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ABSTRACT  
 

A simple state feedback method for satellite trajectory design on a halo orbit is developed. The communication link 
using satellite trajectory control is from the earth to the satellite and then to the far side of the moon. The 
nonlinearities inherent to the halo orbit problem are treated as trajectory-dependent, persistent disturbance inputs. 
A controller has been designed along with a full order estimator of linear state variable feedback using pole 
placement method. This type of compensated linear controllers gives satisfactory performance for limited dynamic 
range and limited input. The design has been made by specially constructed programs and the results have been 
checked up using MATLAB tools. 
 

Key words: Satellite trajectory control, Pole placement method, Halo orbit, State variable feedback 
_____________________________________________________________________________________ 
 

INTRODUCTION 
 

Satellite is placed into orbit around the Earth, other planets, or the Sun. It has come into use very recently. Now-a-
days, artificial satellites play key roles in communication industries, in military intelligence, and in scientific study 
of both Earth and outer space. For direct access from the earth controller section by the space, the nearby lunar 
operation is processed. At far side lunar operations for the earth moon space communication it is very difficult 
until an uninterrupted link is established. With the help of adhoc network communication technique, a relay 
satellite is launched to follow the uninterrupted link between the earth and the space satellite system. This relay 
satellite follows the orbit that would provide continuous communication coverage for most of the moon’s far side. 
In 1966 this concept was developed for eliminating the complexity at far–side communication between earth-moon 
space satellites. This so-called orbit actually noted is halo orbit. Halo orbits are large three-dimensional orbits 
shaped like the edges of a potato chip. The y-amplitude of the Genesis halo orbit extends from the x-axis to the 
maximum y-value of the orbit. The computation of halo orbits follows standard nonlinear trajectory computation 
algorithms based on parallel shooting. The paper considers the satellite trajectory control in the Earth- Moon 
orbital system. The objective is to determine an appropriate method for the stabilization of a spacecraft to the halo 
orbit, while simultaneously stabilizing the attitude of the spacecraft to stay inertial fixed. Halo orbits follow 
unstable limit cycles centred on the collinear Lagrangian points that are unforced solutions to the restricted 3-body 
problem. The halo orbit is particularly interesting because Lagrangian points are behind the Moon, and because it 
is the point with the lowest gravitational potential energy needed to escape the Earth-Moon system. A satellite or 
space station following a sufficiently large halo orbit trajectory can facilitate communication between Earth and 
the far side of the Moon, and also serve as a launch pad for far away space missions. Using state feedback, we are 
able to develop control schemes that stabilize these trajectories.  
 

PRIVILEGES OF STATE FEEDBACK OVER OUTPUT FEEDBACK 
 

Output feedback is sufficient for many systems; state feedback is very useful for MIMO (multi-input multi-output) 
systems and for control systems with optimal constraints such as those requiring minimal control effort or minimum 
time to final value. The response for one particular set of gains is shown in the scope plot in Fig. 2. Inclusion of 
velocity feedback adds damping to the system (reduces overshoot) and speeds up the system response (reduces 
settling time). 
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Fig. 1 Shaft position of meter
 

POLE PLACEMENT USING STATE FEEDBACK

The state equation for state x with input u is given by a relation as:
dx(t)/dt=Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

In the above state space equation  A is called system matrix, B the input coupling, C the output coupling matrix and 
D input- output coupling or direct transmission matrix. 

 [B AB A
where n is the system order or equivalently the number of states. The theorem concerning pole placement is then 
introduced. 
 

