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Abstract: 
Zinc is an essential mineral playing a pivotal role in numerous aspects of cellular metabolism. Zinc deficiency 

affects all age groups, but the effect on growing children is very severe. Zinc deficiency is known to cause 

stunted growth and development in children. However, there are no reliable biomarkers of zinc status to assess 

health risk. Without a specific, sensitive biomarker to determine the zinc nutritional status, zinc intervention 
program is a struggle. Sensitive and specific analysis of zinc status is hence cardinal to defining optimal zinc 

status and setting evidence-based reference intake level. Given the lack of an accurate, sensitive zinc biomarker 

that reflects zinc nutrition across various populations and situations, research is needed to identify new 

biomarkers. Presently, the biochemical marker for measuring the zinc status is analyzing the plasma zinc. 

However, zinc homeostasis depends on many factors complicating the detection of marginal zinc deficiency. 
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INTRODUCTION: 
Global estimates suggest that maternal and child 

undernutrition is responsible for causing diseases in 
children below five years at a rate of about 35% and 

deaths of 3.5 million per year. This is due to the 
deficiency of vitamin and nutrients. The ability to 

assess the role of nutrition in disease prevention and 
health promotion is predicted on the possibility of 

identifying precise and well-founded biomarkers that 
reflect nutrient exposure, status, and effect. 156 

million children under age of 5 around the world are 
stunted [1]. Stunting and other forms of under 

nutrition are a major contributing factor to child 
mortality, disease and disability. Micronutrient 

deficiencies including deficiencies of vitamin A, 
iodine, zinc and folic acid are common factors 

contributing to the stunted children. 

 

Zinc deficiency 
Zinc deficiency is due to inadequate intake or mal-

absorption of zinc from diet. People having the diet of 
plant products are limited with zinc availability and 

absorption due to high levels of inhibitors like fibre 
and phytates, compared to populations having animal 

products. It is estimated that zinc deficiency affects 
about one third of world’s population according to 

food availability data, although severe zinc deficiency 
is rare, mild-to-moderate zinc deficiency is quite 

common around the world. The WHO and UNICEF 

recognise zinc deficiency as being one of the most 
important health issues globally. Zinc act as a 

regulatory ion, a catalyst or a structural element thus 
playing an important role [2]. Zinc deficiency affects 

half of the global population. Worldwide, zinc 
deficiency is responsible for approximately 16% of 

lower respiratory tract infections, 18% of malaria and 
10% of diarrhoeal disease [3]. High mortality among 

children resulting from these infections has been 
reported due to zinc deficiency [4]. Prevalence of zinc 

deficiency is very common, and 61% of the 
population is at the increased risk of low dietary 

intake. Undernutrition has taken a heavy toll in 
developing countries like India, as 47% of children 

are enduring malnutrition and also India is one of the 
foremost countries with hunger situation. Zinc is vital 

to protein synthesis, cellular growth, and cellular 
differentiation. Zinc is a cofactor for the functioning 

of ~ 300 different proteins. The zinc status is varied 
during infection and inflammation. Studies in children 

have corroborated the important role of zinc in the 
modulation of immune function, growth, and 

development. Mild to moderate zinc scantiness makes 
them vulnerable to infection. Zinc or zinc-dependent 

proteins therefore directly affect the transcription and 
translation, thus regulating the expression of proteins 

and other metabolites [5]. 
Zinc is an indispensable metal vital for balanced 

growth and development. Zinc is the second most 

copious metal after iron in the human body. Zinc is a 
paramount cofactor for over more than 300 enzymes 

[5]. Around 3% of human genome encompassing 709 
genes code for zinc bearing transcription factors [25]. 

Zinc is vital for insulin metabolism and signaling 

[6,7]. Zinc plays a crucial role in multitudinous 
biochemical and physiological pathways involving 

gene expression, signal transduction and antioxidant 
defense [8-10]. Inadequate consumption of zinc is a 

worldwide problem notably affecting India.  About 
2.1 million deaths among Indian children (<5 years) 

occur due to typhoid, malaria, measles and 
pneumonia. Evidently 1000 children die from diarrhea 

alone every day. All these are attributed to reduced 
zinc consumption. In five Indian states, current 

epidemiological research has revealed high 
extensiveness of zinc deficiency among children 

associated with low socioeconomic groups outlining 
an overall zinc deficiency of 43.8% (cut-off level (≤ 

