this setting, increased oxidative stress, 
measured by protein carbonyl formation, might 
be associated with reduced Mn-superoxide 
dismutase and CuZn-superoxide dismutase con-
tents and increased DNA damage.  

ROS may also serve as activators for 
neutrophil chemotaxis [174] suggesting another 
role for ROS in modulating of inflammatory 
response. There are also evidences that ROS 

may serve in physiological vasodilator mecha-
nism in cerebral microcirculation [84]. Later 
studies report failures in using antioxidant 
therapy, pointing out deleterious role of ROS in 
homeostasis, however suggesting that overpro-
duction of ROS may affect the recovery pro-
cesses [82]. An importance of ROS production 
for intracerebral hemorrhage was reported by 
Liu et al. when it was shown the development 
of adaptive compensatory mechanisms for free 
radical production in knockout mice [175]. 

Thrombin 
Thrombin is a well known serine protease, 

one of the main components in the blood 
coagulation cascade process, is rapidly produ-
ced straight after occurrence of the hemorrhagic 
stroke (Xi, et al., 2006; Xi, et al., 2003).  

It was shown that in high concentrations 
thrombin causes inflammatory reaction, contri-
buting to the brain oedema development and 
neuronal death [176 178].  Thrombin affects an 
opening of the blood brain barrier [179 180]. 
Thrombin-induced brain injury was suggested 
to be mediated by complement cascade. Injec-
ted thrombin caused 7-fold increase in C9 
complement complex and its deposition on 
neuronal membranes [181].  

Thrombin also was shown to be one of the 
stimuli that affect phosphorylation state of the 
glutamate receptors [182], what lead to opening 
of the calcium channels of migrated cells and 
activation of destructive enzymes and further 
release of cytokines and other mediators of 
inflammation. Thus thrombin contributed to 
stage of inflammatory response aimed for 
cleavage of the damaged region.  

Between other beneficial sides of the throm-
bin activity are such as: thrombin stops 
bleeding and modulate hematoma enlargement 
in certain percentage of the patients over the 
first day. Some studies suggest that low concen-
trations of thrombin induce protective neuronal 
effects [183]. Affecting an opening of the blood 
brain barrier, thrombin facilitates entrance of 
the competent cells into the intracerebral he-
morrhage zone, thus contributing to it recovery 
via inflammation. Intracerebral injection of 
thrombin causes gliosis and scar formation 
[177 187, 184 185]. 

Thrombin is one of many emphasized com-
ponents of coagulation system of the body that 
take place in intracerebral hemorrhage condi-
tions. In the study performed by [26] it was 
shown that formation of clot does result in early 
oedema formation, suggesting an importance of 
the whole coagulation system, thrombin parti-
cularly, in inflammatory process and resolution 
of the problem. [186] reported no differences 
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between ischemic and hemorrhagic stroke in 
coagulation system activity, suggesting that 
haemostatic changes aree consequences of brain 
damage rather than primary haemostatic acti-
vation only. 

System level of inflammation 
System level of inflammation is mediated 

throughout mechanisms of stress or adaptation 
syndrome. Firstly the definition of general 
adaptation syndrome (GAS) was proposed by 
Canadian scientist Dr. Selye in 1936, when it 
was described as complex of general defensive 
mechanisms in the body of living creatures as a 
reaction to the impact from strong and prolon-
ged internal and external stimuli. These reac-
tions are to encourage restoration of the distur-
bed balance and aim to maintain the homeo-
stasis. Factors that induce GAS are called 
stressors, and the condition of the body  stress.  

The main signs of GAS are enlargement of 
adrenal cortex and amplification of its secretory 
activity, reduction in spleen size, lymphatic 
nodes, changes in the blood formula (leuko-
cytosis, lymphopenia, eosinopenia), metabolic 
disorders with prevalence of breakup processes. 
Adaptation to unusual conditions is presented 
by humoral (that come with blood) stimuli 
(adrenalin, histamine, serotonine, metabolic 
products of the tissue breakdown), which lead 
to the activation of adaptive mechanisms, first 
of all to the activation of reticular formation and 
hypothalamus-hypophysis-adrenal glands 
systems. 

It was reported an increase of catecholamine 
level in patients with hemorrhagic stroke, 
suggesting the peak level to be observed on day 
3-6 with gradual decrease thereafter [187].  

Glucocorticosteroids, one of the stress hor-
mones play certain role in microcirculation by 
their ability of vasodilation inhibition and pre-
venting vascular permeability, thus playing 
anti-inflammatory role in the recovery process 
[188].  

Derex et al. showed that primary adreno-
cortical insufficiency led to the development of 
intracerebral hemorrhage, suggesting the 
cortisol role in the hemorrhagic stroke  recovery 
process [189].   

