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Abstract: 
Tuberculosis disease has been the leading cause of morbidity and mortality among the infectious diseases. To 

address these issues, research and developmental activities to develop novel and potent new chemical entities are 

necessary. Molecular modelling studies are an approach which is used to narrow down a library containing an 

extraordinarily high number of random molecules into a smaller list of the potentially effective inhibitors. Two 

dimensional 2D and three dimensional 3D Quantitative Structure activity relationship (QSAR) studies were 

performed for correlating chemical composition of 1, 3-disubstituted urea analogues and antitubercular activity 

using Multiple Linear Regression (MLR) Analysis. The developed QSAR models were found to be statistically 

significant with respect to training (r2>0.7), cross-validation (q2>0.5), and external validation (pred_r2>0.5). The 
best model shows r2 = 0.9743, q2 = 0.9134 and Pred_r2 = 0.5650. Binding affinities of designed NCEs were studied 

on Epoxide Hydrolase at specific binding site using docking studies and their ADME properties were also predicted. 

All the designed compounds show better affinity to the receptor site than the reference compound i.e. thioacetazon. 

This study will help for the synthesis of potential antitubercular agents. 
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1. INTRODUCTION: 

Tuberculosis (TB), is a major chronic infectious 
diseases caused by Mycobacterium tuberculosis (M. 

tuberculosis) and to a lesser degree by 

Mycobacterium bovis and Mycobacterium Africanum 

affects nearly 32% of the World’s population with 

about 9.4 million Worldwide and 1.6-2.4 million 

cases alone in India [1,2]. The disease has been the 

leading cause of morbidity and mortality among the 

infectious diseases. Multidrug-resistant tuberculosis 

(MDR-TB) is a form of TB caused by bacteria that do 

not respond to, at least, isoniazid and rifampicin, the 

two most powerful, first-line anti-TB drugs. In some 
cases more severe drug resistance can develop. 

Extensively drug-resistant TB, XDR-TB, is a form of 

multi-drug resistant tuberculosis that responds to 

even fewer available medicines, including the most 

effective second-line anti-TB drugs [3, 4,5].To 

address these issues, research and developmental 

activities to develop novel and potent new chemical 

entities are necessary. 

 

Recently, it was found that M. tuberculosis epoxide 

hydrolase (EH) enzyme B (EphB) is a promising 

target for the anti-tubercular drug [6,7]. The 
tuberculosis genome contained at least six putative 

EH enzymes [8]. These large number of EHs 

compared to other bacteria, suggests that these 

enzymes play an important roles in the physiology of 

M. tuberculosis; notably, lipid metabolism and 

detoxification of reactive oxygen species derived 

from the host’s immune system. Epoxide hydrolase 

enzyme catalyzes the hydrolysis of epoxide to diol 

[6,9]. Currently, there are no reports on the whole cell 

anti-tubercular activity of EH inhibitors, though 

molecules with similar structures have recently been 
described with good inhibition of M. tuberculosis 

EphB6 or antitubercular MICs [10,11]. 

Thioacetazone is the only drug which is urea 

derivative acts as antimycobacterial epoxide 
hydrolaseinhibitor. But it has weak activity against 

Mycobacterium tuberculosis and not used alone to 

treat tuberculosis. Thioacetazone is ineffective when 

given intermittently and causes skin reaction in HIV 

positive patients. Urea molecules show antibacterial 

[12], anticancer [13], antifungal [14], antidiabetic 

[15], antihypertensive [16] as well as antidepressant 

[17] activities. Recently disubstituted urea derivatives 

were designed and synthesized by many researchers 

and their studies shows disubstituted urea derivatives 

cause inhibition of epoxide hydrolaseenzyme of 
mycobacterium tuberculosis [18-21].  

 

Molecular Modelling studies is an approach which is 

used to narrow down a library containing an 

extraordinarily high number of random molecules 

into a smaller list of the potentially effective 

inhibitors [22,23]. Thus in the present study we have 

focused on development of Two Dimensional (2D) 

and Three Dimensional (3D) QSAR studies using 

Multiple Linear Regression (MLR) Analysis and 

Simulated Annealing k Nearest Neighbour Molecular 

Field Analysis (SA-kNN MFA), respectively for a 
series of disubstituted urea derivatives as novel 

epoxide hydrolase inhibitors. Due to this one of the 

main objective of our study is the prediction of new 

potent and selective drug like biologically active 

compounds on the basis of previously synthesized 

ones in an attempt to save the cost of blind synthetic 

process, manual labour as well as time.  

 

2. MATERIALS AND METHODS: 

QSAR 

Biological dataset 
For this study, total 22 molecules of disubstituted 

urea series reported for antitubercular activity (Table 

1) has been chosen to develop QSAR models [18]. 
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Table 1: Selected series of compounds containing urea pharmacophore 

 

Sr. 

No. 