65 µg/dL) based on serum zinc levels. Orissa was the 
highest with (51.3%) followed by Uttar Pradesh 

(48.1%), Gujarat (44.2%), Madhya Pradesh (38.9%), 
and Karnataka (36.2%) [11,12]. One more recent 

cross-sectional study (n=630) confirmed low plasma 
zinc concentrations and substandard cognitive 

performance in 45% of adolescent girls in India, 
signifying the need to adopt dietary zinc for normal 

health (12). Nearly (64.6%) of pregnant women have 
been shown to suffer zinc deficiency in the state of 

Haryana, because of low intake of dietary zinc [13]. 
Zinc deficiency causes a metabolic and clinical 

deficiency that has no symptoms leading to imperfect 
growth, wasting and stunting. Correlation of zinc 

depletion to zinc status physiologically is due to an 

incomplete understanding of biological functions of 
zinc.  

 

Markers for Zinc status 

There are several reported methods of identifying zinc 
deficiency, and each method has its advantages and 

disadvantages.  According to BOND zinc expert 
panel, serum or plasma zinc concentration values act 

as a biomarker for dietary zinc consumption and 
stunting acts as a functional indicator of zinc status 

[14]. Plasma zinc concentration levels have been 
proposed as a reliable marker to measure zinc status 

as they react positively to acute dietary zinc restriction 
or zinc addition stimulus. Zinc status can be measured 

in people at the peril of zinc insufficiency by 
estimating the plasma zinc concentration. Plasma zinc 

status cannot be considered as gold standard as they 
have their own constraints. Foods rich in zinc and 

foods which are added with zinc respond differently 
when their plasma levels are quantified, and they are 

also affected by the physiological condition of the 
person. At the same time, not enough information is 

available about whether blood cells, urine, nails, and 
hairs can be used as a source of zinc to predict zinc 

levels [14].  Bui (2013) [15] reported zinc intake was 
inconsistently associated with markers of serum zinc 

concentration. The associations between zinc intake 
was assessed with serum zinc, alkaline phosphatise 

and serum albumin as the biomarkers.  Lowe [16] has 

elaborately reviewed on 32 potential biomarkers from 
46 publications. Using plasma zinc concentration as a 

biomarker is reliable during an effective response to 
zinc to intervention such as growth in children or 

immune response. Modulation of plasma zinc 
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concentration occurs in response to zinc intake or 
depletion. But using plasma zinc as biomarkers has 

several pitfalls. The factors affecting zinc status are 
bioavailability, physiological state of the person, the 

possibility of zinc being metabolized when consumed 
as food or a supplement and analytical considerations 

such as contamination of plasma by hemolysis of 
blood and equipment used to collect blood. Measuring 

hair zinc concentration has several drawbacks as the 
level measured does not reflect the current zinc 

concentration. Because zinc is incorporated in the hair 
follicle during growth and as the hair matures it 

undergoes keratinization resulting in trapping of zinc 
in the protein structure of hair. Hence, the amount of 

zinc estimated in hair represents the quantity of zinc 
available during the time of hair growth. Urinary zinc 

could be used as a biomarker for predicting zinc 
status, but it has many drawbacks as zinc levels can 

only be estimated if there is acute zinc depletion. 
Apart from this, protein catabolism, starvation, 

strenuous exercise, diabetes, and trauma will result in 
elevated levels of zinc excretion. The use of nails to 

quantify zinc concentrations is limited as there is a 
lack of sensitive equipment to measure nail zinc 

concentration. More than 300 enzymes possess zinc as 
a cofactor for their function. So these bound zinc 

proteins may be secreted or leaked into the 
surrounding circulation. These proteins might act as 

biomarkers reflecting the status of zinc. 

Metallothionein is one of the markers which can serve 
as biomarker as it expression is highly modulated by a 

transcription factor know as MTF-1, which in turn is 
regulated by cellular zinc concentration [17]. 

Metallothionein levels increase with increasing 
cellular zinc concentration and might reflect zinc 

status, but using metallothionein as a biomarker has 
some issues, because it has been reported that there is 

a negative correlation plasma zinc status and 
metallothionein expression in blood mononuclear cell. 