Another system hormone erythropoietin also 
participates in hemorrhagic stroke  recovery, as 
it was found that hemorrhage in erythropoietin 
treated group was shown to be reduced by 25% 
in compare to control group {American Aca-
demy of Neurology Annual Meeting in Miami , 
Florida , USA : 9-16 April, 2005}. Erythro-
poetin reduces oedema level and the number of 
inflammatory cells around hematoma [190] and 
improves cognitive and motor deficits [191]. 

Free radicals were shown to be a marker of 
stress process, as they have been found to be 
highly increased in the group of hemorrhagic 
stroke patients with lethal outcome [187]. 

High admission of blood glucose is also 
recognized as a stress-related-response [50]. 

Many studies report white blood cell count 
(WBC), C-reactive protein (CRP) levels and 
erythrocyte sedimentation rate (ESR) to be 
increased within 24 hours post-ictus in periphe-
ral blood [192 193, 40, 194 197]. WBC within 
24 hours was shown to be mainly represented 
by neutrophil reaction [198], with further slight 
decrease and increase in macrophages infiltra-
tion using enhancing media, USPIO. 

Hyperthermia in patients usually is attributes 
to cytokine-related increase of hypothalamic set 
point. Few studies demonstrated that damaging 
the hypothalamic region causes hyperthermia, 
thus suggesting that during hemorrhagic stroke 
the hematoma itself may influence the tempe-
rature regulation by compressing hypothalamus 
and suggesting that hyperthermia may contri-
bute into secondary brain injury [199]. 
However, study performed by [200] reported 
that mild 
worsen an outcome after hemorrhagic stroke 
and is present in cases with small intracerebral 
haemorrhage, suggesting absence of compres-
sing hypothalamus processes. Taking into 
account that hemorrhagic stroke resolution is 
realized through mechanisms of inflammation, 
it is more accurate to talk about fever in respect 
of an increase in temperature levels [201 202]. 
Hypothermia did not show to be of benefit 
either in the conditions of hemorrhagic stroke 
[203]. 

Schwarz et al. reported fever in 91% of 
observed hemorrhagic stroke patient cases 
within 72 hours, later Deogaonkar et al. repor-
ted fever in 56% of observed hemorrhagic 
stroke  in patient cases within 24 hours, assu-
ming fever development as a condition that 
accompanies hemorrhagic stroke  process [204
205]. 

Fever that develops in patients with 
hemorrhagic stroke is represented by leuko-
cytosis [49], the activity and release of the 
pyrogens, substances produced by granulocytes 
which induce rapid and brief fevers [206], and 
mononuclear phagocytes which usually induce 
prolonged fevers [207]. Pyrogens were also 
play role in central hyperthermia, when [208] 
have shown the hypothalamic sensitivity to 
leukocytes pyrogens.  

Fingas et al. found no difference in outcome 
and functional recovery in rats with selective 
hypothermia to hyperthermia [209], indirectly 
suggesting that an increase in temperature in the 
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conditions of ICH is one of the mechanisms of 
inflammatory response. Hypothermia was also 
shown to affect immune system response by 
reduced number of peripheral lymphocytes and 
depression of NK cell activity [210]. 

It is obvious that system level of inflamma-
tion is very important in the course and 
outcomes of the hemorrhagic stroke [154, 48]. 
However there are still no data what changes in 
the system level of inflammation provide 
optimal and best from possible outcomes. 

Hemorrhagic stroke complications 
Most of the complications of the he-

morrhagic stroke are represented by outcome of 
the disease, and which is in most cases 
evaluated by the death and the level of function-
nal loss post-ictus.  

Hemorrhagic stroke complications can be 
divided into the period of hemorrhage and 
period of inflammation. Understanding mecha-
nisms of hemorrhagic stroke process and its 
resolution via inflammation assumes the later to 
be considered to be of extreme importance. 
Correlation between hemorrhagic stroke out-
come and inflammatory response should be 
realized both with local and systemic levels.  

Taking into account the aim of the article we 
will discuss some of the hemorrhagic period 
complications and concentrate more on the 
complications of inflammation period. 

Talking about hemorrhage period in some 
cases bleeding continue up to 24 hours after the 
rupture of the vessel. Blood rupture and blood 
leak trigger a lot of the reflexive regulatory 
mechanisms and one of them is coagulation 
cascade, which contributes to the clot formation 
and leak stop. However, overreaction of the 
coagulation system may lead to the thrombosis 
formation, thus the anticoagulation was sugges-
ted to be used in patients with high risk of 
thromboembolism [211]. Later studies showed 
that use of anticoagulants led to the increase in 
mortality rate in the treatment group comparing 
to non-treatment group [212 214]. From these 
studies we may conclude that medication-
induced hypocoagulation led to the enlargement 
of hematoma and enforcement of all subsequent 
processes. These complications resulted in 52% 
the conditions not compatible with life, and, 
most probably, larger areas involved and bigger 
functional loss in group of survivals.  

There are no studies done that would 
examine the role of inflammation disorders in 
terms of hemorrhagic stroke complications. 
However there are few publications that in-
directly show its relation. 