The system is controllable (i.e., the closed
controllability matrix 

 [B AB A
is non-zero. The controllability model for a system is then introduced. It is shown that for any given set of desired 
poles, a set of feedback gains can be derived to place the system closed
Ackermann’s formula is introduced to compute the state
  
Satellite Trajectory Control 
We want to design a model of state feedback system to keep 
satellite halo orbit is shown in Fig.3

The linearized (and normalized) equations of motion of the satellite around the translunar equilibrium points are 
given by the equation [3]:  
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POLE PLACEMENT USING STATE FEEDBACK 
 

The state equation for state x with input u is given by a relation as: 
dx(t)/dt=Ax(t)+Bu(t)     
y(t) =Cx(t)+Du(t)     

In the above state space equation  A is called system matrix, B the input coupling, C the output coupling matrix and 
output coupling or direct transmission matrix. The controllability matrix is then defined as

[B AB A2B …An-1B],  
ystem order or equivalently the number of states. The theorem concerning pole placement is then 

The system is controllable (i.e., the closed-loop poles can be placed in any desired position) if the determinant of the 

AB A2B …An-1B] 
zero. The controllability model for a system is then introduced. It is shown that for any given set of desired 

poles, a set of feedback gains can be derived to place the system closed-loop poles at the desired positions. Finally, 
ermann’s formula is introduced to compute the state-feedback gains to place the poles in the desirable positions.

We want to design a model of state feedback system to keep the satellite on a halo orbit trajectory. 
satellite halo orbit is shown in Fig.3 

 
Fig.3 The translunar satellite halo orbit 

 

The linearized (and normalized) equations of motion of the satellite around the translunar equilibrium points are 
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Fig. 2 Structures of a general control system 
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           (2) 

In the above state space equation  A is called system matrix, B the input coupling, C the output coupling matrix and 
he controllability matrix is then defined as 

ystem order or equivalently the number of states. The theorem concerning pole placement is then 

loop poles can be placed in any desired position) if the determinant of the 

zero. The controllability model for a system is then introduced. It is shown that for any given set of desired 
loop poles at the desired positions. Finally, 

feedback gains to place the poles in the desirable positions. 

the satellite on a halo orbit trajectory. The translunar 

 

The linearized (and normalized) equations of motion of the satellite around the translunar equilibrium points are 

(3) 
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The state vector x yields the satellite position and velocity, and the inputs, ui  for   i= 1,2,3 are the engine thrust 
accelerations in the ξ, η and ζ direction respectively. First, we check whether the translunar equilibrium point is 
stable location or not. The problem is to design a controller that commands the satellite thrusters in such a manner 
that the actual orbit remains near the desired orbit. Before commencing with the design, we investigate 
controllability independently. 
 

We also check system controllability for u1, u2 and u3 by using MATLAB. 
For input u1: 

A = 

[0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

7.3809 0 0 0 2 0

0 −2.1904 0 −2 0 0

0 0 −3.1904 0 0 0]

 

B =[0 0 0 1 0 0]          
C =[0 1 0 0 0 0]          
D =[0]          

 

Check for controllability of the system for u1 
Compute controllability matrix 

Pc = 

[0 1 0 3.3809 0 20.1921

0 0 −2.0 0 −2.3810 0

0 0 0 0 0 0

1 0 3.3809 0 20.1921 0

0 −2 0 −2.3810 0 −35.1688

0 0 0 0 0 0]

 

n=det(Pc)  
n= determinant of controllability matrix 
n=0 

The system is not completely controllable for u1. 
 

For input u2: 

A = 

[0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

7.3809 0 0 0 2 0

0 −2.1904 0 −2 0 0

0 0 −3.1904 0 0 0]

 

B =[0 0 0 1 0 0]          
C =[0 1 0 0 0 0]          
D =[0]          

Check for controllability of the system for u1 
 
Compute controllability matrix 

Pc = 

[0 0 2 0 2.3810 0

0 1 0 −6.1904 0 8.7975

0 0 0 0 0 0

0 2 0 2.3810 0 35.1688

1 0 −6.1904 0 8.7975 0

0 0 0 0 0 0]

 

   n=det(Pc) 
   n=0 

The system is not controllable for u2  
 

For input u3: 

A = 

[0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

7.3809 0 0 0 2 0

0 −2.1904 0 −2 0 0

0 0 −3.1904 0 0 0]
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B =[0 0 0 0 0 1]          
C =[0 1 0 0 0 0]          
D =[0]          

Check for controllability of the system for u1 
Pc=ctrb(A,B); 
n=det(Pc) 
n=0 

The system is not controllable for u3. 
 