This indicates that stress or inflammation raises the 
metallothionein concentration with concurrent 

depletion of plasma zinc levels thereby complicating 
the use of metallothionein expression has a biomarker 

of zinc levels [18,24] . Alterations in cellular zinc 
status affect the exporting and importing of zinc. It 

has been observed the zinc deficiency causes 
decreased expression of zinc efflux transporters (ZnT1 

or ZnT2). In a human trial of severe zinc deficiency (< 
2 mg dietary zinc/d), the expression of ZnT1 was 

found to be significantly downregulated after ten days 
in the blood cells [19,20]. But it is not clear if the mild 

to moderate deficiency of zinc affects the ZnT1 
expression. A cytoskeletal protein named dematin has 

been recognized as a marker of zinc status during a 
clinical trial of acute zinc deficiency, but it needs 

validation before it can used as a biomarker [20]. 
Oxidative stress generates reactive oxygen species, 

which causes many diseases and zinc has been termed 

as pro-antioxidant as zinc indirectly stimulates the 
cellular antioxidant machinery. Zinc deficiency and 

zinc overload can cause oxidative stress and 
production of free radicals [21].This warrants further 

studies to identify markers of oxidative stress and 

inflammation during mild to moderate zinc deficiency 
with caution as many other factors alter the redox 

state and might give false positives during zinc 
deficient conditions. Zinc deficiency also has been 

shown to affect eicosanoid production in rodents. Zinc 
deficient rat had higher plasma concentrations of 

PGF2α and PGE2 compared to control rats which were 
fed with adequate zinc [22]. It has been suggested the 

ratio of linoleic acid and dihomo--linoleic acid could 

be a potential marker to assess zinc status as 

deficiency affects the conversion of linoleic acid to 

dihomo--linoleic acid [23]. Zinc insufficiency 

impacts innate and adaptive immunity thereby 
influencing host defence and immune response in 

particular. Zinc depletion causes impaired immune 
cell development, compromised T-cell mediated 

immune reaction and elevated oxidative burst. Zinc 
supplementation can mitigate all these, which 

suggests that zinc has anti-inflammatory and 
immunomodulatory function. Zinc consumption 

levels, serum or plasma levels of zinc, and below 
average growth are being used as a yardstick for zinc 

evaluation in population [14] (Janet et al 2016). The 
measurement of zinc nutritional levels by laboratory 

methods is burdensome due to sweeping dispensation 
of zinc all through the body as an integral component 

of numerous proteins and nucleic acids. Plasma zinc 
concentration (PZC) are used recurrently as a 

directory assessing zinc shortage, but one strong 
drawback of PZCs is that they do not represent zinc 

cellular levels for the most part due to rigorous 
homeostatic regulatory mechanisms[16]. However, 

considerable research is required before those 

biomarkers can be used to evaluate the zinc status of 
individuals or populations. There are, at present, no 

preventive zinc programmatic activities at the national 
or international levels. The WHO has not established 

guidelines for large-scale zinc interventions that are 
designed to prevent inadequate zinc nutrition. 

Furthermore, without a sensitive, specific zinc 
biomarker, program planners struggle to assess the 

need for preventive zinc interventions and how to 
measure their impact. 

Identification of zinc deficiency is a tough task. There 
are no dependable biomarkers of zinc status to judge 

health risk. Without an unambiguous and responsible 
biomarker to evaluate the zinc nutritional status, zinc 

intervention program is a struggle. Sensitive and 
precise analysis of zinc status is hence cardinal to 

defining optimal zinc status and setting evidence-
based reference intake level. Presently, the 

biochemical marker for measuring the zinc status is 
quantifying the plasma zinc. Due to the paucity of 

information, active indicators like enzymes and 
proteins which are modulated by zinc levels cannot be 

used to quantify zinc status both in clinical or field 
studies. However, zinc homeostasis depends on many 

factors complicating the detection of marginal zinc 
deficiency. The emerging omics technology could be 

put good use in identifying a reliable marker which 
will become a fruitful aid to diagnose zinc inadequacy 

in populations. 
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CONCLUSION: 
Development of evidence-based clinical guidance and 

effective programs for achieving global health 
promotion depends on the availability of valid and 

reliable biomarker. Zinc deficiency is highly prevalent 
in the human population in under developed or 

developing countries and, at the same time sensitive 
analytical techniques are not yet available to assess 

zinc status in humans. Delicate and specific analysis 
of zinc status is cardinal to delineating optimal zinc 

status. Zinc deficiency causes sweeping changes in 
metabolism affecting many proteins, lipids, and 

microRNAs. The question is could these specific 
proteins, lipids or miRNAs be identified and serve as 

sensitive biomarkers to assess during acute, mild to 
moderate and chronic zinc deficiency.  
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