Compound 

Name 

Structure MIC 

(µg/ml) 

Pmic 

 

1 

 

v01 

 

 

0.4 

 

5.9089 

2  
v02 

 

 
6 

 
4.6817 

 

3 

 

v03 

 

 

0.02 

 

7.2132 

 

4 

 

v04 

 

 

0.2 

 

6.2126 

 

5 

 

v05 

 

 

0.8 

 

5.5744 

 

6 

 

v06 

 

 

12.5 

 

4.3380 

 

7 

 

v07 

 

 

50 

 

3.7130 

 

8 

 

v08 

 

 

0.1 

 

6.4948 

 

9 

 

v09 

 

 

3.1 

 

4.9625 

 

10 

 

v10 

 

 

1.6 

 

5.2994 
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11 

 

v11 

 

 

12.5 

 

4.3016 

 

12 

 

v12 

 

 

0.01 

 

7.4449 

 

13 

 

v13 

 

 

0.2 

 

6.1650 

 

14 

 

v14 

 

 

0.02 

 

7.2212 

 

15 

 

v15 

 

 

3.1 

 

4.9601 

 

16 

 

v16 

 

 

0.01 

 

7.4698 

 

17 

 

v17 

 

 

6 

 

4.7226 

 

18 

 

v18 

 

 

0.8 

 

5.6185 

 

19 

 

v19 

 

 

1.6 

 

5.3358 

 

20 

 

v20 

 

 

0.4 

 

5.9350 

 

21 

 

v21 

 

 

50 

 

3.7265 

 

22 

 

v22 

 

 

25 

 

4.0498 
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Molecular modelling tools 

All QSAR studies were performed using VLife Molecular Design Suite 3.5 [24]. Molecules were optimized by 

Merck Molecular Force Field (MMFF) energy minimization method [25]. 

 
Figure 1. Experimental Design 

Two-dimensional QSAR (2D QSAR) studies 

Experimental design for 2D QSAR 

Dataset of 22 molecules was divided into multiple 

training and test sets by using manual data selection 

method and no. of sets were generated using different 

combinations of molecules in training and test sets 

such that it covers each molecule in different set 

every time in an attempt to ensure robustness of 

QSAR model and increase its predictive ability. From 
these sets, training and test sets which followed all 

model evaluation parameters were subjected to Y-

randomization test (Fig. 1.). 

Evaluation parameters of Y-randomization test: 

n = Number of molecules 

df = Degree of freedom (n-k-1) (higher is better) 

k = Number of descriptors in a model (≤ n/5) 

r2 = Coefficient of determination (>0.7) 

q2 = Cross validated r2 (>0.5) 

SEE = Standard error of estimate (smaller is better) 

Pred_r2 = r2 of external test set (>0.5) 

F-test = Statistical significance of the model (higher 
is better for same descriptors and compounds) 

Best_ran_r2 = Highest r2 value in the Y-

randomization test (as low as compared to r2) 
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Best_ran_q2 = Highest q2 value in the Y-

randomization test (as low as compared to q2) 

Z score = It is calculated by the Y-randomization test 

(higher is better) 

Alpha = Statistical significance parameter by 
randomization test (<0.01)  

Three models were selected which satisfied the 

results of Y-randomization test and were named as 

Training set-A, Training set-a, Training set-B and 

Training set-b. These models were subjected to two 

times for external validation by splitting them into 

two test sets viz. test set a1, a2 for training set-a and 

test set-b1, b2 for training set-b in order to avoid the 

chance correlated results. Only those models which 

satisfied both the test sets were selected for design of 

NCEs. We have ensured that selected training and 

test sets also satisfied the following criteria:  
- Representative points of the test set must be close to 

those of the training set;  

- Representative points of the training set must be 

close to representative points of the test set;  

- Training set must have wide chemical and 

biological diversity.  

Uni-column statistics 

The comparative statistical parameters of training and 

test sets created by manual data selection method are 

reported in Table 2. The min and max values in both 

training and test set should be compared in a way 
that- 

i. The max of the test should be less than max 

of training set. 

ii. The min of the test should be greater than 

min of training set. 

It shows that the test set is interpolative i.e. derived 

within the min-max range of the training set. The 

mean and standard deviation of the training and test 

set provides insight to the relative difference of mean 

and point density distribution (along mean) of the two 

sets. Standard deviation of Training set A, a, B and b 

with test set a1, a2and b1, b2 respectively were found 
to be nearly close to each other. This showed that 

even though the selected molecules in training or test 

sets are different, but the distribution pattern with 

respect to the biological activity of molecules in both 

the selection methods is quite similar. 

Table 2. Uni-Column statistics for training sets and test sets 

 

Para-

meters 

Training 

Set B+C 

Test 

set a1 

Test 

set a2 

Training 

Set A+C 

Test 

set b1 

Test 

set b2 

Training 

Set A+B 

Test 

set c1 

Test 

set c2 

Avg. 5.2783          5.5923 5.2889          5.5290 5.4970 5.0072 5.3630          5.1106          5.3590          

Max 7.2220          7.7210 7.9830          7.4698 7.4449 7.4720 7.2220 7.0130          7.2220          

Min 3.5500 3.7030 3.6130 3.7130 3.7265 3.5510 3.5890 3.5900 3.7070          

S.D. 1.7059  1.7004 1.6957          1.1276 1.3113 1.3200 1.6321          1.6199          1.6119          

Sum 69.352 52.000 51.012 71.876 49.472 50.125 70.584 50.768 49.818 

 

Table 3. Correlation matrix of descriptors (2D QSAR) 

