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Abstract—The aim of fairness in physician scheduling
is to build up schedules with high level of compliance
of work regulations and individual preferences while
violations stemming from requirements are softened
and fairly distributed along the workforce. In this
paper, we address the fairness in physician scheduling
problem in emergency rooms by means of mathematical
programming. A minimax MIP and MIP based heuris-
tics relax-and-fix and fix-and-optimize are introduced
to create balanced scheduling from the set of physicians.
The solutions achieved present high quality in terms
of fairness despite the lower bound, which is the main
drawback in this problem.

Index Terms—Fairness, Physician Scheduling Prob-
lem, MIP, Fix-and-Optimize, Combinatorial Optimiza-
tion.

I. Introduction

The aim of fairness in physician scheduling is to build up
schedules with high level of compliance of work regulations
and individual preferences while violations stemming from
requirements are softened and fairly distributed along the
workforce. Schedules are usually tailor-made and are de-
signed based on reports of variability and unpredictability
of patient demand, what increases the problem’s complex-
ity [1].

It is a challenging task to create rosters subject to a
huge set of constraints because the constraints are mostly
conflicting one to another ([1], [2]). To tackle the complex-
ity, mathematical programming approaches, heuristics and
decision making tools have been proposed by operation
research and computer science practitioners. However, less
attention is specifically devoted to mathematical models
considering fairness in physician scheduling problems in
emergency rooms, an hospital service that works around
the clock and needs prior attention concerning to automa-
tion process tools.

In this paper, we address the fairness for physician
scheduling problem in emergency rooms by means of math-

ematical programming. Our approach consists in a mixed-
integer-programming (MIP) model and heuristics based
on the MIP. First, a minimax model is used to generate
feasible schedules, afterwards relax-and-fix and fix-and-
optimize heuristics based on the mathematical formulation
results are compared with the minimax model. Instances
to our experiments are a combination of benchmark in-
stances available at [3], problem characteristics introduced
by the present work and data extracted from legislation.

The proposed MIP model handles balance constraints
instead of high penalization measure from flexible con-
straints. The balance constraints generate schedules with
evenly distributed deviations among physicians. Further-
more, our research features the ability to generate bal-
anced schedules along the set of physicians and schedules
that follow the requirements stated by the problem.

The remainder of our paper is organized as follows.
In Section II we present literature review regarding to
physician scheduling problem. A problem statement and
the relevant mathematical models are presented in Section
III. In Section IV we detail the relax-and-fix and fix-and-
optimize heuristics applied to tackle our problem. Section
V discusses the results achieved and our conclusions follow
in Section VI.

II. Literature review

The Physician Scheduling Problem tackled in the litera-
ture arise from Personnel Scheduling Problems which deals
with the assignment of tasks to be performed by a work-
force, while a set of service requirements and contractual
agreements is complied. The objective of the assignment
is to maximize workers’ preferences and/or minimize costs
[4]. A schedule can be cyclic or non-cyclic, it is said to
be cyclic if physicians are assigned to the same pattern
of shifts in a given planning horizon, otherwise the said is
said to be non-cyclic.

Likewise, the Physician Scheduling Problem (PSP) can
be defined as the allocation of physicians to work shifts
and work days considering a range of constraints such
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as legal regulations, personnel policies, physicians’ pref-
erences and other requirements that may be hospital-
specific. Physician Scheduling in emergency room is tack-
led in the literature with certain diligence, in spite of the
scarcity. Regarding to PSP as a whole, most of the applied
techniques include exact methods, followed by heuristics,
according to [5]. In the same paper, authors made the state
of the art of the physician scheduling problem.

The first incidence of a mathematical model to obtain
feasible schedules considering the case of a major hospital
in Montreal region is presented in [6]. The problem was
modeled as a multi-objective integer programming model
with a set of constraints divided into four categories,
namely: compulsory constraints, ergonomic constraints,
distribution constraints and goal constraints. In each
group of constraints, constraints can be easily modified
and new constraints can be included, in case of new
scenarios. The approach produced in a shorter time better
schedules than those produced by the human expert.

A generic emergency room physician scheduling problem
is defined in [7] from characteristics found in six hospitals.
The authors proposed a modification on existing schedul-
ing rules that allowed to develop automated solution
techniques which produce better schedules and reduced
the time spent build up the schedules. The authors in
[8] applied an hybridization of Constraint Programming
(CP), Local Search and Genetic Algorithm (GA). The
model flexibility is handled by CP, this flexibility allows to
describe different problems. On the other hand, algorithm
flexibility is achieved by the combination of Local Search
and GA that provides efficiency for most of the problems
with different solution spaces and objective functions.

