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ABSTRACT

In this paper we have estimate bounds of the nurobdevel crossings of the random algebraic polyraisn

f.(x1) = ank(t)xk =0 where 8, (t)<t,0<t<1 are dependent random variables assuming real gahrdy

and following the normal distribution with mean @aeand joint density l‘unctiqM|1/2(27T)‘e‘jS exp{(—1/2)5‘ Md]_

There exists an integep and a set E of measure at mostlogn,-logloglogn,) such that, for each nxnand all not
belonging to E, the equations (1) satisfying thedition (2), have at most (loglogny logn roots wherez and A are
constants.

Key words. Independent identically distributed random variablandom algebraic polynomial, random algebraic
equation, real roots

INTRODUCTION

n
Consider the family of equation «(X,1) = X &, ()x* =0 (1)
k=0

where a,(t)<t0O<t<1 are dependent random variables assuming real syalng/y and following the normal
distribution with mean zero and joint density fuant

IM["*@m) " exd 12 M0 )

when M is the moment matrix witl?i=10;=p0<p,i 2] i, = 01..n and d' is the transpose of the column

vector d.
In this paper we estimate the upper bound of thabaur of real roots of equation (1). We prove thikofaing
theorem.

THEOREM

There exists an integep and a set E of measure at mdst(logn,—logloglogn,) such that, for each nymand all
not belonging to E, the equations (1) satisfying ¢bndition (2), have at mosat (loglogn logn roots wherex and A
are constants. The transformationX — = makes the equation .(kt)=0 transformed to

ﬁoan_l(t)X'= 0and (a0@... .a,@® and@,(®), a,;(t),...a o) have the same joint density

function. Therefore number of roots and the measfréhe exceptional set in the sebf»] are twice the
corresponding value can be considered and now #aivwhis upper bound is same as in [0,1].

There are many known asymptotic estimates for thmber of real zeros that an algebraic or trigonoimet
polynomials are expected to have when their cdeffis are real random variables. The present papwiders the
case where the coefficients are complex. The aneffis are assumed to be independent normallyikdistd with
mean zero. A general formula for the case of amgpiex non stationary random process is also predent
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Some years ago Kac (1943) gave an asymptotic dstifoa the expected number of real zeros of anbatge

polynomial where the coefficients are real indemgmdormally distributed random variables. Lateafiimov and
Maslova (1971) obtained the same asymptotic estirfat a case which included the results due to K#£el3,

1949), Littlewood and Offord (1939) and others. ¥lwonsidered the case when the coefficients betonthe

domain of attraction of normal law. Recently thees been some interesting development of the dulsjeeneral
survey of which, together with references may heébin a book by Bharucha-Reid and SambandhanTfidse

generalizations consider different types of polyrads) see for example Dunnage [2] or study the remdb level

crossings rather than axis crossings, see Farahf3gnHowever, they assume the real valued coeffits only.

Dunnage [4] considered a wide distribution for toenplex-valued coefficients; however he only obddimn upper
limit for the number of real zeros. Indeed, theitation of this result, being only in the form afi apper bound, is
justified. It is easy to see that for the case @hplex coefficients there can be no analogue ofahamptotic

formula for the expected number of real zeros.|llstrate this point we use the result due to Dgend].

Supposex7=olx,+g,)fi(x) has a real root wherg(X) is in the form of kxor cod and a,andg,j=0,1...n are
sequences of independent random variables. Thikeisnghat the polynomials’=oa fi(x) and x;=03,fi(x) have a
common root and the elimination ¢fx) lead to the equatioma,a;......... s BopBieeeenns ) =0.

Thus the number of roots in the range-k ] and the measure of the exceptional set are eaghtimes the

corresponding estimates for the range [0,1]. EvVa&s considered the case when the random coefficiemt
independent and normal. Our technique of proohaagous to that of Evans.

&2. We define the circles £C., G, and G as follows. @ with centre at z=0 and radius 1/2. @ith centre at

Zzi— loglogng _ 1 _ _log log ng
4 2ng and of radius 72 2ng

C., With centre at z=%=1-2" and of radius I ,=2 L— Xm) = 2™ for m =my,m,...M

logn,— logloglog ,+lo - -
= | 109n,~ logloglog ,+logs | _4 and logn-logloglog, _, _,, _logn- logloglog,
log2 log2 log2

log log ,
n

Where My

Clwith centre atz = land radius

By Jensen’s theorem the number of zeros of a refunation ¢(2) in a circle z and of radius r does not exceed
log n(M 7¢(2z,)
log( R /r)
where M is the upper bound @fz) in a concentric circle of radius R. We use thisottem to find the number of

zeros of f(z, t) in each circle. Summing the number of zarosach of the circle we get the upper bound of the
number of zeros ofz, t) in the circle.

