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ABSTRACT  
 

Fault diagnosis is one of the major issues in every field of engineering, which may cause failure of the entire system. 

Fault diagnosis detection methods have been considerably increased over the past few decades. A presence of fault in 

structural member introduces local flexibility which affects the vibration response of the structure. The response of 

the system depends upon the type of fault occurs with its location. The damage in the structure leads to changes in 

natural frequencies and mode shapes. Early detection of presence of damage can prevent the catastrophic failure of 

the structures by appropriately monitoring the response to the system. In the present investigation fuzzy logic tech-

nique has been used to determine the fault in terms of crack. Here the transverse surface of the crack is considered 

and analyzed using FEA and fuzzy logic system. Analytical study has been performed on the cantilever beam with 

single crack to obtain the vibration characteristics of the beam. Here author intend to introduce fuzzy logic technique 

for fault diagnosis using several fuzzy rules. Here the first three natural frequencies are obtained and that are con-

sidered as input to fuzzy system. It is observed that the fuzzy controller can predict the depths and locations accurately 

close to the finite element analysis. 
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INTRODUCTION 
 

Crack is the potential source of failure in the field of engineering. Crack diagnosis in vibrating structure has drawn a 

lot of attention in mechanical machines and in civil structures and aerospace engineering. In the recent years the era 

of researchers has motivated towards development of intelligent techniques for crack detection. Many techniques have 

been employed in the past for damage identification. Some of these are visual (e.g. Dye Penetrant Method) and other 

NDT uses sensors to detect local faults (e.g. eddy current, magnetic field, radiographs, acoustics and thermal fields). 

In this chapter fuzzy logic technique has been projected for localization and identification of crack. 

 

Fuzzy logic (FL) is a multi-valued logic, which allows interim values to be defined between linguistic expressions 

like yes/no, high/low, true/false. A form of knowledge representation suitable for notions that cannot be defined pre-

cisely, but which depend upon their contexts. Superset of conventional (Boolean) logic that has been extended to 

handle the concept of partial truth - the truth values between "completely true & completely false". Fuzzy logic has 

two different meanings as, in narrow sense: Fuzzy logic is a logical system, which is an extension of multi-valued 

logic. In a wider sense: Fuzzy logic (FL) is almost synonymous with the theory of fuzzy sets, a theory which relates 

to classes of objects with unsharp boundaries in which membership is a matter of degree. 

 

A K Das et al [1] have discussed the influence of cracks to the dynamic behaviour of a cracked cantilever beam with 

rectangular cross section. Finite element analysis is being performed on the cracked structure to measure the       vi-

bration signature, which is subsequently used in the design of smart system based fuzzy logic in prediction of crack 

depths and locations following inverse problem approach. Huh et al [2] has proposed a new local damage   detection 

method of damaged structures using the vibratory power estimated from accelerations measured on the beam structure. 

A damage index is newly defined by them based on the proposed local damage detection method and is applied to the 

identification of structural damage. Numerical simulation and experiment are conducted for a uniform beam to confirm 

the validity of the proposed method. In the experiments, they have considered the damage as an open crack such as a 
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slit inflicted on the top surface of the beam. Parhi and Choudhary [3] presented non-destructive method for the detec-

tion of crack in terms of crack depth and crack location with the consideration of natural frequency. The crack is 

analyzed using Fuzzy Logic System and Finite Element Analysis. Zadeh [4]        introduced and briefly analysed the 

relevant properties of fuzzy sets, the notions of a fuzzy system and a fuzzy class of systems. The work constitutes a 

very preliminary attempt on introducing into system theory several concepts which provide a way of treating fuzziness 

in a quantitative manner. The paper closes with a section dealing with optimization under fuzzy constraints in which 

an approach to problems of this type is briefly sketched. Salam et al [5] has proposed a simplified formula for the 

stress correction factor in terms of the crack depth to the beam height ratio. They have used the proposed formula to 

examine the lateral vibration of a Euler-Bernoulli beam with a single edge open crack and compared the mode shapes 

for the cracked and undamaged beam to identify the crack parameters.  