A general CP is developed by [9] to solve both nurse and
physician scheduling problems. The approach is designed
to handle a variety of situations, where with global con-
straints it becomes possible to capture the large number of
rules considered in these problems. A Goal Programming
model to schedule medicine residents in a emergency room
is presented by [10], where monthly schedules are defined
within a reduced time and effort. The rules of the prob-
lem are divided in two categories, namely, hard and soft
constraints, and the objective function minimizes relevant
deviations from soft constraints. GA defines schedules for
for an emergency room department in [1] . A heuristic-
schedule builder produces an initial population of feasible
solutions that is evolved by GA by applying crossover and
repair operators.

The authors in [11] addressed the problem of building
cyclic schedules to emergency department physicians. An
integer programming model is proposed to generate such
cyclic schedules. To infer the level of satisfaction achieved,
interviews with physicians and statistics from the schedul-
ing showed that these schedules provide predictability and
well-balanced work patterns.

Mathematical models to deal with master physician
schedules are also present in the literature. Three math-
ematical programming models are formulated by [12] to
describe different problem variants. A local search heuris-

tic solves large-scale instances which cannot be dealt with
CPLEX solver. The method is tested on real scenarios
from a surgery department as well as on randomly gen-
erated problem instances.

Besides the physician scheduling, other aspects to take
into account for a robust management of the service
are planning of limited resources and patients flow. The
authors in [13] consider planning procedure for a master
planning of elective and emergency patients, while allocat-
ing at best the available hospital resources.

The fairness in schedules is studied by [2] applying a
methodology for increasing the satisfaction of nurses, re-
garding to personal schedule. A set of new evaluation mod-
els for nurse rostering is proposed from situations found
in a hospital from Belgium. Data sets for experiments are
generated and cooperative meta-heuristic are applied to
generate fair nurse rosters. An agent-based framework for
cooperative meta-heuristic search is described to assert
fairness. The agent is conceived to execute different meta-
heuristic and local search combinations with different
parameter settings.

Physician Scheduling Problem is formulated as a MIP
model in [4]. The model is flexible since it allows modifi-
cations and new additions for representing different con-
straints. Comparisons are done with literature models in
terms of their capability to represent the most practical
requirements made. A real case was tested, from which
some instances with large planning horizons were solved
to optimality applying a Branch & Cut procedure.

Application of MIP based heuristics combined with local
search techniques in timetabling as a whole are dealt
with in the literature with less emphasis. The authors
in [14] introduced a mixed integer programming model
and a fix and optimize heuristic combined with variable
neighborhood descent to high-school timetabling problem.
They applied three types of decomposition, using a fix
and optimize heuristic, to solve two sets of benchmark
instances.

An integration of Physician and Surgery Scheduling
Problem (IPSSP) is introduced by [15]. A model han-
dles both problems considering their main constraints
and objectives. The IPSSP is also discussed in [16] with
six different decomposition-based heuristic. Solutions are
built by the heuristics according rules from surgery and
physician scheduling problem.

A stochastic optimization formulation is described in
[17] for a shift scheduling problem of emergency depart-
ment. This problem is solved using a deterministic Sample
Average Approximation (SAA) method. Model simplifica-
tions are assumed in order to turn it easily tackled by
means of linear programming optimization. More recently
the case of assigning rooms to physician in emergency
departments is studied by [18]. In this work the authors
study strategies for room assignment and doctor working
routines, where Pareto-efficient combinations are deter-
mined with respect to the performance measures.

Comparing with the most of the models in the liter-
ature, our model consider dynamic demands and variant
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number of consecutive days, while most of literature works
assume a fixed demand. Regarding to constraints, our
problem presents a set of balance constraints to gather
the deviations from flexible constraints, while most of the
models in the literature consider balance by establishing
the minimization of deviations as a measure of fairness.

Tables I and II summarize our literature review.

III. Problem Statement

Each instance of the PSP in emergency room may vary
since the related constraints change from one hospital to
another. We compiled and extracted general characteris-
tics from models presented by [6] and [10]. The fairness
ideas described on this section are based on [2] that studied
fairness in nurse scheduling problem.

We also carried out a study at Hospital da Santa Casa
de Misericórdia de São Carlos, where other characteristics
from the PSP where added to the problem defined on this
section. Basically, there is a group of physicians that must
be assigned through a time horizon of one month, which
can be extended up to a year. The set of physicians can
have full-time or part-time contracts. Physicians with full-
time contracts work 40 hours a week and they can work
extra hours, on the other side physicians with part-time
contracts work 24 hours and cannot make extra hours.
These physician can be assigned to regular shifts, namely
morning, afternoon and night or they can be on duty, day
duty or an night duty. For each shift, there is a minimum
amount of physician that must be available to cover each
shift in a daily basis, which we assume to be the demand.
In some hospitals such as Santa Casa, physicians who
completed any shifts cannot work in other shifts at the
same day.