 

Descriptor  T_C_C_4 T_C_F_4 SaaCHcount Quadrupole3 ZcompDipole Quadrupole1 

T_C_C_4 1  -0.3722 0.1323  -0.3333  -0.2230 0.4033 

T_C_F_4 -0.3722  1  0.3378  0.6169 0.1033 -0.8515 

SaaCHcount 0.1323  0.3378 1  0.0547 -0.1165 -0.3531 

Quadrupole3 -0.3333  0.6169  0.0547  1  0.0064 -0.8420 

ZcompDipole -0.2230 0.1033  -0.1165  0.0064  1 -0.0590 

Quadrupole1 0.4033 -0.8515 -0.3531 -0.8420 -0.0590 1 

 

Descriptor selection 

Various 2D descriptors (a total of 612) were 

calculated and pre-processing of them was carried out 

by removing invariable columns. It has been reported 

that there is high probability of chance correlation 

between the observed and predictive activity; 
especially when No. of descriptors are comparable or 

more than the No. of compounds in dataset for any 

QSAR analysis [24].  Thus, reduction in no. of 

descriptors is a very important step which is required 

to avoid the occurrences of chance correlation and 

inclusion of irrelevant descriptors in final QSAR 

model. We applied combinations of different 

descriptor selection methods viz. forward, forward-
backward, genetic algorithm, simulated annealing etc. 

as well as different QSAR methods on same 
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molecules sets and finally considered the results of 

forward variable selection method with Multiple 

Linear Regression (MLR) after comparing all results 

to improve performance as well as predictability of 

QSAR model. 

Correlation matrix 

It is very popular and crucial technique used for 

QSAR studies. We have considered the correlation 

between descriptor with activity as well as their inter-

correlation i.e. descriptor-descriptor correlation. We 

have shown only those descriptors contributed for the 

selected series of compounds in 2D QSAR studies; 

which show either direct or inverse correlation with 

activity. 

 

Fitness plot 

Correlation coefficient cannot give information about 
data spread between the descriptor and activity. There 

may be some descriptors showing chance correlation 

with activity because each variable selection method 

is based upon correlation between descriptor and 

activity and not on the type of data spread. To avoid 

above said pitfall, the proper observation of fitness 

plot between descriptor and activity is needed.  

 
Fig. 2: Fitness plot for descriptor 

The following are few important points that we have 

taken into consideration while selecting proper 
descriptors for QSAR model generation: 

We have ensured that percentage distribution of data 

points on both sides of best fit line should be nearly 

50-50%. (we preferred slope value more than 0.15) 

In case of topological descriptor, No. of occurrences 

of particular data point was observed in fitness plot 

which gave information about the frequency of 

occurrence of each particular substituent in series. 

Thus although the particular descriptor shows good 

correlation with activity as well as comes in the 

QSAR final model result, but we cannot take it into 
final consideration unless and until it shows well 

spread fitness plot. In conclusion, we can say that 

careful observation and right analysis of a fitness plot 

helped us to reduce no. of descriptors.  

Variance 

Another significant way to find out unimportant 

descriptors is by using information of variance of 

descriptors [26]. There were some descriptors which 

showed consistently high variance even if there was 

small change in physicochemical properties and vice 

versa. After close analysis of the output of our study, 

we conclude that we should focus more on 
correlation between descriptors and activity instead 

of considering descriptors of highest variance, as 

final results rely more on correlation than on 

variance. 

The algorithm we followed for variable reduction 

is as follows  
1. Define appropriate correlation cutoff value 

between descriptor & activity, which is mentioned as 

Amax.  Remove all descriptors which have value less 

than Amax 

2. Define appropriate cross correlation cutoff 

value between descriptor-descriptor, which is defined 
as Cmax. Remove all descriptors which have values 

larger than Cmax. 

3. Define variance cutoff value for descriptor 

which is mentioned as Vmax. The descriptors having 

variance value less than Vmax were removed.  

We observed that this algorithm reduced No. of 

descriptors nearly up to 50%. After this, we applied 

manual variable selection method and multiple 

regression analysis (MLR) as it is ensured that each 

remaining descriptor is significantly contributing for 

QSAR model. The only thing we have to find out is 
No. of descriptors in final equation should be as low 

as possible which must be contributing highly and 

should be seen in the structural features of the 

reported compounds of the series as well.  

Three-dimensional QSAR (3D QSAR) studies 

Alignment of molecules 

Proper alignment of molecules is the prerequisite for 

studying 3D QSAR as well as in almost all the fields 

of drug discovery for getting reliable results. So after 

optimization, we carried out alignment of all 

molecules using MolSign which also serves as the 

basic tool to identify the common pharmacophore 
features as well as the individual molecular feature. 

 
Fig.3: Identified pharmacophore features and 

alignment of molecules by MolSign 
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The colour scheme for identification of various 

chemical features is as follows: 

Hydrogen bond donor: Magenta colour 

Hydrogen bond acceptor: Buff colour 

Hydrophobic: Orange colour 
Aliphatic: Orange colour 

Negative ionizable: Green colour 

Positive ionizable: Violet colour 

The larger tessellated spheres are indicative of the 

common pharmacophore features identified in the 

molecules and the smaller solid features are of the 

individual molecules. 