Suppose that we can observe the position in the η direction. Then we determine the transfer function from u2 to η. 
Let y =[0 1 0 0 0 0]�          

A = 

[0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

7.3809 0 0 0 2 0

0 −2.1904 0 −2 0 0

0 0 −3.1904 0 0 0]

 

B =[0 0 0 0 1 0]          
C =[0 1 0 0 0 0]          
D =[0]          
[num,den]=ss2tf(A,B,C,D); 

printsys(num,den)  

num/den = 
 

1 s^4 + 5.7239e-016 s^3 - 4.1905 s^2 + 1.8262e-015 s - 23.548 
------------------------------------------------------------------------------------------------------------------------- 
s^6 + 4.4409e-016 s^5 + 1.9999 s^4 + 2.9575e-015 s^3 - 19.9653 s^2    + 4.9155e-015 s - 51.5796 

 

For u2 to η 

Transfer function                T(s) = 
�^�  � �.���� �^� � ��.��� 

 �^� � � �^�� ��.���� �^�� ��.����
 

 
T(s) can reduced by eliminating common factor are (s2+3.1834) 
 

The reduced transfer function is  

sys_tf = T(s) = 
 �^� – �.���� 

  �^�� �.���� �^�� ��.����
 

  
The state space representation of the transfer function is given bellow: 

 

 [A,B,C,D]= tf2ss(n,d) 
 

A = 

[0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

7.3809 0 0 0 2 0

0 −2.1904 0 −2 0 0

0 0 −3.1904 0 0 0]

 

B =[1 0 0 0] 
C=[0 1.0000 0 −7.3815] 
D =[0]          
 

Check for controllability of the system 
Pc=ctrb(A,B); 
n=det(Pc) 
n=1   

The system is controllable 
Using state feedback            u2 = -Kx 
We calculate the gain matrix K which places the desired poles (using Ackermann's formula) 

>> p=[-1+i;-1-i;-10;-10] 

>> k=acker(A,B,p) 

k =    22.0000  143.1837  240.0000  216.2030 
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Simulation of the System Response to Check Specifications 
The system response can be generated using the MATLAB commands step or lsim; but for better understanding of 
the feedback system, this can be done by building it in SIMULINK using the State Variable block. The block 
diagram for Satellite Trajectory Control system and the system response are shown in Fig. 4. 

 
Fig. 4 (a) State Feedback Controller for halo orbit trajectory control 

 

 
Fig. 4 (b) 

 

In our proposed work we check the closed-loop pole reinforces the validity of Ackermann’s formula and the pole-
placement technique. This is a useful “replacement” of the proofs included in a more rigorous course in state-
feedback control.  
 

DESIGNING OBSERVERS FOR STATE ESTIMATION 
 

State estimates can provide valuable information about important variables in a physical process, for example feed 
composition to a reactor, environmental forces acting on a ship, load torques acting on a motor, etc. In this case, the 
actual state is replaced by an estimate of that state derived from a state estimator or a state observer. Here shown a 
step-by-step procedure for designing a state estimator. An example of state estimation is to control the pitch angle of 
helicopter. The performance specifications for the controller are the same as those outlined in the previous section. 
The initial conditions for the estimator are all assumed to be zero. The state-feedback controller and state estimator 
are built using SIMULINK. The system block diagram and the system response are shown in Fig. 5. 
 

 
Fig. 5 
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CONCLUSION 
 

In this paper, we proposed a design method of an adaptive tracking controller to keep the satellite on a halo orbit 
trajectory that can be seen from the earth so that lines of communication are accessible at all times.. We first present 
a system test for controllability and observability and proceed to describe one procedure for determining an optimal 
control system. Using the powerful notion of state variable feedback, we introduce the pole placement design 
technique. Ackermann’s formula can be used to determine the state variable feedback gain matrix to place the 
system poles at the desired locations. The closed loop system pole locations can be arbitrarily placed, if and only if 
the system is controllable. The state-feedback controller and state estimator are built using SIMULINK. 
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