Every physician has the right to go on holidays or leaves
in case of an incident, such as periods of illness, personal
issues, and these requirements must be satisfied. Another
important rule is that, physicians cannot be assigned to
night and in the following day be assigned to an afternoon.
These requirements led us to contemplate constraints re-
lated to antagonists shifts. There is also a concern with
workforce skills level to increase the quality of service.
For example, a minimum number of surgeons, specialist
in internal medicine and senior physician is mandatory for
emergency room where delicate cases can happen. In our
problem, we do not label a determined medical specialty
for the sake of generalization, but we assume that there is
a minimum of senior physicians that must be assigned to
regular shift during the week.

Every time a physician is assigned, a maximum number
of consecutive days of work is established to allow he/she
to rest properly. In order to increase a physician satisfac-
tion level with his/her schedule, offsets are also applied, for
example, if a physician was assigned to three night shifts,
he/she must rest the three next days. However, this kind of
reward is not dealt with in our problem, we only consider
the fact that a physician rests at least one day after
completing the maximum number of consecutive days.
Other relevant welfare/ergonomic constraints are related

to intentional leaves on Mondays after being assigned to
any shift in the previous Sunday. In our case, if a physician
is assigned to any shift in the Sunday, he/she will rest in
the following Monday. Moreover, we must consider the fact
that physician have a limit of hours on duty, so his/hers
circadian cycle may not be compromised.

The mathematical formulation proposed here is divided
in three classes of constraints: hard, flexible and balance
constraints. Hard constraints are requirements that must
be complied:

• Demand coverage must be granted, for example, a
minimum of physicians must be assigned to a given
shift;

• Physicians must not be assignment to antagonist
shifts;

• Workload balance;
• Physicians have the right to vacations, holidays and

leaves;
• Physicians have maximum number of consecutive

days;
• Whenever a physician is assigned in a Sunday, he must

rest in the following Monday;
• Every physician must be assigned but his/her limits

of hours on duty must not be exceeded.

Flexible constraints are related to requirements that
heads of emergency department wish to accomplish but
can be violated. These constraints include weekly hours
completeness, desired shift and target duties. In our case,
if a physician wishes for a set of days and shifts to work,
it is recommended that he/she accomplishes firstly all
hard requirements, from which we consider the flexible
constraint related to required shift. Thus, we consider that
physician’s assignment on duties is preferred to reach the
target number. If not, a penalty is assumed to each unit
of duties that was violated. At last, the target number of
hours is an aspect that must be taken into account. In case
of violation, a penalty is assumed to each unit of hour. To
summarize, our flexible constraints are:

• Complete desired shift of the month;
• Complete the target number of weekly hours;
• Complete the target number of duty of the month.

The balance constraints, in turn, are related to flexible
constraints management. These constraints include weekly
hours balance, desired shift balance and target duties bal-
ance. For example, if there are deviations from the desired
amount of weekly hours, the maximum of the deviation
is fetched and minimized by the objective function, thus,
softening hour assignment. To summarize, our balance
constraints are:

• Desired shift of the month balance;
• Target number of weekly hours balance;
• Target number of duty of the month balance.

The minimax approach is suitable for optimal selection
of parameters [20] in discrete optimization problems. In
our problem, the minimax is modeled based on two main
aspects: the maximization of deviations from flexible con-
straints, followed by their minimization in the objective
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TABLE I: Literature review: techniques

Constraint Programming [8], [9]
Genetic Algorithm [1],
Goal Programming [10]
Integer Programming [6],[4], [7], [16], [19], [15], [12], [11], [2]
Local Search [8], [14], [16], [2], [7]
Stochastic Optimization [17]

TABLE II: Literature review: type of problems

Physician Scheduling on Emergency Room [6], [7], [8], [10],[1] , [11]
Physician Scheduling for General Purpose [9], [4]
Physicians Scheduling on Surgery Room [19], [15], [16],
Surgery Room Scheduling [16], [15],[12]
Others [2], [14]

function. The proposed mathematical formulation for the
PSP is explained next.

In our formulation we assume the first day of the month
as a Monday and every month as a set of 28 days.

Sets
I Set of physicians
J Set of days
K Set of shifts
M Set of months
W Set of weeks.