£3. To estimate the upper bound of the number of zefdgz, t) in the circle G we shall use the fact that each

a(t) has marginal frequent function——— e /2

NeYs

Now if maxa,|>(n+1) then|a,| >(n+1) for at least one value of<n, so that

P(mafa,| >n+) < £P(a>n+D) =(+D@m*? Je
v=0

n+l (3)
2
< (%)1/2e— 1/2)(n+1)
n _ 2log log n
Since| fx(z.t)] < (n+1)|2|" max |a,|, in the circle |Z| =1+ n
f (1)< (1+M) (n+1) maxfa, |
We get < (n +1) 2eZIogI0gn 4)

Outside a set of measure at m¢&tm) 2% @2° py (3).
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+1) 2

100 =[a| anci(a <49 =@ 7% | ¢ du< @+

0

Hence outside a set of measure at nstH*?(n+1)2 we have

|#400) =[ag®)]| 2 (n+1)? (5)
If Ny denotes the number of zeros o, t) in the circle gthen Jensen’s theorem (J), (4) and (5) we have
log€?°%" (n+1)*) _ 4logh+1) + 2loglogn
log2 - log2

Outside a set of measure at mos{(@/ 7Y€ %2+ y"*(n+)?)

< 4log(n+1)+ 2log log n
log 2

No<

Thus for all n>g, we have N,

00 (e _ C
Outside a set of measure at monstnf +(12/ mM e ™2+ (n+ 17 < T~ Where Cis an absolute constant.
o .

£4.To estimate the upper bound of the number of zefdg (X, t) in the circle @ we proceed as follows. The
probability that

<(n+)7? (6)

3 _loglogn, ]n

vgoaV(t)(z 2n0

()7L
@Im"* [ e="*du< 2/ m)"*(n+1)on
9]

n n 2
-1 n(3 loglogn, n (3 loglogn,
on =1~ — -2 + — -2
( p)v;o[4 2n, P vgo 4 2n,

1 loglogn,
Where exp{— 2(n+ 1)[4 + ZnOD @)
>@1-pi-

1- 3 _loglogn, 2
4 2n,

If Ny denotes the number of zeros of, t) in the circle gthen Jensen’s theorem (J), (4), (6) and (7) we hav
< 4log(n+1) + 2loglogn
log2

NO
Outside a set measure at most
1/2
i E(e—(”+l)2+ 1 jz C [ |09|09|8 :|
n+)°c, ) no” 2L1— (logn)™ @

&5 To obtain an upper estimate of the number of zefds (x, t) in the circle G(m=ny,M;,....M) we need the
following lemmas.

n=ng+ly 77

LEMMA 1
Let E be an arbitrary set. Then for complex numligense have
Jlog| > a,(t)g,[dt
E v=0
<m(E)logo + m(E)loglog _c
m(E)
2
had t had t
Where 2= (=) X |g,| +pﬂz|9v| J
v=0 v=0
)
PROOF

Let g=b,+ic,y where h and g are real. Also let
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F=Jt: §j|a (tg,|= Aa‘}
G=1t: §|a ()b, |2 Aa‘lz“z}
and )

H = {t :‘i la,()c,| 2 Ag 127
v=0

}

1 1/8 8 __8 8
MG =on (@ 7) AQII Zeﬁ’ on du<mer’( and m(H) < An21/2 ol

Now

Since F DGO H andn(Fx m(G}m(Hx e-d¥* (10)

771/2

Following Evans [Lemma] we get the proof of the tem
LEMMA 2
If 9., v=0,1.....are real and if { LJav(t)gv|<90G (11)
=a-pEel o[ L0
2
2 _ _ & 2 n
Then m(G)<tQ, where & "~ (@ ,O)VZZOQ v ,O(szog "j

and
= (21 m)Y* (o lo));

and if E is any set having no point in common @tthen

Za Mg,

(12)

I log

dt BE)l C B)l
> m(E)log o - CQM(E)log (E) (13)

PROOF
Following Evans [Lemma?2] we get the proof of theniea.
Let Ny, (r, t) denote the number of zeros gfft) in the circle with centre,x ~ and radius r. By Jensen’s theorem

b'/lm+3
| Nm(r,t)d _ | log f (z1) iz
0 r 2”‘ z—zm‘m—iE f n(xm!t)
Zm+E (14)
5 -1
Therefore writing®m(t) for Nm(1/2™* 1), we have(anogZ]
-1
¢m(t)s(27ﬂog§J | Io%Mdz
4 ‘z—zm‘m—ﬁ f n(Xm't)
and hence we get
¢m(t)dt< 1 j do élogf [xm+ S eie,t]dt— Jlog| f (xm, t)at
27log 2 n 2m+3 £
4 ° (15)