 

3D QSAR by SA-kNN-MFA 
3D QSAR studies were performed by generation of 

numerous models by taking same molecules in the 

respective training and test sets as in 2D QSAR by 
using k-Nearest Neighbour-Molecular Field Analysis 

(kNN–MFA) methodology with Simulated Annealing 

(SA) variable selection method as it has been 

reported as the more relevant and suitable method to 

perform 3D QSAR [27,28,29]. kNN–MFA requires 

suitable alignment of given set of molecules after 

optimization which had already been carried out by 

MolSign, but it was again carried out to generate a 

folder of aligned molecules to proceed for 3D QSAR 

by atom based alignment which gives alignment 

based on each and every individual atom of the 
pharmacophore. Molecular alignment was used to 

visualize the structural diversity in the given set of 

molecules. It was followed by generation of common 

rectangular grid around the molecules. Steric and 

electrostatic interaction energies were computed at 

the lattice points of the grid using a methyl probe of 

charge +1. These interaction energy values at the grid 

points are considered for relationship generation 

using kNN method and utilized as descriptors for 

obtaining distances within this method. Resulting set 

of aligned molecules was then used to build 3D 

QSAR model. 

 

Design of New Chemical Entities (NCEs) 

containing urea pharmacophore 

The information obtained from 2D and 3D-QSAR 

studies was utilized in optimizing urea 

pharmacophore and to design potent anti-tubercular 

NCEs. Substitution pattern around pharmacophore, 

shown in Fig. 6 was used to design NCEs using 

CombiLib tool of VLife MDS software. Designed 

compounds were subjected to Lipinski’s screen [30] 

to ensure their drug like pharmacokinetic profile in 
order to improve their bioavailability. The following 

parameters were used as Lipinski’s filters (values in 

parenthesis indicate ideal requirements): 

1. Number of Hydrogen Bond Acceptor (A) (<10) 

2. Number of Hydrogen Bond donor (D) (<5)  

3. Number of Rotatable Bond (R) (<10)  

4. XlogP (X) (<5)  

5. Molecular weight (W) (<500 g/mol)  

6. Polar surface area (S) is (<140 Ǻ) 

 

Molecular Docking studies 

All the designed compounds that showed good 

predicted activity by all QSAR studies and 

followed Lipinski’s rule as well as reported series 

molecules for comparison purpose were subjected 

to molecular docking for studying the binding 

mode of designed compounds and were further 

screened to sort out the best compounds having 

good binding affinity compared with binding 

mode of standard diaryl urea. The main molecular 

docking tool used was GLIDE (Maestro; 

Schrödinger Inc., USA) for protein-ligand 
docking studies in to the receptor epoxide 

hydrolase enzyme binding pocket (Glide, 

Schrödinger9.0, LLC, New York, USA). The 

crystal structures of EH were obtained from 

Protein Data Bank (PDB Code: 2ZJF) [31]. All 

structures were prepared for docking using 

‘Protein preparation wizard’ and ‘Ligand 

preparation wizard’ in Maestro wizard of 

Schrödinger 9.0. In the refinement component, a 

restrained impact minimization of the co-

crystallized complex was carried out. It uses the 
OPLS-AA force field for this purpose. The co-

crystallized ligand was removed from active site 

and the grids were defined by centering them on 

the ligand in the crystal structure. Then our 

structures (ligands) were imported in the project 

table, built using maestro structure builder panel 

and prepared by Ligprep module which produces 

the low energy conformers of ligands using  

Merck Molecular  force field. The lower energy 

conformations of the ligands were selected and 

docked into the grid generated from protein 

structure using extra precision (XP) docking 
mode. In this docking method, the ligands are 

flexible and receptor is rigid, except the protein 

active site which has slight flexibility. The final 

evaluation is done with glide score (docking 

score) and  single  best  pose  is  generated  as  

the  output  for  particular ligand. 

 

G-score = a*vdw + b*coul+ Lipo + H-bond + 

Metal + BuryP + Rot B + Site 

 

where, vdW, Vander Waal energy; Coul, Coulombic 
energy; Lipo, Lipophilic  contact  term; HBond,  

Hydrogen-bonding  term;  Metal, Metal-binding 

term; BuryP, Penalty for buried polar groups; RotB, 

Penalty for freezing rotatable bonds; Site, Polar 
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interactions at the active site. The coefficients of vdW 

and Coul are: a = 0.065, b = 0.130 respectively. 

The accurate prediction of protein-ligand interaction 

geometries is essential for the success of virtual 

screening approach in structure-based drug design. 
The docking results were evaluated based on Glide 

Score (G-Score), Hydrogen bonds (H-bond) and 

Vander Waals (vdW) interactions between ligand and 

receptor. 

 

Prediction of ADME properties 

Sometimes compounds that show very high activity 

in vitro however are proved later to have no in vivo 

activity, or to be highly toxic in in-vivo models. Lack 

of in vivo activity may be attributed to undesirable 

pharmacokinetic properties and the toxicity may 

result from the formation of reactive metabolites. The 
failure of NCEs at latter stages of drug discovery 

process due to lack of drug like pharmacokinetic 

profile has forced us to set filters of ADMET 

properties. Thus we have ensured that only drug-like 

NCEs would be selected for experimental validation. 