Subsets
IFT Set of physicians with full-time contracts

(IFT ⊂ I)
IPT Set of physicians with part-time contracts

(IPT ⊂ I)
JHi Set of days of leave required by the i-th

physician (JHi ⊂ J)
JRM
im Set of required days by the i-th physician

in the m-th month (Jim ⊂ J)
KR

i Set of required shifts by the i-th
physician (KR

i ⊂ K)
KM Morning shifts
KA Afternoon shifts
KN Night shifts
KD Day duty
KE Night duty

Parameters
c Maximum of consecutive days.
D−jk Minimum demand of k-th shift

in the j-th day
D+

jk Maximum demand of k-th shift

in the j-th day
Fim Target number of shift to i-th physician

in the m-th month
hk Length of k-th shift in hours
Hi Target hours of i-th physician
Sim Target duties of i-th physician

in the m-th month
UD
im Maximum amount of hours that i-th physician

completes in the m-th month in a day duty
UE
im Maximum amount of hours that i-th physician

completes in the m-th month in an evening
duty

Penalties
wd+

i Positive penalty associated to duty deviations
wd−i Negative penalty associated to duty deviations
wh+

i Positive penalty associated to hour deviations
wh−i Negative penalty associated to hour deviations
ws+

i Positive penalty associated to required shift
deviations.

ws−i Negative penalty associated to required shift
deviations.

Decision Variables
xijk 1, if i-th physician is assigned to

k-th shift of j-th day
0, otherwise.

Deviation Variables
dd+

im Positive deviations for uncompleted duties
dd−im Negative deviations for uncompleted duties
hd+

iw Positive deviations for uncompleted hours
hd−iw Negative deviations for uncompleted hours
sd+

il Positive deviations for uncompleted shifts
sd−il Negative deviations for uncompleted shifts

Balance Variables
maxDD+

i Positive balance for uncompleted duties
maxDD−i Negative balance for uncompleted duties
maxHD+

i Positive balance for uncompleted hours
maxHD−i Negative balance for uncompleted hours
maxSD+

i Positive balance for uncompleted shifts
maxSD−i Negative balance for uncompleted shifts

A. Objective Function

minimize
∑
i∈I

(
wd+

i maxDD+
i + wd−i maxDD−i

+wh+
i maxHD+

i + wh−i maxHD−i

+ws+
i maxSD+

i + ws−i maxSD−i

) (1)

The objective function is the weighted sum of maximum
deviations from the balance constraints (19) - (24).
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B. Hard Constraints

H1: Demand coverage∑
i∈I

xijk ≥ D−jk j ∈ J, k ∈ K (2)∑
i∈I

xijk ≤ D+
jk j ∈ J, k ∈ K (3)∑

i∈IS
xijk ≥ 1 j ∈ J, k ∈ KM ∪KA ∪KN (4)

Constraints (2) and (3) are related to demand coverage.
The amount of physicians must be between a minimum
and maximum values. A minimum of physicians must
be usually assigned, but an addition of physician can
be needed in some exceptional cases. Constraints (4) are
related to the minimum amount of senior physicians in
regular shifts.

H2: Workload∑
k∈K

xijk ≤ 1 i ∈ I, j ∈ J (5)

Constraints (5) guarantee that a physician is assigned
to only one shift in one day.

H3: Assignment to antagonist shifts∑
k∈KA

xi(j−1)k +
∑
k∈KM

xijk ≤ 1 i ∈ I, j ∈ J (6)∑
k∈KA

xi(j−1)k +
∑
k∈KD

xijk ≤ 1 i ∈ I, j ∈ J (7)∑
k∈KN

xi(j−1)k +
∑
k/∈KN

xijk ≤ 1 i ∈ I, j ∈ J (8)∑
k∈KE

xi(j−1)k +
∑

k∈KM∪KA∪KD

xijk ≤ 1 i ∈ I, j ∈ J (9)

According to constraints (6) - (9), a physician will not be
assigned to antagonists shifts. For example, if a physician
is assigned to afternoon shift in a day, he/she cannot be
assigned to morning shift or day duty in the following
day. These constraints allow physician to have a minimum
amount of rest hours.

H4: Holidays and leaves

xijk = 0 ∀i ∈ I, j ∈ JHi, k ∈ KR
i (10)

Periods of rest and leaves are handled by constraints
(10).

H5: Consecutiveness
j∑

f=j−c

∑
k∈K

xifk ≤ c i ∈ I, j ∈ J (11)

There is a maximum amount of consecutive days of
assignment for physician. We handle these requirements
by constraints (11).