 

Agarwalla et al [6] uses the GA –Fuzzy controller for the identification of damage in steel cantilever beam in    trans-

verse direction subjected to natural vibration. Parhi and Choudhary [7] have analyzed the transverse surface crack 

using fuzzy logic system and finite element analysis. The fuzzy controller uses the hybrid membership functions 

(combination of triangular, trapezoidal and Gaussian) as input and trapezoidal membership functions as output. By 

using several fuzzy rules, the results obtained for crack depth and crack location in the Matlab Simulink         environ-

ment and have been compared with the results obtained from finite element analysis. Tahaa et al [8] has   introduced 

a method to improve pattern recognition and damage detection by supplementing intelligent health   monitoring with 

used fuzzy inferences system. The Bayesian methodology is used to demarcate the levels of damage to developing the 

fuzzy system and is examined to provide damage identification using data obtained from finite element analysis for a 

pre-stressed concrete bridge. Wada et al [9] has proposed a fuzzy control method of triangular type membership func-

tions using an image processing unit to control the level of granules inside a hopper. They stated that the image 

processing unit can be used as a detecting element and with the use of fuzzy reasoning methods good process responses 

were obtained. Parhi and Choudhary [10] describe a comprehensive review of various    technical papers in the domain 

of crack detection in Beam-Like Structure. The various techniques discussed on the basis of dynamic analysis of 

Crack. The techniques mainly of fuzzy logic neural network, fuzzy system, hybrid neuro genetic algorithm, artificial 

neural network, artificial intelligence.  Parhi [11] has developed a fuzzy inference based navigational control system 

for multiple robots working in a clumsy environment. They have been designed to navigate in an environment without 

hitting any obstacles along with other robots. Zimmermann [12] has applied fuzzy linear programming approach to 

solving linear vector maximum problem. The solutions are obtained by fuzzy linear programming. These are found to 

be efficient solutions then the numerous models suggested solving the     vector maximum problem. 

 

FINITE ELEMENT FORMULATION 

 

ThefreebendingvibrationofaEuler-Bernoullibeamofaconstantrectangularcross section is given by the following differ-

ential equation as given in:
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The general solution to this equation is                               

                                                           (3)  

Where A, B, C, D are constants and β is a frequency parameter.  Adopting Hermitian shape functions, the stiffness 

matrix of the two-nodded beam element without a crack is obtained using the standard integration based on the vari-

ation in flexural rigidity. 

 

The element stiffness matrix of the un cracked beam is givenas 

[Ke] =  ∫ [B(x)]TEI[B(x)] dx                                                                                     (4) 

[B(x)] = {H1(x), H2(x), H3(x), H4(x)}             (5) 

Where [H1(x), H2(x), H3(x), H4(x)] is the Hermitian shape functions defined as 
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Assuming the beam rigidity EI is constant and is given by EI0 within the element, and then the element stiffness is 
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[Ke] =
EI0
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[𝐾𝑐
𝑒] = [𝐾𝑒] − [𝐾𝑒]                                                                                                     (8) 

Here, ⌊𝐾𝑐
𝑒⌋ = Stiffness matrix of the cracked element, [𝐾𝑒] = Element stiffness matrix, [𝐾𝑐] = Reduction in 

stiffness matrix due to the crack. 

According to Peng, the matrix [Kc] is 
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Where, k11 =
12E(I0 − Ic)
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Here, lc=1.5W, L=Total length of the beam,𝐿1 =Distance between the left node and crack 

𝐼0 =
𝐵𝑊3

12
=Moment of inertia of the beam cross section, 𝐼𝑐 =

𝐵(𝑊−𝑎)3

12
=Moment of inertia of the beam with 

crack. 

It is supposed that the crack does not affect the mass distribution of the beam. Therefore, the consistent mass        matrix 

of the beam element can be formulated directly as 

[𝑀𝑒] = ∫ 𝜌𝐴[𝐻(𝑥)]𝑇[𝐻(𝑥)]𝑑𝑥                                                                    
1

0
            (10) 
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The natural frequency then can be calculated from the relation. 

[−𝜔2[𝑀] + [𝐾]]{𝑞} = 0                                                                                           (12) 

Where, q=displacement vector of the beam 

 

ANALYSIS OF FUZZY MECHANISM USED FOR CRACK DETECTION 
 

The fuzzy controller has been developed (as shown in Fig.:1) where there are 3 inputs and 2 outputs parameter. 

 
Fig. 1 Schematic Diagram of Fuzzy Inference System 
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The linguistic term used for the inputs are as follows; 

• Relative first natural frequency = FNF 

• Relative second natural frequency = SNF 

• Relative third natural frequency = TNF 

• Relative crack depth = RCD 

• Relative crack location = RCL 

 
 

The fuzzy models developed in the current analysis, based on triangular, Gaussian and trapezoidal membership func-

tions have got three or six input parameters and two or four output parameters. The pictorial view of the triangular 

membership, Gaussian membership, trapezoidal membership fuzzy models are shown in Fig.  2(a), Fig.  2(b) and Fig. 

2(c) respectively. 

