

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.1069718

Available online at: <u>http://www.iajps.com</u>

Research Article

SYNTHESIS OF 2-SUBSTITUTEDGUANIDINO-4-SUBSTITUTED-IMINE-6-SUBSTITUTEDIMINO-1,3,5-THIADIAZINES

P. V. Raut¹*, P. S. Bodakhe², S. A. Waghmare³, D. T. Tayade⁴
¹Smt Sarda college Anjangaon (Surji), Dist. Amaravati (MS) 444728.
²Department of Chemistry, Vidya Bharti Mahavidhyalaya, Amravati 444606.
³Ghaulam Nabi Azad Arts, Comm. & Science College, Barshitakli Dist. Akola, (MS) 444401.
⁴Govt. Vid. Institute of Science and Humanities, Amravati (MS) 444606.

Abstract:

A novel series of 2-substituted guanidino-4-substituted imine-6-sub-stituted imino-1,3,5thiadiazines ($IIIa^{1}-e^{5}$) have been recently synthesized by refluxing N-methylformamidino-N'phenyliminothio carbamide also called as 1-(N-substituted carbamimidoyl)3-{N-(E)substituted methylidine car-bamimidoyl}thiourea (Ia-e) with various isocyanodichloride (II1-5) in acetone-ethanol medium in 1:1 molar proportion.

The structure of all the synthesized compounds was justified on the basis of chemical characteristics, elemental analysis and IR, NMR and mass spectral analysis. **Keywords**: Guanidine, 1,3,5-thiadiazines, acetone, ethanol etc.

Corresponding author:

P. V. Raut,

Govt. Vid. Institute of Science and Humanities, Amravati (MS) 444606. E- mail: pavanraut5@rediffmail.com

Please cite this article in press as P. V. Raut et al., Synthesis Of 2-Substitutedguanidino-4-Substituted-Imine-6-Substitutedimino-1,3,5-Thiadiazines, Indo Am. J. P. Sci, 2017; 4(12).

P. V. Raut et al

INTRODUCTION:

The literature survey reveals that when the heterocyclic compounds containing 1,3,5-thiadiazine as a parent nucleus then that molecule will enhance medicinal, pharmaceutical, agricultural and industrial activities of that drug¹⁻⁹. Hence, nowadays the drug containing 1,3,5-thiadiazine nucleus are widely used in pharmaceutical, medicinal, biochemical and biotechnological fields. It has been reported that thiadiazine nucleus and its analogous possess¹⁰ antiviral, antifungal, antibacterial, anti-tuberculostatic and anti-helminthic properties. Several thiadiazines are widely used in the treatment of cancer¹¹ and anti-HIV¹²⁻¹³ drugs. They are also used in agriculture¹⁴ as like fungicidal¹⁵, insecticidal¹⁶. These 1,3,5thiadiazines are also effective against copper corrosion¹⁷⁻¹⁸ and used in lubricating oil¹⁹. The important reactions of substituted

isocyanodichlorides have been briefly investigated by some researchers²⁰⁻³⁰. In the view of utility and significances of these compounds in various fields and as a part of wider programme in the synthesis of nitrogen, nitrogen and sulphur containing heteroacycles and heterocycles to developed an alternative route for the synthesis of six member heterocycles in this laboratory, it is quite interesting investigate the cyclisation of 1-(Nto substitutedcarbamimidoyl)3-{N-(E)-

substitutedmethylidinecarbamimidoyl}-thiourea (Iaf) with N-substitutedisocyanodichlorides (IIa-d) in medium synthesise acetone-ethanol to 2substitutedguanidino-4-substitutedimine-6-

substitutedimino-1,3,5-thiadiazines (IIIa1-e5).

The tentative reaction and mechanism for the formation of product is depicted below,

substitutedmethylidenecarbamimidoyl}thiourea

1-Substituted-3-[(2Z)-2-(substitutedimino)-4-{[(E)-substitutedmethylidene]amino}2H-1,3,5-thiadiazin-6-yl]guanidines

Where R, R' & R" = -methyl, -ethyl, -allyl, -phenyl

EXPERIMENTAL:

Synthesis of 2-substituted guanidino-4,6susbstitutedlimino-1,3,5-thiadiazine (IIIa¹-e⁵):

A reaction mixture of N-substitutedformamidino-N'susbtitutediminothio-carbamide (Ia-e) (0.1M) with substituted isocyanodichloride (II1-5) (0.1M) in 1:1 molar ratio was refluxed on water bath in 50% acetone-ethanol (15 ml) medium for 2 hours. During heating evolution of hydrochloride gas was clearly noticed. After distillation of excess of acetoneethanol dark brown colour product was isolated this on basification with dilute ammonium hydroxide lemon yellow crystals were afforded, yield, m.p. recorded.