H6: Hour limits on duty∑
j∈JM

∑
k∈KD

hkxijk ≤ UD
im i ∈ I,m ∈M (12)∑

j∈JM

∑
k∈KE

hkxijk ≤ UE
im i ∈ I,m ∈M (13)

Physician must not exceed the hour limits on duty
during a month. This requirement is tackled by constraints
(12) and (13).

H7: Mondays after Sundays∑
k∈K

(xi(j−1)k + xijk) ≤ 1 i ∈ I, j ∈ {1, 8 . . . , |J | − 6} (14)

Physicians must not be assigned at Monday if they were
assigned in a Sunday.

C. Flexible constraints

F1: Shift completeness during a month∑
j∈JRM

im

∑
k∈K

xijk − sd+im + sd−im = Fim i ∈ IFT,m ∈M (15)

The first set of flexible constraint is related to shift com-
pleteness during a month. It is preferred that a permanent
physician completes every shift that he/she has required in a
month. From constraints (15), if the target number of shifts is
not reached, we add to corresponding surplus variables, sd−im,
the number of missing shift, otherwise if the target number of
shifts is exceeded, we subtract from the corresponding surplus
variable, sd+im.

F2: Hour distribution∑
j∈Jw

∑
k∈K

hkxijk − hd+iw + hd−iw = Hi i ∈ IFT, w ∈W (16)∑
j∈Jw

∑
k∈K

hkxijk + hd+iw = Hi i ∈ IPT, w ∈W (17)

Constraints (16) and (17) are related to hour completeness in
a week horizon. Extra hours and missing hours are considered to
permanent physician, while part-time physicians consider only
missing hours. Variables hd+iw and hd−iw store the values of extra
hours and missing hours, respectively, if a physician makes more
hours than the targeted or less than expected.

F3: Duty distribution during the month∑
j∈JM

∑
k∈KD∪KE

xijk − dd+im + dd−im = Sim i ∈ I,m ∈M

(18)

According to constraints (18), it is preferable that every
physician completes the predefined number of duties. If
the target number of duties Sim is reached, no deviation
exists. Otherwise, surplus variables dd−im stores the amount
of missing duties, or the surplus variables dd+

im stores the
amount of exceeded duties.

B1: Required shifts balance during the month

maxSD+
i ≥ sd+

im ∀i ∈ I,m ∈M (19)

maxSD−i ≥ sd−im ∀i ∈ I,m ∈M (20)

Constraints (19) - (20) check the maximum deviations
of shift during a month. This value is then minimized in
the objective function.

B2: Weekly hours balance

masxHD+
i ≥ hd+

iw ∀i ∈ I, w ∈W (21)

maxHD−i ≥ hd−iw ∀i ∈ I, w ∈W (22)

The maximum deviations of hour during a week are
tackled by constraints (21) - (22). The maximum devia-
tion, stored in variables masxHD+

i and masxHD−i , will
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be minimized in the objective function in order to balance
the amount of deviations.

B3: Duty balance

maxDD+
i ≥ dd+

im ∀i ∈ I,m ∈M (23)

maxDD−i ≥ dd−im ∀i ∈ I,m ∈M (24)

The maximum deviations of duties during a month is
controlled by constraints (23) - (24). For each physician i,
the variables maxDDi+ and maxDDi− store the values
of the surplus variables that will be minimized in the
objective function.

Variables’ Domain

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (25)

dd+
im, dd−im ∈ R+ i ∈ I,m ∈M (26)

sd+
im, sd−im ∈ R+ i ∈ I,m ∈M (27)

hd+
iw, hd

+
iw ∈ R+ i ∈ I, w ∈W (28)

IV. MIP-Heuristic approaches

In this section we’ll describe the two mixed integer
programming based heuristics and how we used both to
solve our problem.

A. The relax-and-fix heuristic

Relax-and-fix (RF) is a constructive heuristic that was
proposed by [21] and operates as follows: from the main
problem (Q), the set of integer variables is divided in
different subsets R from which we can describe each as
Qr such that r = 1, . . . , R, so Q = Q1 ∪ . . . ∪ QR

and a sub-problem MIP r is solved iteratively. Assuming
the the first sub-problem MIP 1 from the subset Q1 the
variables are set to integer, the remaining variables from
the subsets (Q2 . . . QR) are linearly relaxed and the sub-
problem is solved. After treating MIP 1, the subset of
integer variables Q1 is fixed with the incumbent values.
If the solution is feasible, the procedure is repeated for
the remaining sets Q2 . . . QR, else, it stops and there is
no solution applying the current partitioning strategy. If
the partitioning strategy works, the solution of MIPR

solves the original problem. Two types of partitioning are
proposed by work: Relax-and-Fix with Week Partition-
ing (RFWP) and Relax-and-Fix with Shift Partitioning
(RFSP).