Hyperreactivity of inflammatory response 
may lead to complications of the hemorrhagic 

stroke process. For example, some studies have 
connected molecular markers, such as TNF-
IL-6 and MMP-9, with subsequent enlargement 
of the hematoma and risk of recurrent stroke, 
suggesting that overreaction may lead to the 
worsen of outcomes [215 217]. 

Nakai et al. have described post-intra-
cerebral hemorrhage abscess formation with 
episodes of high fever [218], what may be re-
lated to hyperreactive distress and high neutron-
philic reaction with prevalence of destructive 
processes. 

The importance of hyporeactivity processes 
of inflammatory reaction can be found in study 
done by Qu et al, when they reported chronic 
expanding encapsulated intracerebral hema-
toma, suggesting surgical evacuation [219]. 
One of the mechanisms of its formation could 
be hyporeactive acute stage of inflammation 
with low levels of neutrophilic reaction, what 
led to encapsulation of hematoma without its 
substitution with neuroglia tissue. One of the 
possible outcomes for incapsulated hematoma 
could be cyst formation [220 221]. 

Other studies give us a chance to conclude 
that both hyper- and hyporeactivity of system 
levels badly affect hemorrhagic stroke process. 
As it was shown, day 1 cortisol levels were 
associated with 28-days and 1-year mortality. 
Both high and low levels of circulating cortisol 
were associated with increased mortality 
(Abnormal cortisol levels linked to increased 
mortality J Intern Med 2004; 256: 15-21) [222]. 
Gapon et al. correlated severity of stroke with 
serum level of antibodies to differentiation 
factor [223]. In study of 186 primary he-
morrhagic stroke cases the white blood cells 
count have been performed, suggesting the 
leukocytosis to be one of the parameters of its 
bad prognosis [38]. However the prognoses 
have not been based on the correlation to quan-
tity of leukocytes. Another study done by [49] 
showed correlation between high leukocytosis 
level and the mortality, suggesting that over-
reaction of leukocytes response is harmful, still 
showing presence of certain level of leuko-
cytosis in a good-outcome group. We suggest 
that too high and too low leukocytosis both may 
result in bad outcome of the patients with 
hemorrhagic stroke, and that the rate of leuko-
cytosis should be just at the level as it needed.  

Yoshimoto et al. showed that systemic 
inflammatory response syndrome was associa-
ted with extent of tissue damage at onset and 
predicted further tissue disruption, producing 
clinical worsening and, ultimately, a poor 
outcome [224]
account the rate of activity of the response. 

Despite there were no studies done that 
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would examine the role of complications of 
inflammation, mentioned works above prove its 
importance and actuality.  

Medical interventions into post intra-
cerebral hemorrhage inflammation 

Understanding of inflammation as a mecha-
nism that resolves intracerebral hemorrhage led 
to few approaches of improvement of he-
morrhagic stroke outcomes. Unfortunately these 
studies have not been associated with 
characteristics of inflammatory process (nor-
mal, com
defined conclusions [225 228]. 

More of that, most of studies analyze 
medical treatment only in the early stages of 
hemorrhagic stroke without evaluation of the 
consequences and outcomes. Wasserman et al. 
have demonstrated that anti-inflammatory 
action of the minocycline was effective in 
reduction of TNFalpha and MMP-12 levels in 
early period and was decreased in a one-week-
time [137, 229]. Sinn et al. suggested borte-
zomib to be used in early stages of hemorrhagic 
stroke as it was shown that the drug reduces 
mRNA expression of TNF-alpha, IL-6, iNOS, 
COX2 levels in first 72 hours post-ictus [230]. 
Similar study performed by Nagatsuna et al. 
suggested argatroban to be effective in first 72 
hours post intracerebral hemorrhage in reducing 
of secondary brain damage [231]. The same 
approach we can find in the works about 
interventions into ROS production which are 

evaluated within 24 hours only [232, 99]. 
It is obvious that achievement of certain 

aims should be accompanied with obligatory 
improvement of hemorrhagic stroke outcomes. 

CONCLUSION 
Despite the fact that hemorrhagic stroke 

occupies 20% of all stroke cases it still remains 
one of the most severe and less studied type. 
Last decades have brought understanding that 
most of the studies done before in the pathoge-
nesis and treatment hemorrhagic stroke remain 
controversial and have not brought effective 
approaches in its diagnostics and treatment.  

Later publications suggest that hemorrhagic 
stroke approaches have shifted towards in-
flammation theory of the process. However, 
they in most of the cases present only certain 
chosen stages of inflammation. Some of public-
cations have pointed out the correlation 
between inflammatory processes disorders and 
violations with unfavourable hemorrhagic stro-
ke outcomes. 

Thus more studies should be done regarding 
mechanisms of optimal (normal) inflammation 
development and its disorders in hemorrhagic 
stroke conditions, what would favour further 
development of diagnostics and treatment 
approaches aimed to restoring of its optimality 
and clinical outcomes.  

In this respect experimental neurology re-
mains of extreme importance in its coordination 
with clinical practice. 
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