RESULT AND DISCUSSION:

Synthesis of 2-phenylguanidino-4-methylimino-6phenylimino-1,3,5-thia-diazine (IIIa¹):

A reaction mixture of N-methylformamidino-N'phenylimino-thiocarbamide (Ia) with phenylisocyanodichloride (III) in 1:1 molar ratio was refluxed on water bath in acetone-ethanol medium for 4 hours. During heating evolution of hydrochloride gas was clearly noticed. After distillation of excess of acetone-ethanol ivory coloured product was isolated this on basification with dilute ammonium hydroxide lemon yellow crystals were afforded, yield 82%, m.p. 128°C. The probable mechanism of the formation of (IIIa¹) is depicted below (Scheme-II).

Properties of (IIIa¹):

1)It was lemon yellow crystalline solid having m.p.128°C.

2)It gave positive test for nitrogen and sulphur and negative test for chlorine.

3) It does not desulphurized when boiled with alkaline plumbite solution which clearly indicates that sulphur is not free and gets cyclised.

4)It was soluble in benzene, acetic acid, DMF and DMSO.

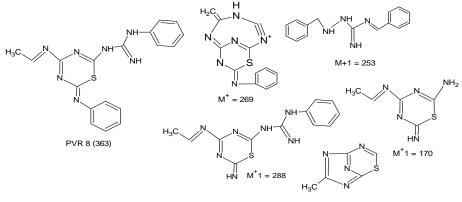
5) Elemental analysis: The result of elemental analysis is given in Table No. 1.1

Table No-1.1 Elements Found (%) Calculated (%)				
Carbon	58.90	59.5041		
Hydrogen	04.29	04.6832		
Nitrogen	26.54	26.9972		
Sulphur	08.78	08.8154		

11 37 4 4

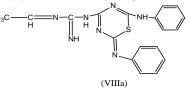
	Table No1.2.			
Absorption observed cm ⁻¹	Assignment	Absorption Expected cm ⁻¹		
3185.10	ArC-H ³² stretching	3150-3000		
1637.7	C=N ³³ stretching	1750-1450		
1254.30	C-N ³⁴ stretching	1360-1000		
725.37	C-S ³⁴ stretching	800-600		
668.34	Mono-substituted ph-ring	800-600		
3376.8	NH Stretching	3500-3000		
1507.18	Ar C=C stretching	1600-1450		

6)From the analytical data the molecular formula was found to be $C_{18}H_{17}N_7S_1$.

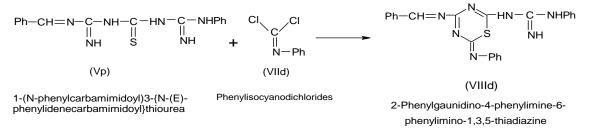

7)**IR Spectrum of compound**: IR spectrum of compound was carried out in KBr pellets and reproduce on **Plate No. PVR-8**, an important absorption are correlated as follows in **Table No.-1.2**.

8) **PMR-Spectrum:**

The PMR spectrum^{24,36} of compound was carried out in CDCl₃ and DMSO-d₆ and reproduced on **PMR Plate No. PVR-8**. This spectrum distinctly displayed the signals due to Ar-protons at δ 6.6253-8.4541ppm, NH protons at δ 3.1786-4.8738 ppm, =NH protons at δ 3.1786-3.7665 ppm, -CH proton at δ 2.1345-2.6119 ppm and -CH₃ protons at δ 1.2024-1.5318 ppm.


9) Mass spectrum:-

The Mass analysis of the compound was carried out and reproduced on **Mass Plate No. PVR-8**. The fragmentation occurs during the analysis is given in **Mass Scheme-I.**


M⁺ = 151

From the above properties and spectral analysis of the compound (**IIIa**¹) was assigned the structure as 2-methylguanidino-4-methylimine-6-phenylimino-1,3,5-thiadiazines (**IIIa**¹).