RFWP is inspired on day decomposition addressed by
[14] in a fix-and-optimize heuristic for the high school
timetabling problem. We choose a partitioning of 2 weeks
without overlapping due to the high number of integer
variables to be considered in each iteration. Overlapping
consists of a partition where variables are set to be integer
but they are not immediately fixed. When using the RFSP,
we choose the shifts that are set to integer and fixed after
solving the sub-problem.

Algorithm 1 presents the overall Relax-and-Fix heuris-
tic procedure from which the partitioning strategies are
applied.

Algorithm 1: Relax-and-fix pseudo-code

1 Set each partition Qr, r = 1, . . . , R;
2 Relax all variable from the set Q;
3 Set the solution as Xr

MIP as the solution of MIP r

sub-problem, r = 1, . . . , R;
4 r = 0;
5 MIP r = ∅
6 while r < R & time ≤ Tmax do
7 r=r+1;
8 Set to integer the variables from Qr subset and solve

MIP r subproblem
9 Fix the set of variables Q1 ∪ . . . ∪Qr−1 in the value of

incumbent solution
10 Introduce the incumbent solution as the starting to

the new sub-problem
11 if MIP r is infeasible then
12 The MIP problem is infeasible using the selected

partitioning strategy;
13 end
14 end

Figures 1 and 2 illustrates the stages of relax and fix
heuristic for a planning horizon of 12 periods, partition
size of 4 periods, considering every shift of the day, where
3 physicians will be assigned. For each iteration of the
method, the number of relaxed variables is reduced accord-
ing to the size of the partition as we see in Figure 2. The
named Free variables will be optimized and they define
the sub MILP model to be solved. The other variable are
Fixed or Relaxed, where Fixed are those whose binary
values were already optimized and Relaxed variable have
continuous values within [0, 1]. The heuristic ends when
there are no more Relaxed variables in the sub-problem.

Fig. 1: Relax and fix heuristic - stage 1

Fig. 2: Relax and fix heuristic - stage 2
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B. Fix and optimize heuristic

Fix-and-Optimize was first proposed by [22] where,
assuming a partitioning strategy of integer variables in
the set Qr such that r = 1, . . . , R, all variables are re-
optimized and fixed from an initial solution. The procedure
is repeated, using a partitioning strategy, until a stopping
criteria is reached.

In the present paper, the partitioning strategies for
Relax-and-Fix are the same applied by Relax-and-Fix.
Thus, several combinations are evaluated:

• FOWP - Fix-and-Optimize with Week Partitioning:
This heuristic uses the week partitioning and initial
solution from RFWP.

• FOSP - Fix-and-Optimize with Shift Partitioning:
This heuristic uses the shift partitioning and initial
solution from RFSP.

• FOSWP - Fix-and-Optimize with Shift Partitioning
and Week Partitioning Construction: This heuristic
uses the shift partitioning and initial solution from
RFWP.

• FOWSP - Fix-and-Optimize with Shift Partitioning:
This heuristic uses the week partitioning and initial
solution from RFSP.

Algorithm 2 presents the overall Fix-and-Optimize
heuristic procedure and Table III describes some variables
used by Algorithm 2.

TABLE III: Fix-and-Optimize Variables

P fix
X,MIPr Set of fixed variables of MIP r

P free
X,MIPr Set of free variables of MIP r

r Iteration counter
Xinc Incumbent solution
Xprev Former solution
X Best solution

Algorithm 2: Fix-and-optimize pseudo-code

1 r = 0;
2 Set the solution as XMIPr as the solution of relax-and-fix

heuristic;
3 while r < R & time ≤ Tmax do
4 r=r+1;
5 Xprev ← Xinc

6 foreach decompositionType do
7 foreach MIPr do

8 Compute P fix
X,MIPr

and P free
X,MIPr

9 Solve MIPr

10 if Xinc.value > Xprev.value then
11 X ← Xinc

12 end
13 end
14 end
15 end

Figures 3 and 4 illustrate the two main stages of fix
and optimize heuristic. There are no relaxed variables,
since this is an improvement heuristic. Thus, variables
previously fixed become free aiming to be re-optimized,
while the remaining variables stay fixed.

Fig. 3: Fix and optimize heuristic - stage 1

Fig. 4: Fix and optimize heuristic - stage 2

V. Computational Experiments

The experiments were run in a Intel Xeon E5-2680v2
and 2.8 GHz with 128 GB of RAM. The mathematical
model was coded using callable libraries from IBM ILOG
Cplex 12.6 optimization solver.

