

CODEN (USA): IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

http://doi.org/10.5281/zenodo.344928

Available online at: <u>http://www.iajps.com</u>

Research Article

TO STUDY THE THERMODYNAMIC PARAMETERS OF SUBSTITUTED THIOCARBAMIDOPHENOL IN 60% ETHANOL WATER MIXTURE.

S.O.Mohod^{1*} D.T.Tayade²

¹Department of Chemistry, Government Vidarbha Institute of Science and Humanities, Amravati

444 604, Maharashtra State, India.

E-mail: seemamohod7@gmail.com, Mb.8149653713.

²Department of Chemistry, Government Vidarbha Institute of Science and Humanities, Amravati

444 604, Maharashtra State, India.

E-mail: <u>skdtayade@gmail.com</u>

Received: 30 January 2017	Accepted: 8 February 2017	Published: 28 February 2017

Abstract:

Recently in the laboratory conductometric investigation of 2-methyl thiocarbamidophenol (L_2) have been carried out at different concentration of solute in 60% ethanol-water mixture at constant temperature. G, k, μ values are determined. The thermodynamic parameters ΔH , ΔG and ΔS for the ion pair formation determine from the value of ion association constant at different temperature i.e. 298.15K and 303.15 K. This measurement revealed that solvent-solvent, solute-solvent and solute-solute interaction and the effects of various substituents.

Key Words: Substituted thiocarbamidophenol, ion association constant, thermodynamic parameters.

Corresponding Author:

S.O.Mohod,

Department of Chemistry, Government Vidarbha Institute of Science and Humanities, Amravati 444 604, Maharashtra State, India. E-mail: <u>seemamohod7@gmail.com</u>, Mb.8149653713

Please cite this article in press as S.O.Mohod and D.T.Tayade, **To Study The Thermodynamic Parameters Of** Substituted Thiocarbamidophenol In 60% Ethanol Water Mixture, Indo Am. J. P. Sci, 2017; 4(02).

INTRODUCTION:

The conduction of electrolytic solution can be explained by number of ions of electrolyte in solution. The theory of the electrolytic solution introduced by Shedlovsky. System in which electric current conveyed by the ions (monoatomic or polyatomic) which are electrically charged called as electrolytic solution. Chemical structure and composition of the electrolyte alongside its concentration impact the properties of electrolytic solutions. Aqueous solutions of electrolytes are essentially classified as strong electrolyte and weak given electrolyte for stoichiometric а By concentrations. using conductance measurements methods characteristic parameters of a given electrolyte can be investigated. Rounghi and Kakhki¹ investigated thermodynamic study of complex formation between dibenzo-18-6 and UO2²⁺ cation in different non-aqueous binary solutions. Chandra and Maisuria² investigated thermodynamic parameters of metal complexes of Fe(II), Co(II), Ni(II) and Cd(II) with 1,10phenanthroline in water, methanol and watermethanol binary solvent systems at 298.15K and 308.15K by conductometric method. Thermodynamic study of complex formation between azamacrocyclic ligand with Cu²⁺ and Fe²⁺ cations in MeOH-H₂O binary solvents were investigated by Rezayi et al^3 . Burghate et al^4 investigated thermodynamic study of complex formation of N-Benzothiazol-2-yl-3,5-disubstituted pyrazolines with some transition metals. Conductometric study of complex formation between Cu(II) ion and 2-hydroxyimino-3-(2hydazonopyridyl)-butane was reported by Gomaa and Hassan⁵. Ahmadzadeh *et al*⁶ studied thermodynamic parameters of complexation of pisopropylcalix[6]arene with Cs^+ cation in dimethylsulfoxide-acetonitrile binary media. Tarahomi et al⁷ investigated thermodynamic parameters of interaction of Na⁺ cation with benzo-15-crown-5 in binary mixed non-aqueous solvents.