All designed compounds which showed good binding 

affinity were filtered by predicting their Absorption, 

Distribution, Metabolism and Excretion (ADME) 

properties by means of QikProp tool of Schrodinger 

9.0 [32].Prediction of ADME properties was used as 

the last screen to sort out those compounds which 
already followed Lipinski’s rule, showed good 

predicted activity as well as good binding affinity 

with EH enzyme.  

ADME prediction by QikProp, Schrödinger 9.0 

It predicts both physicochemical significant 

descriptors and pharmacokinetically relevant 

properties. It also evaluates the acceptability of 

analogues based on Lipinski’s rule of 5, which is 
essential to ensure drug like pharmacokinetic profile 

while using rational drug design. All the analogues 

were neutralized before being used by QikProp. This 

program is designed using the BOSS program and the 

OPLS-AA force field. It uses Monte Carlo statistical 

mechanics simulations on organic solutes in periodic 

boxes of explicit water molecules to perform all 

predictions. This process resulted in configurationally 

averages for a No. of descriptors, including H-bond 

counts and solvent-accessible surface area (SASA). 

Correlations of these descriptors to determine 

properties experimentally were obtained and then 
algorithms that mimic the full Monte Carlo 

simulations and produce comparable results were 

developed by the QikProp tool. 

 

3. RESULTS AND DISCUSSION: 

2D QSAR models 

Using MLR, one set of 6 meaningful descriptors, out 

of which Quadrupole1showed up to 35% contribution 

for antitubercular activity. 

pMIC= 0.6229 T_C_C_4 – 0.2090 T_C_F_4 – 0.080 

SaaCHcount - 0.04262 Quadrupole3 +  0.4757 

ZcompDipole – 0.0814 Quadrupole1+ 0.0235 
r2 = 0.9743, q2 = 0.9134, F-test = 37.93, Pred_r2 = 

0.5650. 

 
Fig.4: Contribution plot of selected descriptors 

From the results, it is known that Quadrupole1alone 

satisfies all evaluation parameters. It shows highest 

correlation with activity (as shown in correlation 

matrix) and also shows proper distribution of data 

points. To increase the predictive power, different 
combinations of descriptors were made. 
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Table 4: Statistical parameters of developed QSAR models for descriptor by forward variable 

selection method and MLR 

Statistical 

Parameters 

Training Set A  Training Set B  Training Set C  

Test Set a1 Test set a2 Test Set b1 Test Set b2 Test Set c1 Test Set c2 

N 22 22 22 22 22 22 

r2 0.9723 0.8631 0.9743 0.9032 0.9000 0.8579 

r2 se 0.3319 0.5056 0.2556 0.3010 0.3909 0.5314 

q2 0.7816 0.8252 0.9134 0.6996 0.7884 0.7267 

q2 se 0.9317 0.8235 0.4693 0.6869 0.5686 0.7368 

F-Test 15.93 18.52 37.93 13.46 38.99 10.06 

Pred_r2 0.5173 0.5010 0.5650 0.4865 0.5024 0.5822 

Pred_r2 se 1.0545 1.2375 0.4652 1.5619 1.1266 0.9779 

 (+)VELY CONTRIBUTING  (-)VELY CONTRIBUTING  

Descriptors 

(Test set b1 ) 

T_C_C_4  (25%) 
ZcompDipole (11%) 

T_C_F_4  (12%) 
SaaCHcount (2%) 
Quadrupole3 (12%) 
Quadrupole1 (35%) 

Accuracy of model 

The value of residuals is a key factor in validating the accuracy of the model. As the value of residual is near to zero, 

the model is considered as more accurate since it shows minimum (≈0) difference in actual and predicted activity. 

Table 5: Test set b1 and b2 and Training set A+C along with biological activity,predicted activity and residuals 

data 

 

Residuals = Actual Biological Activity (MIC) – Predicted Activity 

Sr. no. Compd. Biological Activity (pMIC) Predicted Activity Residuals 

Training Set A+C 

1 v24 7.4698 7.5968 -0.1270 

2 v14 5.2994 5.4303 -0.1309 

3 v13 4.9625 4.7889 0.1727 

4 v16 4.3016 3.9820 0.3196 

5 v40 4.0498 4.0850 -0.0352 

6 v12 6.4948 6.5071 -0.0123 

7 v02 5.9089 5.7853 0.1236 

8 v05 7.2132 7.3612 -0.1480 

9 v07 5.5744 5.3965 0.1779 

10 v09 3.713 3.5457 0.1673 

11 v28 5.6185 5.8710 -0.2525 

12 v30 5.3358 5.3375 -0.0017 

13 v36 5.9350 6.1888 -0.2538 

 Test set b1  

1 v23 4.9601 5.9978 -1.3077 

2 v26 4.7226 5.6169 -0.8943 

3 v22 7.2212 7.0910 0.1302 

4 v20 7.4449 5.9001 1.5448 

5 v21 6.1650 6.9926 -0.8276 

6 v37 3.7265 4.3677 -0.6412 

7 v06 6.2126 6.0430 0.1696 

8 v04 4.6817 4.8293 -0.1476 

9 v08 4.3380 3.5887 0.7493 
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Similar calculations were carried out for Test sets 

a1& a2 and c1& c2 of Set-I as well as for Set-II. In 

both the sets, models b1 &b2 (evaluated on training set 

A+C) were found to be the best models.  