A. Instances Generation

The instances were generated based on a combination of
a real-world schedule and benchmark instances. The real-
world schedule was manually generated from a scenario
with 10 physicians distributed along 3 shifts and 2 duties
during a week. The benchmark instances were taken from
[3] and we extracted data related to leaves, holidays and
required days of work.

We assumed a demand of 2 physicians in the morning,
1 in the afternoon, 1 in the night, 1 to day duty and 1
to night duty. During the weekend, demand is available
only for duties, while demand for shifts are blocked. The
schedules are defined for time periods of 1, 2, 3, 6 and
9 months. Data related to maximum number of working
hours and other legislation issues were addressed based on
[23] and [24].

Details of the instances are presented in the Table IV.
Each month is related to a class of instances SET, in which
each instance is label InstanceND NW , where ND is the
amount of physicians and NW is the amount of weeks.

The weight setting in the objective function is made
upon priority measure of each requirement, inspired in
the Analytical Hierarchy Process as proposed by [25].
This process consists in comparing the flexible constraints
by establishing the ranking and assignment in order of
priority, based on those with greater weights.

The experiments were conducted with the following
parameters:

• Execution time limit (TL): 3600 s
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TABLE IV: Instances characteristics

Class Instance
Amount

of
physicians

Amount
of

shifts

Amount
of

Days
Holidays

Desired
Days

SET#1

Instance10 4 10 5 28 2 4
Instance20 4 20 5 28 2 5
Instance30 4 30 5 28 2 5
Instance40 4 40 5 28 2 5

SET#2

Instance10 8 10 5 56 - 8
Instance20 8 20 5 56 - 8
Instance30 8 30 5 56 - 10
Instance40 8 40 5 56 2 5

SET#3

Instance10 12 10 5 84 2 2
Instance20 12 20 5 84 - 14
Instance30 12 30 5 84 - 9
Instance40 12 40 5 84 - 14

SET#4

Instance10 24 10 5 168 2 33
Instance20 24 20 5 168 5 30
Instance30 24 30 5 168 8 24
Instance40 24 40 5 168 1 11

SET#5

Instance10 36 10 5 252 2 47
Instance20 36 20 5 252 8 29
Instance30 36 30 5 252 8 29
Instance40 36 40 5 252 4 44

TABLE V: Weights

Constraint Variable Priority Weight

(17) maxSD+
im 3 0,05

(17) maxSD−im 3 0,05

(18) maxHD−iw 1 0,5

(18) - (19) maxHD+
iw 2 0,45

(20) maxDD+
im 4 0,015

(20) maxDD−im 4 0,015

• Memory limit : 128 GB

• Cplex Emphasis: Balanced
• Populate Limit: Default
• Number of Shift Partitions: 5
• Number of Week Partitions: 2
• Heuristics Execution time limit: 1800 s each
• Improvement trials: 3.

B. Experiments

First, we compare the behaviour of Cplex solver when
solving our model setting with and without Populate
Strategy. This strategy generates multiple solutions to the
MIP and fills the pool of solutions. Thus, populate strategy
increases the probabilities of the branching strategy, ap-
plied by the solver to cover the optimal node. Figures 5 and
6 shows the objective function values (upper bounds) and
the lower bounds by, respectively, disabling and enabling
populate method from Cplex. The Cplex behaviour is
evaluated by scheduling an instance with 10 physicians
within 1 month.

There is a quick decrement in the first seconds of
execution by disabling the populate method as shown

by Figure 5. Also, the objective function values trend to
decrease while the lower bounds remains steady.

Fig. 5: Minimax behavior without populate Strategy

In the other hand, by enabling the populate method in
Figure 6, the objective function value is smaller than the
latter one. However the values trend to stay steady after
a quick decrement. Thus, when disabling the populate
strategy, solutions have a high value of objective function
in contrast to enabling the populate strategy.

Figures 7 and 8 illustrates the Cplex performance by
enabling the populate method for two other instances.
Figure 7 has the results solving an instance with 10
physicians and 1 month, while Figure8 solves an instance
with 40 physician and 1 month.

The objective function value decreases quickly during
the first 1000s as shown by Figure 7, while there is a steady
behavior across the time in Figure8.

Figures 9 and 10 show the same evaluation by solving
an instance also with 10 physicians (Figure9) and 40
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Fig. 6: Minimax behavior with populate Strategy

Fig. 7: Cplex with populate strategy for instance with 10
physicians and 1 month.