Smetana and Popov studied⁸ the influence of ionic strength on the equilibrium constant of a non-molecule reaction. Thermodynamic studies on metal complexes of Co^{2+} , Ni^{2+} , Cu^{2+} and Cd^{2+} with 8-hydroxy-5-quinolinesulfonic acid in water, methanol and water-methanol binary solvent systems at 303.15K, 313.015K and 323.15K conductometrically by Maisuria *et al*⁹. Asghar *et al*¹⁰ investigated complex formation between Cu(II) ion and 4-amino-3-ethyl-1,2,4-triazol-5-thione in binary ethanol-water mixtures.

In this study, the investigation of 2methyl thiocarbamidophenol at different concentration at different temperature (298.15 K, 303.15 K). The analysis of data done by shedlovasky method. The observed values of ion association constant at various concentrations provide information to examine thermodynamic parameters

EXPERIMENTAL SECTION:

In this research work all solutions are freshly prepared. AR grade chemical are used. The solutions 0.1M, 0.05M, 0.025M and 0.0125M of 2methyl thiocarbamidophenol were prepared. Thermostat was used to maintain the thermal equilibrium of drug solution. After thermal equilibrium the conductance of solution was measured

RESULT AND DISCUSSION:

The solution of 0.1M was firstly prepared then after by using serial dilution method the solutions of 0.05M, 0.025M and 0.0125M were prepared in 60% ethanol-water mixture. The conductances of solutions were measured by using conductivity bridge at 298.15 K and 303.15 K.

With the known literature method observed conductance (G), specific conductance (k) and molar conductance (μ) were determined. The result obtained was presented in **Table-1** and **Table-2**.

TAB	TABLE 1 - CONDUCTOMETRIC MEASUREMENTS AT DIFFERENT							
CONCENTRATIONS OF L ₂ [MTCP] DETERMINATION OF G, k and µ AT DIFFERENT CONCENTRATIONS AND TEMPERATURE								
% of solution	Concentration	Observed	Specificconductance(k)	Molar				
(Ethanol-water)	C (M)	conductance (G)	x 10 ⁻³	conductance (µ)				
60%	0.1 M	0.007	0.000725	0.007249				
	0.05 M	0.005	0.000617	0.012334				
	0.025 M	0.003	0.000386	0.01545				
	0.0125 M	0.002	0.000266	0.021264				
60%	0.1 M	0.008	0.000933	0.009333				
	0.05 M	0.008	0.000963	0.019263				
	0.025 M	0.007	0.000891	0.035655				
	0.0125 M	0.006	0.000767	0.061397				

TABLE 2- CONDUCTOMETRIC MEASUREMENTS AT DIFFERENT CONCENTRATIONS OF $L_2[MTCP]$ DETERMINATION OF Ksp, log Ksp, $\Delta G, \Delta H$ and ΔS AT DIFFERENT CONCENTRATIONS AND TEMPERATURES									
Temp T (°C)	Conc. C (M)	Ksp	Log Ksp	$\Delta \mathbf{G}$	$\Delta \mathbf{H}$	$\Delta \mathbf{S}$			
298.15K	0.1	0.0026808	-2.57173	14427.71	161180.76	500.86			
	0.05	0.0019403	-2.71213	15215.33	105110.25	306.81			
	0.025	0.0007612	-3.11850	17495.12	-8279.97	-87.97			
	0.0125	0.0003605	-3.44314	19316.38	-73354.96	-316.28			
303.15K	0.1	0.0008835	-3.05379	17424.44	-55086.27	-243.32			
	0.05	0.0009408	-3.02649	17268.67	-54591.86	-241.14			
	0.025	0.0008059	-3.09373	17652.38	-55810.59	-246.52			
	0.0125	0.0005974	-3.22375	18394.22	-58156.61	-256.88			

With the known literature method, the specific constant(K_{sp}), $log(K_{sp})$ and thermodynamic parameters viz. change in free energy(ΔG), change in entropy(ΔS) and change in enthalpy(ΔH) of [MTCP] at various molar concentration at different temperature which is shown in **Table-2**

CONCLUSION:

Table-1 showed that the observed conductance (G), specific conductance (k) decreases and molar conductance (μ) were increases with increasing temperature. The specific conductance (G) decreases and molar conductance (μ) increases along with decreasing molar concentrations and increasing temperature.