By Lemmas 1 and 2, if E has no point in common &iet G, of measure at most,where

2 1/2
5 12 (1—,0)me2V +p(2xmzvj
Qm: [_j v=0 v=0
7T

2
1-0) S xn® + ZXmV]
v=0

v=0
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1lv
We get o m(ydt <—TE) ;logV(xm,e)dmCQmm(E)logi
27tlo g% m(E)
2 V| 2
- p)ZJx +ié5 p{é(Xﬁzizéej ]
Where Vo) = © o 2
a-P 5 4o S
v=0 v=0 (16)
Since x,| <1in V(x,,.,0), the second term in both the numerator and denoariigtonstant. Therefore
2
< S s ’
Xm= e
[VZ:ZO m 2m+2 J
V (X, ) < —
,0( > vaj
v=0
—m 2
. h-a-2m) 1)
2 F\3
1 5
1-11-——+
p( ( 2m 2m+2 jJ
Hence we obtain [¢m(t)dt<CQmm(E)Iogi
E m(E) (17)
If E has no point in common with a sef, 6f measure at mognvn? , taking € =m™
Z¢ (t)
. | = ,
Consider I£ (t)IOg M (t)
M (1) € ®(n) = log nlog log log n
log 2
Put
={toE:M (1) - k}
The
where E = QJL(J”) E,
k=mg
and
t
o X8 n(D)
= 3y [ —dt, 21t 2o

k=mg k K log k
wherey, contains the terms for whichi(E,) < m(E)/k?.

First considery, . The function x log % is increasing with x fol0 < X < e™ and therefore

1 Iog< 1
E)I 2 E)lo
n(k)OQ(—E()< mE) K, "() g_(E]
If mE) 1o me”> em(E).
k? e
> f ) .

dt = t)dt,
ex klogk klngmgnO;{¢ m(t)

C
Now < o3k (max Qn)m(Ek)Iog m(E )
P _ P _1
SC[KZm(E)+K Tlog k m(E)log (E)J
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k k 1
If Ex has no point in common with a sell ™ U Gn of measure at most? 2 2 where
m=mo Kk m=mg M

Pk = mrpS%EXka- Now considers, , where M(E,) < M(E)/k®. Then

>4, .
mt dt = t)dt,
Ex klogk klogk ngquIf (V)

<C—— Py m(E,)log ——
logk

m(E) (18)
<C|lPmM(E,)+ Py 1
kZlogk m(E)
If Ex has no point in common with a set . Hence
s g |+
mpsks(n) g< m(E)
mEY<"D
| <C K2
> | RmE) +—EmE,Ylog——
ke L logk - m(E)
mMEk)s 3
k

If E has no point in common with a set H of measurmost

1
max Q .
m0 mO0s< ms<k

Now sz:(%j(azlanz)

N

|

1
N~

S ”—m >
(55
v=0

since the second term in both the numerator andrdevator is dominant. Therefore

o <£ j1/2[1_ i-2 cp(n))n+l]

< (%} [1— (log no)‘l]_

4 1/2
< (—J e2if ny> etV?

T
1
Therefore we have | <C(E)log
m(E)
. - . - ez 2 1/2 C
if E has no point in common with a set H of measirmost o ) R
0 0
m(t)
> ) .
nEmg
- i ———dt<C,,(E)lo
Thus we obtain that for ngmnd arbitrary E l M (t)log M() m(E)log m(E) (19)
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N ) c
If M{®<®(n) and E has no point in common with a set H of memsat most m,- Now let
m(t)

~ m§m0¢m(t)
P = mgssl\/luf@(n) M (t)log M (t) |

(20)
CONCLUSION

Hence after solving the theorem and lemmas we banelude that considering a polynomial (1.1) weehastimate
bounds of the number of level crossings of the ab@ndom algebraic polynomials where under a gogdition

with mean zero and joint density functi|d>th|1/2(217)‘51’S exp[(—1/2)5' Md’] _There exists an integep and a set E of

measure at mos®/(logn,—logloglogn,) such that, for each ngrand all not belonging to E, the equations (1)

satisfying the condition (2), have at most(log logny logn roots wherea and A are constants. Hence the
theorem proved.
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