Fig. 8: Cplex with populate strategy for instance with 40
physicians and 1 month.

physicians (Figure10) to be scheduled in 3 months. There
is a more regular decrement of the objective function value
over time, in spite of ending steady. The lower bound in
turn, remains steady in both cases.

The average computational results for all sets of in-
stances are presented in Table VII, while results for each
instances are shown by Table VI. From the Table VII we
notice that this well constrained problem led the MIP
based heuristics to perform poorly on average, as they
derive from the linear relaxation of the problem. The
partitioning strategies were combined and the difference
was not near slight. Regarding to average values of gap,
the FOSP is more balanced comparing to the rest of the
strategies. This strategy performed better in sets 1, 3 and
4, tied with FOWP in set 2 and lost in set 5 to the same.
The other strategies, FOSWP and FOWSP had a poor
performance on the whole for each set of instances, with

Fig. 9: Minimax on Cplex with populate strategy for
instance with 10 physicians and 3 months.

Fig. 10: Minimax on Cplex with populate strategy for
instance with 40 physicians and 3 months.

high average values of gap.
Table VI shows that competitive scores compar-

ing to our model were found in some instances ap-
plying FOWP and FOWSP strategies. For exam-
ple, instances Instance10 4, Instance30 4, Instance20 8,
Instance10 12, Instance10 24 returned a smaller value of
objective function within a significantly reduced time.

A scheduling in TableVIII, at the end of this paper,
illustrates a solution for one week plan. Physicians, la-
beled as ’PHY#’, can be assigned to M - Morning, A -
Afternoon, N - Night, D1 - Day Duty or D2 - Night Duty.
They can be assigned by displaying a value ’Ass’ in the
corresponding cell that will be empty, if no assignment is
done. Physicians ’PHY[1]’ to ’PHY[8]’ are senior/full-time
physicians and the remaining are part-time. Days 1 to 5 are
weekdays starting from Monday. The demand established
was fulfilled, but there are deviations. Figure 11 shows that
one physician missed 2 hours and 5 physicians completed
1 extra hour each.

Also, from TableVIII and Figure11, there is at least
one senior physician (physicians from 1 to 8) for every
common shift during the week. This shows that there is
no violation of constraints (4). A stretch of 3 consecutive
days is not exceeded by any physician, so the constraints of
maximum of consecutive day (constraints (11)) are being
complied. The assignment of part-time physicians,’PHY[9]
and PHY[10]’, is made in such a way that they are assigned
as less as possible and still completing demanded 24 hours
a week. In this example, it is clear that no extra hours were
completed by physician 9 and 10. This illustrates the effort

17



REFERENCES

to comply most of the constraints, including the flexible
ones.

For an accurate appreciation of the impact of balance
constraints in our model, Figure 12 shows the difference
between the inclusion of balance constraints and the ex-
clusion for all instances. Thus, it is possible to compare
the behaviour of the extra extra hours with balance
constraints against the deviations of extra hours without
balance constraints. From the 1st to the 30th physician
the stretch that describes the extra hours is stationary for
the balance constraints, in contrast to the stretch without.
Thus, if we consider the balance constraints, schedules
have an equal or at least very fair distribution of hour
deviations. This is the case for 40 physicians and 1 month
as shown by Figure 12.

Fig. 11: Hours deviations on the analyzed week for the
instance of 10 physicians. In blue the missing hours, in
red the extra hours.

Fig. 12: Difference between the inclusion of balance con-
straints and the exclusion for all instances.

VI. Conclusions

This paper addressed fairness in physician schedul-
ing problem for emergency rooms. A mixed-integer-
programming (MIP) model is introduced to describe such
problem by using a minmax approach. Also, relax-and-fix
(RF) and a fix-and-optimize (FO) heuristics are combined
applying several partitioning strategies.

The experiments are conducted over 20 instances gen-
erated extracting features from a real-world schedule and
benchmark instances. The proposed MIP model works
properly to solve them within 1 hour of execution time
using Cplex solver. The model works better enabling the
populate strategy of Cplex. When compared against the

heuristic methods, the MIP model returned best solutions
for the most of the instances.

RF and FO heuristics show a poor performance for the
set of instances evaluated. Two main reasons can explain
such performance. First, the linear relaxation of our model
can lead to poor solutions. This is emphasized on the
lower bound values reported on Figures 5-10 as well as
gap values on Table VI. Second, heuristics may have a
better performance when applied to set of instances larger
or more complex than those evaluated so far.

Thus, as future work, we will improve the partitioning
strategies aiming a better performance of the RF and
FO heuristics. Also, more complex set of instance will
be proposed to evaluate the MIP model as well as the
proposed heuristics.
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