Interpretation of 2D QSAR 

The present QSAR model reveals that 

Quadrupole1 as well as T_C_C_4 descriptors 

have major contribution in explaining variation in 

activity. Descriptors T_X_Y_Z can be defined as 

total count of fragments formed with atom types 

X and Y separated by topological distance of Z 

bonds (Baumann, 2002; Hall and Kier, 1995). 

Interpretation of descriptors which contributed 
significantly for QSAR models are given below, 

the value given in parenthesis are percentile 

contribution of descriptor for the activity:  

1) T_C_C_4 (25%): No. of carbon atoms 

separated from any carbon atom by 4-bond distance 

2) T_C_F_4 (-12%): No. of carbon atoms 

separated from any fluorine atom by 4-bond distance 

3) SaaCHcount (-2%): Total no. of carbon 

atoms connected with a hydrogen along with two 

aromatic bonds 

4) Quadrupole3 (-12%): Magnitude of third 
tensor of quadrupole moments 

5) ZcompDipole (11%): Z componant of 

dipole moment 

6) Quadrupole1 (-35%): Magnitude of first 

tensor of quadrupole moments. 

 
Careful observation of descriptors in models 

suggests that Quadrupole1 is an indicator variable 

which negatively contributes for QSAR equation 

(35%) and this signifies antitubercular activity. 

Other descriptor like T_C_F_4 which is inversely 

proportional to activity shows the presence of -F 

on ring is detrimental for biological activity. 

Whereas the other descriptors are contributing 

positively in more or less percentage revealing 

the importance of respective atoms/groups at 

different respective position on the ring for 

potential antitubercular molecule design. 
 

3D QSAR models 

Using SA-kNN-MFA, 3 descriptors were finalized 

which were satisfying all statistical parameters in the 

generated models. After calculating residuals for each 

model, models b1and b2 were found to be the best 

models. 

Table 6: Comparison of the various statistical results of 3D QSAR generated by SA-kNN-MFA method 

 

Statistical 

Parameters 

Training Set A Training Set B Training Set C 

Test Set a1 Test Set a2 Test Set b1 Test Set b2 Test Set c1 Test Set c2 

N 22 22 22 22 22 22 

k-NN 2 2 2 2 2 2 

q2 0.8480 0.9358 0.8168 0.8096 0.7523 0.7895 

q2 se 0.2626 0.2961 0.3010 0.4021 0.5236 0.4756 

Pred_r2 0.7620 0.6871 0.9285 0.8231 0.7486 0.8421 

Pred_r2 se 0.6452 0.8067 0.3855 0.5421 0.6742 0.5123 

 (+)VELY CONTRIBUTING (-)VELY CONTRIBUTING 

DESCRIPTORS 

(Test Set b1) 

H_865 (0.789483,  0.798317) 

H_832 (0.37942, 0.421762) 

S_790 (-0.018441, -0.015148) 

 

 
Fig. 5: Grid points generated by SA-kNN–MFA method in 3D rectangular grid showing contributions of 

electrostatic, steric and hydrophobic functional groups for significant antitubercular activity (test set b1) 
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Interpretation of 3D QSAR 

3D QSAR was used to optimize the electrostatic, 

steric and hydrophobic requirements around Urea 

pharmacophore. The property values for the 

generated data points helped us for the design of 
potent NCEs. The ranges of data point values were 

based on the variation of the field values at the 

chosen points using the most active molecule and its 

nearest neighbour set. Points generated in SA-kNN-

MFA 3D QSAR model are H_865 (0.789483, 

0.798317), H_832 (0.37942, 0.421762) and S_790 (-

0.018441, -0.015148) i.e. two hydrophobic and a 

steric data points at lattice points of 865, 832 and 790 

respectively. 

Positive value in hydrophobic data points 

indicated the requirement of more hydrophobic 

substituent for enhancing biological activity.  
Low range of positive steric value indicated that 

highly bulky groups (i.e.-C6H5, -adamantly) are 

required to increase activity.  

 

Design of New Chemical Entities (NCEs) 

containing N-phenyl-2, 2-dichloroacetamide 

pharmacophore 

A total of 392 NCEs were designed by applying 

interpreted 2D and 3D QSAR results. Out of 392, 
only 15 NCEs exhibited good predicted activity as 

compared to compounds of the original series by 

applying all two QSAR predictions along with 

Lipinski’s screen score 5/6 and hence were selected 

for further in-silico studies. 

 

 
Fig. 6: Pharmacophoric requirements around 

Urea nucleus from 2D and 3D QSAR 

Table 7: Structures of designed NCEs along with predicted activity obtained by 2D (both descriptor sets) and 

3D QSAR equations (arranged in descending order) 

 

 

Sr. 

No. 