 
Fig.  2 (a) Triangular Fuzzy Model 

 

 
Fig.  2 (b) Gaussian Fuzzy Model 

 

 
Fig.  2(c) Trapezoidal Fuzzy Model 

 

Based on the above fuzzy subset the fuzzy rules are defined in a general form as follows: If (FNF is FNFi and SNF is 

SNFj and TNF is TNFk) then (CD is CDijk and CL is CLijk) Where i= 1to 9, j=1 to 9, k=1 to 9     (13) 

Because of “FNF”,“SNF”,“TNF” have 9 membership functions each. 
  

From the above expression (11), two set of rules can be written 

If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then CD is CDijk    (14 a) 

If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then CL is CLijk    (14 b) 

 

According to the usual Fuzzy logic control method (Das and Parhi [1]), a factor Wijk is defined for the rules as follows: 

Wijk=μfnfi (freqi) Λ μsnfj (freqj) Λ μtnfi (freqk) 

Where freqi,  freqj  and  freqk  are  the  first,  second  and  third  natural  frequency  of  the cantilever beam with crack 

respectively ; by Appling composition rule of interference (Das and Parhi [1,13]) the membership values of the relative 

crack location and relative crack depth (location)CL. 
 

μrclijk (location) = Wijk Λ μrclijk (location) length CL 

 

As;μrclijk (depth) = Wijk Λ μrclijk (depth) depth CD 
 

The overall conclusion by combining the output of all the fuzzy can be written as follows: 

μrclijk (location) = μrcl111 (location) V.….V μrclijk (location) 

V.V μrcl9 9 9 (location)      (15a) 

μrclijk (location) = μrcl111 (depth) V.…..V μrclijk (depth) 

V….V μrcl9 9 9 (depth)     (15b)  
 

The crisp values of relative crack location and relative crack depth are computed using the centre of gravity method 

(Das and Parhi [1, 13]) as: 

 

Relative crack loacation =
∫ location. µrcl(location). d(location)

∫ µrcl(location). d(location)
 

 

Relative crack depth =
∫ 𝑑𝑒𝑝𝑡ℎ. µ𝑟𝑐𝑑(𝑑𝑒𝑝𝑡ℎ). 𝑑(𝑑𝑒𝑝𝑡ℎ)

∫ µ𝑟𝑐𝑑(𝑑𝑒𝑝𝑡ℎ). 𝑑(𝑑𝑒𝑝𝑡ℎ)
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RESULTS AND DISCUSSION 
 

The fuzzy controller has been designed using three types of membership functions, i.e.  Triangular, Trapezoidal and 

Gaussian membership function. The linguistic terms used for the fuzzy membership function have been specified in 

Table -1. The fuzzy rules being used for the fuzzy inference system are specified in the Table - 2. Out of several 

hundreds of fuzzy rules only twenty-four fuzzy rules have been indicated in the table. Fig.  3 to Fig.  5 shows the 

operation of fuzzy inference system to exhibits the fuzzy results after defuzzification when rule 2 and 15 of the   Table 

-2 are activated for triangular, trapezoidal, Gaussian and hybrid membership functions respectively. The comparison 

of the results obtained from theoretical and the fuzzy controller of triangular membership function, fuzzy controller 

with trapezoidal membership function, fuzzy controller with Gaussian membership function are presented in Table -

3. Table - 4 shows the comparisons of natural frequencies of the beam with various crack depth and location by 

theoretical, ANSYS and experimental method. Graph: 1 to Graph: 4 show the natural frequencies obtained by exper-

imental method (fft analysis). 
 

Table -1 Linguistic Term used for Fuzzy Membership Functions 
 

Name of the 

Membership functions 

Linguistic 

terms 

Description and range of the linguistic terms 

 

L1F1,L1F2,L1F3,L1F4 fnf 1to4 Low ranges of relative natural frequency for first mode of vibration in ascending order respectively. 

M1F1,M1F2,M1F3 Fnf 5to7 Medium ranges of relative natural frequency for first mode of vibration in ascending order respectively. 

H1F1,H1F2,H1F3,H1F4 fnf8to11 Higher ranges of relative natural frequency for first  mode  of  vibration  in  ascending  order respectively 

L2F1,L2F2,L2F3,L2F4 snf1to4 Low ranges of relative natural frequency for second mode of vibration in ascending order respectively. 

M2F1,M2F2,M2F3 snf5to7 Medium ranges of relative natural frequency for second mode of vibration in ascending order   respectively. 