Synthesis of 2-phenylguanidino-4-phenylimine-6-phenylimino-1,3,5-thiadi-azine (IIIa³):

P. V. Raut et al

Where R, R' & R" = -methyl, -ethyl, -allyl, -phenyl

Scheme-II

A reaction mixture of N-phenylformamidino-N'phenylimino-thiocarbamide (**Ic**) with phenylisocyanodichloride (**IId**) in 1:1 molar ratio was refluxed acetone-ethanol medium for 2 hours. During heating evolution of hydrochloride gas was clearly noticed. After distillation of excess of acetoneethanol dark brown colour product was isolated this on basification with dilute ammonium hydroxide afforded lemon yellow crystals, yield 72%, m.p. 240^oC. The probable mechanism of the formation of (**IIIa**³) is depicted below (**Scheme-II**). **Properties of (IIIa**³):

1)It was lemon yellow crystalline solid having $m.p.240^{9}C.$

2) It gave positive test for nitrogen and sulphur.

3)It does not desulphurized when boiled with alkaline plumbite solutions which clearly indicate that sulphur is not free as in (**IIIa**³) and gets cyclised.

4)It was soluble in benzene, acetic acid, DMF and DMSO.

5) From the analytical data the molecular formula was found to be $C_{23}H_{19}N_7S_1$.

6)**IR Spectrum of compound**: IR spectrum of compound was carried out in KBr pellets and reproduce on Plate No. **PVR-7**, an important absorption are correlated as follows in **Table no-1.5**.

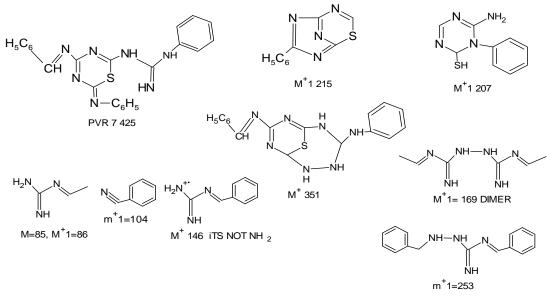
10) Elemental analysis:

The result of elemental analysis is given in **Table** No.1.4

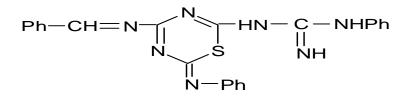
Elements	Found (%)	Calculated (%)
Carbon	66.98	67.3170
Hydrogen	03.51	04.3902
Nitrogen	19.75	20.4878
Sulphur	07.49	07.8

Table 1.4

Table 1.5


Absorption observed (cm ⁻ ¹)	Assignment	Absorption Expected (cm ⁻ ¹)
3176.0	ArC-H ³² stretching	3150-3000
1635.0	C=N ³³ stretching	1750-1450
1254.30	C-N ³⁴ stretching	1360-1000
723.14	C-S ³⁴ stretching	800-600
668.12	Mono-substituted -ph ring	800-600
3376.8	NH Stretching	3500-3000
1504.1	Ar C=C stretching	1600-1450

7)**PMR-Spectrum:**


The PMR spectrum^{24,36} of compound was carried out in CDCl₃ and DMSO-d₆ and reproduced on **PMR Plate No. PVR-7**. This spectrum distinctly displayed the signals due to Ar-protons at δ 6.647-8.1570 ppm, NH protons at δ 3.5515 ppm, =NH protons at δ 2.5627-2.5850 ppm, and -CH proton at δ 2.1134 ppm.

8) Mass spectrum:-

The Mass analysis of the compound was carried out and reproduced on **Mass Plate No. PVR-7**. The fragmentation occurs during the analysis is given in **Mass Scheme-II.**

From the above properties and spectral analysis of the compound (III a^3) was assigned the structure as 2-phenylguanidino-4-phenylimine-6-phenylimino-1,3,5-thiadiazine (III a^3).

(VIIId)

2-Phenylgaunidino-4-phenylimine-6phenylimino-1,3,5-thiadiazine

Similarly,	N-ethylfo	ormam	idino-N'-
phenyliminothiocarbam		(Ib),	N-3-
nitrophenylformamidin	o-N'-		
phenyliminothiocarbam		(Id),	N-4-
nitrophenylformamidin	o-N'-		
phenyliminothiocarbam	ide (Ie)	and	N-3-p-
dimethylphenyl-		ormam	idino-N'-
phenyliminothiocarbam			interacted
with phenylisocyanodichl	oride (II2)	to iso	late 2-

phenylguanidino-4-ethylimino-6-phenylimino-1,3,5thiadiazine (IIIa²), 2-phenylguanidino- 4-(3nitro)phenylimine-6-phenylimino-1,3,5thiadiazine(IIIa⁴),2-phenylgua-nidino-4-(4nitro)phenylimine-6-phenylimino-1,3,5thiadiazine(IIIa⁵) and 2-phenylguanidino-4-(3-pdimethyl)phenylimine-6-phenylimino-1,3,5thiadiazine (IIIa⁶) respectively by above mentioned method in Experiment No. 3-30 and enlisted in Table No.-1.7.