Molecule 

Name 

Structure H 

accept 

bond 

xLogP M.W. Polar 

surface 

Area 

Screen 

Result 

Screen 

Score 

Predicted 

Activity 

 

1 

 

VN1 

 

 

3 

 

5.331 

 

332.529 

 

41.13 

 

ADRWS 

 

5 

 

10.1128 

 

2 

 

VN2 

 

 

 

3 

 

5.2150 

 

322.450 

 

41.13 

 

ADRWS 

 

5 

 

9.3555 

 

3 

 

VN3 

 

 

 

3 

 

4.9810 

 

326.482 

 

41.13 

 

ADRXWS 

 

6 

 

9.2736 

 

4 

 

VN4 

 

 

 

3 

 

4.8650 

 

316.402 

 

41.13 

 

ADRXWS 

 

6 

 

8.5335 

5 VN5  

 

 

3 

 

4.6310 

 

320.434 

 

41.13 

 

ADRXWS 

 

6 

 

8.2895 

 

6 

 

VN6 

 

 
 

 

3 

 

5.1370 

 

306.491 

 

41.13 

 

ADRWS 

 

5 

 

8.2865 
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7 

 

VN7 

 

 

 

3 

 

5.0990 

 

312.370 

 

41.13 

 

ADRWS 

 

5 

 

7.9130 

 

8 

 

VN8 

 

 

 

3 

 

4.7870 

 

300.444 

 

41.13 

 

ADRXWS 

 

6 

 

7.4408 

 

9 

 

VN9 

 

 

 

5 

 

4.7650 

 

368.510 

 

41.13 

 

ADRXWS 

 

6 

 

7.0709 

 

10 

 

VN10 

 

 

 

3 

 

4.5580 

 

311.427 

 

56.92 

 

ADRXWS 

 

6 

 

7.0279 

 

11 

 

VN11 

 

 

 

3 

 

5.0210 

 

296.412 

 

41.13 

 

ADRWS 

 

5 

 

6.8322 

 

12 

 

VN12 

 

 

 

6 

 

3.8010 

 

317.388 

 

86.95 

 

ADRXWS 

 

6 

 

6.6863 

 

13 

 

VN13 

 

 

 

3 

 

5.0060 

 

365.313 

 

41.13 

 

ADRWS 

 

5 

 

6.6174 

 

14 

 

VN14 

 

 

 

5 

 

4.1330 

 

308.371 

 

41.13 

 

ADRXWS 

 

6 

 

6.5272 

 

15 

 

VN15 

 

 

 

3 

 

3.7400 

 

312.414 

 

69.81 

 

ADRXWS 

 

6 

 

6.5176 

 

Results of molecular docking studies 

In molecular docking results (Maestro, Schrödinger 

9.0), it was found that urea analogues mimic Bsu 360 

(A) and bind to the Bsu 360 (A) binding region of 

epoxide hydrolase active site.  

Evaluation of molecular docking results with 

enzyme EH (PDB code: 2ZJF) 

G-score 

The scoring function of GLIDE docking program is 

presented in G-score form. G-score indicates the 

binding affinity of the designed compound to the 

receptor or enzyme. G-score of standard compound 

Thioacetazone was found to be -7.8346; whereas out 

of 15 designed NCEs, only 6 showed better G-score 

than the standard. The G-score of the designed NCEs 

VN14, VN13, VN11, VN06, VN02 and VN07 was 

found to be -10.4141, -9.1733, -8.8281, -8.5703, -

8.3076 and -7.83468 respectively. More negative is 

the value of G-score, higher the binding affinity of 

that compound. The close analysis of these results 
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suggests that the designed NCEs have more binding 

affinity with enzyme than standard. 

H-Bond interactions 

H-bond is one of the most widely used parameter for 

the evaluation of the docking results, as it is an 
influential parameter in the activity of drug 

compound. The numbers of H-bond interactions as 

well as their length in standard were compared with 

that of the designed NCEs. Thioacetazone itself 

involves single important H-bonding interactions 

with the key binding amino acids Phe-36 of the 

protein backbone as reported in the standard ligand 

plot. Here also, out of 15 NCEs, only 6 compounds 

showed better results than standard as well the most 

potent compound of the series (v24). The H-bond 

length is also an important parameter in molecular 

docking studies as if it is found lesser than the H-

bond length of standard, then it means that our 
compounds bind with higher affinity with the 

respective amino acid. Here we found all the 

compounds have shorter length of both the H-bonds 

compared to standard. Compound VN14 showed the 

highest binding affinity with the key binding amino 

acids Asp-104 and Tyr-164 in the binding pocket of 

EH. 

 

Table 8: Results of molecular docking studies performed using extra precision mode of Glide (Maestro, 

Schrödinger) (arranged in descending order) with EH 

 

Sr. No Title G-score E-Model H-Bond 

1 VN14 -10.4141 41.4112 0 

2 VN13 -9.1733 13.9871 0 

3 VN11 -8.8281 9.9924 -1.2704 

4 VN06 -8.5703 23.4568 -1.575 

5 VN02 -8.3076 54.0869 -0.6946 

6 VN07 -7.8346 20.9319 0 

7 STD (Thioacetazon) -1.9539 -41.4952 0 

 

 
Fig.7: Binding pose of compound VN14 in 

receptor binding pocket of EH (PDB Code: 2ZJF) 