H2F1,H2F2,H2F3,H2F4 snf8to11 Higher ranges of relative natural frequency for first  mode  of  vibration  in  ascending  order respectively 

L3F1,L3F2,L3F3,L3F4 tnf1to4 Low ranges of relative natural frequency for second mode of vibration in ascending order respectively 

M3F1,M3F2,M3F3 tnf5to7 Medium ranges of relative natural frequency for  second  mode  of  vibration  in  ascending order  respectively 

H3F1,H3F2,H3F3,H3F4 tnf8to11 Higher ranges of relative natural frequency for first  mode  of  vibration  in  ascending  order respectively 

SD1,SD2,SD3,SD4 rcd1to4 Small ranges relative   crack   depth   in ascending order respectively. 

MD1,MD2,MD3 rcd5to7 Medium ranges relative   crack   depth   in ascending order respectively. 

LD1,LD2,LD3,LD4 rcd8to11 Larger ranges   of relative   crack   depth   in ascending order respectively. 

SL1,SL2,SL3,SL4 rcl1to4 Small ranges of relative crack depth in ascending order respectively. 

ML1,ML2,ML3 rcl5to7 Medium ranges of relative crack location in ascending order respectively. 

BL1,BL2,BL3,BL4 rcl8to11 Bigger ranges of relative crack location in ascending order. 

 

Table -2 Fuzzy Rules for Fuzzy Inference System 
 

S. No Some Examples of Fuzzy rule used in the Fuzzy Controller 

1 If fnf is L1F1, snf is L2F1, tnf is L3F1 then rcd is SD1 and rcl is SL1 

2 If fnf is L1F1, snf is L2F2, tnf is L3F2 then rcd is SD2 and rcl is SL2 

3 If fnf is L1F1, snf is L2F2, tnf is L3F3 then rcd is SD1 and rcl is SL2 

4 If fnf is M1F1, snf is M2F1, tnf is M3F1 then rcd is MD1 and rcl is ML1 

5 If fnf is M1F1, snf is M2F2, tnf is M3F2 then rcd is MD2 and rcl is ML2 

6 If fnf is M1F1, snf is M2F2, tnf is M3F3 then rcd is MD1 and rcl is ML2 

7 If fnf is M1F2, snf is M2F1, tnf is M3F1 then rcd is MD2 and rcl is ML1 

8 If fnf is M1F2, snf is M2F2, tnf is M3F2 then rcd is MD2 and rcl is ML3 

9 If fnf is M1F3, snf is M2F1, tnf is M3F2 then rcd is MD3 and rcl is ML1 

10 If fnf is M1F2, snf is M2F3, tnf is M3F2 then rcd is MD1 and rcl is ML3 

11 If fnf is L1F2, snf is L2F1, tnf is L3F1 then rcd is SD2 and rcl is SL1 

12 If fnf is L1F2, snf is L2F3, tnf is L3F3 then rcd is SD2 and rcl is SL3 

13 If fnf is L1F3, snf is L2F1, tnf is L3F2 then rcd is SD3 and rcl is SL1 

14 If fnf is L1F2, snf is L2F3, tnf is L3F2 then rcd is SD1 and rcl is SL3 

15 If fnf is L1F3, snf is L2F3, tnf is L3F3 then rcd is SD3 and rcl is SL3 

16 If fnf is M1F3, snf is M2F3, tnf is M3F3 then rcd is MD3 and rcl is ML3 

17 If fnf is H1F1, snf is H2F1, tnf is H3F1 then rcd is LD1 and rcl is BL1 

18 If fnf is H1F1, snf is H2F2, tnf is H3F2 then rcd is LD2 and rcl is BL2 

19 If fnf is H1F1, snf is H2F3, tnf is H3F3 then rcd is LD1 and rcl is BL2 

20 If fnf is H1F2, snf is H2F1, tnf is H3F1 then rcd is LD2 and rcl is BL1 

21 If fnf is H1F2, snf is H2F2, tnf is H3F2 then rcd is LD2 and rcl is BL3 

22 If fnf is H1F3, snf is H2F1, tnf is H3F2 then rcd is LD3 and rcl is BL1 

23 If fnf is H1F2, snf is H2F3, tnf is H3F2 then rcd is LD1 and rcl is BL3 

24 If fnf is H1F3, snf is H2F3, tnf is H3F3 then rcd is LD3 and rcl is BL3 
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Inputs for Trapezoidal Membership Function 

 
  Rule No. 2 of Table -2 is activated   Rule No. 15 of Table -2 is activated 

 

 

Outputs Obtained from Triangular Membership Function 

 
Relative Crack Depth 

 
Relative Crack Location 

 

Fig. 3 Resultant Values of Relative Crack Depth and Relative Crack Location of Triangular Membership Function When Rules 2 And 15 

of Table -2 Are Activated 

 