Expt	Comp	Substitued	2-Phenylguanidino-4-substitutedimine-6-	Yield	M.P.
No	No	isocyanodi-	substitutedimino-1,3,5-thiadiazine	%	⁰ C
		chloride			
3	(Ib)	Phenyl	4-ethylimine-6phenyl	82	192
4	(Id)	Phenyl	4-(3-nitro)phenylimine-6-phenyl	80	204
5	(Ie)	Phenyl	4-(4-nitro)phenylimine-6-phenyl	76	215
6	(If)	Phenyl	4-(3-p-dimethyl)phenylimine-6phenyl	75	189
7	(Ia)	Methyl	4-methylimine-6-methyl	85	178
8	(Ib)	Methyl	4-ethylimine-6-methyl	82	197
9	(Ic)	Methyl	4-phenylimine-6-methyl	80	210
10	(Id)	Methyl	4-(3-nitro)phenylimine-6-methyl	78	235
11	(Ie)	Methyl	4-(4-nitro)phenylimine-6-methyl	78	203
12	(If)	Methyl	4-(3-p-dimethyl)phenylimine-6-methyl	75	183
13	(Ia)	Ethyl	4-methylimine-6-ethyl	84	155
14	(Ib)	Ethyl	4-ethylimine-6-ethyl	82	168
15	(Ic)	Ethyl	4-phenylimine-6-ethyl	78	244
16	(Id)	Ethyl	4-(3-nitro)phenylimine-6-ethyl	75	276
17	(Ie)	Ethyl	4-(4-nitro)phenylimine-6-ethyl	76	279
18	(If)	Ethyl	4-(3-p-dimethyl)phenylimine-6-ethyl	74	230
19	(Ia)	t-butyl	4-methylimine-6-t-butyl	75	256
20	(Ib)	t-butyl	4-ethylimine-6-t-butyl	72	234
21	(Ic)	t-butyl	4-phenylimine-6-t-butyl	72	278
22	(Id)	t-butyl	4-(3-nitro)phenylimine-6-t-butyl	68	145
23	(Ie)	t-butyl	4-(4-nitro)phenylimine-6-t-butyl	65	167
24	(If)	t-butyl	4-(3-p-dimethyl)phenylimine-6-t-butyl	66	174
25	(Ia)	p-Cl-Ph	4-methylimine-6-(p-Cl)-phenyl	68	234
26	(Ib)	p-Cl-Ph	4-ethylimine-6-(p-Cl)-phenyl	65	201
27	(Ic)	p-Cl-Ph	4-phenylimine-6-(p-Cl)-phenyl	64	185
28	(Id)	p-Cl-Ph	4-(3-nitro)phenylimine-6-(p-Cl)phenyl	63	214
29	(Ie)	p-Cl-Ph	4-(4-nitro)phenylimine-6-(p-Cl)-phenyl	62	248
30	(If)	p-Cl-Ph	4-(3-p-dimethyl)phenylimine-6-(p-Cl)-phenyl	62	199

Table No.-1.7

REFERENCES:

1.Tayade D.T. and Waghmare S.A., synthesis and characterization of 5-substituted series of 3-(4-chlorophenyl)-2,4-dithio-1,3,5-triazines containing chalcone moieties.,Int. Res. J. Pharm., 2016; 7(6):96-98.

2.Blotny G., Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis., Tetrahedron, 2006; 62:9507-9522.

3.Nishigaki S., Yoneda U.H., Tsumoto H. and Jiorinaga A.I., Synthetic Antibacterials. I. Nitrofurylvinyl-s-triazine Derivatives., J. Am. Chem. Soc., 1969; 12:39-42. 4.Barker J.J., Antibacterial drug discovery and structure based design. Drug Disc. Today., 2006, 11, 391-404.