 
Fig.8: Binding pose of compound VN13 in 

receptor binding pocket of EH (PDB Code: 2ZJF) 
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Fig.9: Binding pose of compound VN11 in 

receptor binding pocket of EH (PDB Code: 2ZJF) 

 

 
Fig.10: Binding pose of compound VN06 in 

receptor binding pocket of EH (PDB Code: 2ZJF) 

 
Fig.11: Binding pose of compound VN02 in 

receptor binding pocket of EH (PDB Code: 2ZJF) 

 

 
Fig.12:Binding pose of compound VN07 in 

receptor binding pocket of EH (PDB Code: 2ZJF) 

 

 
Fig.13: Binding pose of standard Thioacetazon in 

receptor binding pocket of EH (PDB Code: 2ZJF) 

 

ADME predictions 

The NCEs generated using CombiLib were analyzed 

by Lipinski’s rule to ensure their drug-like 

pharmacokinetic profile while designing. In addition 

to that, their other ADME properties were also 

predicted and compared with their ideal ranges for a 

chemical entity to act as a drug. Out of designed 

entities 8 NCEs showed satisfactory results within the 

ideal ranges. 

ADME prediction by QikProp, Schrödinger 

Numbers of properties of designed analogues were 

predicted by QikProp tool, Schrödinger 9.0 which 

was used as last screening tool to select the final 

NCEs. Here we have reported only descriptors which 

contributed significantly for predicting drug like 

properties of the molecule. These properties are as 

follow: (figures in parenthesis indicate ideal values in 

order the test compounds to have drug like 

pharmacokinetic properties) 
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1) Lipinski’s Rule: Compounds that satisfy this 

rule were expected to have drug like pharmacokinetic 

profile. 

2) Brain/blood partition coefficient (CNS) (-2 

to 2) 
3) Per cent Human Oral absorption (>80% is 

high, <25% is poor) 

4) Number of possible metabolites (should 

range from 1-8) 

Ideal range of Lipinski’s rule properties have been 

satisfied by the finally considered 6 NCEs. Hence, it 

concludes that these NCEs can act as drug and have 

drug like bioavailability. 

CNS parameter is related with absorption of entity 

through Blood brain barrier; standard limit for CNS is 

-2 to +2, where -2 show inactive CNS penetration and 

+2 shows active CNS penetration. All the designed 
compounds must have CNS parameter value as -2 

(inactive BBB penetration), which has been satisfied 

by all 6 finally considered NCEs. Therefore all are 

considered as nontoxic compounds. 

Per cent human oral absorption parameter is related 

with extent of oral absorption of drug, indicating 

suitable route of administration and exhibit the extent 
of oral bioavailability profile. All NCEs showed 

100% human oral absorption, hence we can say that 

all finally considered designed NCEs can be orally 

absorbed and will exhibit bioavailability profile. 

All compounds showed No. of metabolites in ideal 

range as well as relatively more No. of metabolites as 

compared to standard so that we can say that they can 

be metabolized and excreted easily (mostly via urine) 

and will not cause any side effect or will not produce 

any toxic metabolite. 

So after detailed analysis of ADME predictions, it 

will worth saying that all the 6 selected compounds 
can exhibit drug like pharmacokinetic profile. 

Table 9. Results of ADMET properties 

 

Sr. 

No. 
Comp Mol. Wt. 

Donor 

HB 

Acceptor 

HB 

QPlog 

Po/w 

Percent Human 

Oral 

Absorption 

% 

CNS 

No.Of 

possible 

metabolites 

1 VN14 
308.37 

2 2 4.02 100 1 0 

2 VN13 
 

365.31 2 2 4.25 100 1 1 

3 VN11 
296.41 

2 2 3.97 100 1 0 

4 VN06 306.49 2 2 4.16 100 1 0 

5 VN02 322.44 2 2 4.31 100 1 0 

6 VN07 312.37 2 2 4.22 100 1 0 

From the results of molecular modelling studies, six compounds (VN14, VN13, VN11, VN06, VN02, VN07) have 

been selected for further experimental validation. 

 

4. CONCLUSION: 

The results of 2D and 3D QSAR studies using 
different interpretation approaches have yielded 

detailed insights of proper working and ways of 

thinking in this research area. In the present study 

objective of optimization of the selected Urea 

pharmacophore using molecular modeling studies 

was found to be achieved; as predicted activity of  

NCEs was found significantly greater 

(VN02=9.3555) than most potent compound of 

original series (v24=7.4698). The resulting QSAR 

models were found to be have generated significantly 

good statistical results i.e. (r2 > 0.7), cross-validation 

(q2 > 0.6), and external validation (pred_r2 > 0.6), it 
indicates high predictive ability of all models. In all it 

is worth concluding that rational  used for 

optimization of Urea pharmacophore using 2D, 3D 

QSAR, ADME, Molecular Docking studies was 

found to be significantly accurate. 
The results of activity prediction show significant 

improvement of activity. Ultimately QSAR studies 

are useful in understanding the structural requirement 

to design novel potent molecules. The binding 

affinity for design NCEs were checked by subjecting 

them to docking studies in active binding site of 

protein receptor. A screening approach has thus 

facilitated the identification of suitable compounds 

from designed library for antitubercular activity.  
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