Table-2 specifies that when we going from molar concentration 0.1M to 0.125M concentration solutions the values K_{sp} , log K_{sp} , ΔH , ΔS decreases while ΔG increases with increasing temperatures. These parameters influence by structures and nature of synthesized compounds. The temperatures, molar concentration and percentages composition directly affects the thermodynamic parameters. These parameters links with other like solute-solute, solute-solvent and solvent-solvents interactions. Internal geometry and inter and intrahydrogen bonding also affects these parameters.

REFERENCES:

1.Rounaghi G, Kakhki RMZ, Thermodynamic study of complex formation between dibenzo-18crown-6 and UO_2^{2+} cation in different non-aqueous binary solutions, J. Incl. Phenom. Macrocyl. Chem., 2009; 63:117-122. 2.Chandra RS, Maisuria MM, Thermodynamic studies on metal complexes of Fe(II), Co(II), Ni(II) and Cd(II) with 1, 10-Phenanthroline in water, methanol and water-methanol binary solvent systems at 298.15 K and 308.15 K by conductometric method, Indian J. of Sciences, 2013; 4(11):52-81.

3.Rezayl M, Narimani L, Meng WP, Allias Y, Thermodynamic study of complex formation between azamacrocyclic ligand with Cu^{2+} and Fe^{2+} cations in MeOH-H₂O binary solvents, Proc. Of the Intl. Conf. on Advances in Applied Science and Environmental Engineering, 2014; 153-156.

4.Burghate AS, Gotmare AG, Wadhal SA, A Thermodynamic and comparative study of complex formation of N-Benzothiazol-2-yl-3,5-disubstituted pyrazolines with some transition metals by conductometry and pH-metry, Int. J. of ChemTech. Research, 2015; 8(11):403-412.

5.Gomaa EA, Ibrahim KM, Hassan NM, Conductometric study of complex formation between Cu(II) ion and 2-hydroxyimino-3-(2hydazonopyridyl)-butane (HL), Frontiers in Sciences, 2012; 2(4):76-85.

6.Ahmadzadeh S, Kassim A, Rezayl M, Rounaghi GH, Thermodynamic study of the complexation of p-isopropylcalix[6] arene with Cs^+ cation in Dimethylsulfoxide-Acetonitrile binary media, Molecules, 2011; 16: 8130-8142.

7.Rounaghi GH, Mohajeri M, Tarahomi S, Complexation ability of diabenzo-24-crown-8 with Cs^+ Cation in binary mixed non-aqueous solvents, Asian J. of Chem., 2009; 21:4861-4870.

8.Smetana AJ, Popov AI, On the influence of ionic strength on the equilibrium constant of an ion-

molecule reaction, J. Chem. Thermodyn., 1979; 11:1145-1149.

9.Maisuria MM, Mehta KK, Chandra RS, Mehta DR, Thermodynamic studies on metal complexes of Co^{2+} , Ni^{2+} , Cu^{2+} , and Cd^{2+} with 8-hydroxy-5-quinolinesulfonic acid in water, methanol and water-methanol binary solvent systems at 303.15 K, 113.15 K and 323.15 K by conductometric

method, J. of Physical and Chemical Sciences, 2014; 1(2):1-9.

10.Hakimi M, Azizollah N, Asghar N, Conductometric study of complex formation between Cu(II) ion and 4-amino-3-ethyl-1,2,4triazol-5-thione in binary ethanol water mixture, E-J. Chem., 2008; 5(3): 551-556.