5.Srinivas K., Srinivas U., Bhanuprakash K., Harakishore K., Murthy U.S.N. and Rao V.J., Synthesis and antibacterial activity of various substituted s-triazines., Eur. J. Med. Chem., 2006; 41: 1240-1246.

6.Wise R., Hart T., Cars O., Helmuth R., Huovinen P., Sprenger M. and Streulens M., Antimicrobial resistance is a major threat to public health. BMJ., 1998; 317: 609-610.

7.Patel R. B., Chikhalia K. H., Pannecouque C. and Clercq Erik de., Synthesis of Novel PETT Analogues: 3,4-Dimethoxy Phenyl Ethyl 1,3,5-Triazinyl Thiourea Derivatives and their Antibacterial and Anti-HIV Studies., J. Braz. Chem. Soc., 2007; 18(2): 312-321,

8.Raval J.P., Desai J.T., Desai C.K. and Desai K.R., A comparative study of microwave assisted and conventional synthesis of 2,3-dihydro-2-aryl-4-[4-(2–oxo–2H–chromen–3–yl)–1,3-thiazol–2–

ylamino]-1,5-benzothiazepines and its antimicrobial activity, ARKIVOC, 2008, xii, 233-244.

9.Gubernator K. and Bohm H.J., Structure-Based Ligand Design, Methods and Principles in Medicinal Chemistry. Wiley-VCH Publishers, Weinheim, 1998, 15-95.

10.Raval J.P. and Desai K. R., Synthesis of 3-Phenyl4[4(mnitrophenyl)N2(2'arylureido/arylthioure ido-4'-N-morpholino-striazin)-benzo-[6,7]coumarins and their Applications., E-J. Chem., 2004; 01(5): 211-215.

11.Singh B.K., Mishra M., Saxena N., Yadav G.P., Maulik P.R., Sahoo M.K., Gaur R.L., Murthy P.K., Tripathi R.P., Synthesis of 2-sulfanyl-6-methyl- 1,4dihydropyrimidines as a new class of antifilarial agents, Eur. J. Med. Chem.,2008; 43(12): 2717-2723. 12.Weiner David B. and William V., Chemical and structural approaches to rational drug design. Boca Raton, CRC, FL, 1994, 12-85.

13. Thruston J.T., Dudley J.R., Kaiser D.W., Henbleikner I., Schaefer F.C. and Holm-Hensen D., Cyanuric Chloride Derivatives. I. Aminochloro-striazines. J. Am. Chem. Soc., 1951; 73: 2981-2983.

14.Kumar A., Srivastava K., Raja Kumar S., Puri S.K., Chauhan Prem M.S., Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents., Bioorg. Med. Chem. Lett., 2008; 18(24):6530-6533.

15.Raval J.P. and Desai K.R., A Comparative study of Microwave assisted and Conventional Synthesis of novel 2-(4-diethylamino-2-hydroxyphenyl)-3substituted-thiazolidin-4-one derivatives. Chemija (Accepted, MS.No.08-30).

16.Kumar A., Menon S. K., Fullerene derivatized striazine analogues as antimicrobial agents., Eur. J. Med. Chem.,2009; 44(5): 2178-2183.

17.Tayade D.T. and Waghmare S.A., synthesis and characterization of (2e) -1- [4- (2, 4-dithio-3-ethylimino-5-substitutedimino-1,3,5-triazino-6-

yl)aminophenyl]-3-(3,4-dimethoxyphenyl) prop -2en-1-one., Haya: Saudi J. Life Sci., 2016;1(2):72-75. 18.Tayade D. T. and Waghmare S. A., synthesis and characterization of (2*e*)-1-{4-[2,4-dithio-3-(2methylpropan-2-yl)imino-5-substitutedimino-1,3,5triazino6yl]aminophenyl}3(3,4dimethoxyphenyl)pro p-2-en-1-one., European Journal of Pharmaceutical and Medical Research, 2016; 3(7): 433-435.

19.Waghmare S.A. and Tayade D.T., Synthesis and Characterization of 5-Substituted Derivatives of 2, 4-Dithio-3-phenyl-6-chalcone-1,3,5-Triazines, IJCPS, 2016; 4(8): 286–288.

20.Tayade D.T., Thombare R.D. & Waghmare S.A. synthesis of 5-{(4- amino-n- [2-(diethylamino)ethyl]-o-anisamido- 5-yl}- amino-3- substitutedimino-7-substitutedimino-1,2,4,6- trithiazepines., IAJPS, 2017; 4(11): 1-5.