Inputs for Trapezoidal Membership Function 

 
                     Rule No. 2 of Table -2 is activated  Rule No.15 of Table -2 is activated 
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Outputs Obtained from Trapezoidal Membership Function 

 
Relative Crack Depth 

 
Relative Crack Location 

Fig. 4 Resultant Values of Relative Crack Depth and Relative Crack Location of Trapezoidal Membership Function When 

Rules 2 and 15 of Table -2 Are Activated 

 

Inputs for Gaussian Membership Function 
                       Rule No. 2 of Table -2 is activated RuleNo.15 of Table -2 is activated 

 

 
 

Outputs Obtained from Gaussian Membership Function 

 
Relative Crack Depth  

Relative Crack Location 

Fig. 5 Resultant Values of Relative Crack Depth and Relative Crack Location of Gaussian Membership Function When Rules 2 and 15 of 

Table -2 Are Activated 

 

Graph: 1 Natural Frequency of the Crack Beam at 1@100 (mm): 
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Graph: 2 Natural Frequency of the Crack Beam at 1@200 (mm): 

 
Graph: 3 Natural Frequency of the Crack Beam at 2@100 (mm) 

 

 
 

Graph: 4 Natural Frequency of the Crack Beam at 2@200 (mm) 
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Table -3 Comparisons of Results between Theoretical Analysis and Different Fuzzy Controller Analysis 
 

First Natural 

Frequency  

fnf 

Second Natu-

ral Frequency 

 snf 

Third Natural 

Frequency 

tnf 

Theoretical Triangular 

Fuzzy Controller 

Trapezoidal 

Fuzzy Controller 

Gaussian 

Fuzzy Controller 

Relative 

crack depth rcd 

Relative 

crack location rcl 

rcd rcl rcd rcl rcd rcl 

47.864 296.853 815.502 0.2 0.25 0.213 0.261 0.212 0.258 0.21 0.252 

48.197 290.257 821.870 0.2 0.5 0.246 0.587 0.237 0.556 0.218 0.531 

46.455 293.842 809.819 0.4 0.25 0.423 0.259 0.415 0.255 0.407 0.252 

48.991 289.865 827.046 0.4 0.5 0.425 0.537 0.418 0.529 0.405 0.511 

 

Natural Frequencies of Cantilever Beam using ANSYS  

     For crack 1mm depth at 100 mm length   For crack 1mm depth at 200 mm length 

 
Fig. 6 (a) First Natural Frequency 

 
Fig. 6 (b) Second Natural Frequency 

 
Fig. 6 (c) Third Natural Frequency 

 
Fig. 7 (a) First Natural Frequency 

 
Fig. 7 (b) Second Natural Frequency 

 
Fig. 7 (c) Third Natural Frequency 
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    For crack 2mm depth at 100 mm length      For crack 2mm depth at 200 mm length 

 
Fig. 8 (a) First Natural Frequency 

 
Fig. 8 (b) Second Natural Frequency 

 
Fig. 8 (c) Third Natural Frequency 

 
Fig. 9 (a) First Natural Frequency 

 
Fig. 9  (b) Second Natural Frequency 

 
Fig. 9 (c) Third Natural Frequency 

 
Table - 4 Natural Frequencies of Cantilever Beam 

 

Frequency First Natural Frequency Second Natural Frequency Third Natural Frequency 

 Theoreti-

cal 

ANSYS Experi-

mental 

Theoreti-

cal 

ANSYS Experi-

mental 

Theoreti-

cal 

ANSYS Experi-

mental 

Crack (mm) 

1@100 47.864 46.3781 47.104 296.853 292.934 294.353 815.502 812.905 813.778 

Crack (mm) 

1@200 
48.197 46.5864 47.408 290.257 288.575 289.660 821.870 818.132 820.227 

Crack (mm) 
2@100 46.455 45.709 46.007 293.842 292.113 293.102 809.819 804.772 807.188 

Crack (mm) 

2@200 
48.991 47.0505 48.347 289.865 286.259 288.201 827.046 821.55 825.554 
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CONCLUSION 
 

The fuzzy controller has been designed using Triangular, Trapezoidal and Gaussian membership function. A fuzzy 

controller uses three natural frequencies as inputs whereas the crack depth and crack location as output. It has been 

observed that the natural frequencies of the beam are changing into change in crack depth and crack location. The 

predicted results from fuzzy controllers of crack location and crack depth are compared with the theoretical results. It 

is observed from the Table -3 that the results obtained from Gaussian membership function fuzzy controller predict 

more accurate result in comparison to other three controllers. The cracks depth and crack location obtained from the 

Gaussian membership function are nearness to the theoretical value. 
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