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ABSTRACT

An analytical investigation for the creeping motioha spherically symmetric fluid-permeable comfmsphere
composed by a uniform porous core and a uniformlyosinded porous shell located at the center ophesical
cavity filled with an incompressible Newtonian dlus presented here. In the limit of small Reynaidmber, the
Stokes and Brinkman equations are solved for the field of the system. The hydrodynamic drag feseated by
the fluid on the composite sphere and wall coramttiactors are also obtained here. For a given getmynand
permeability ratio, the variations of the wall ceation factor are discussed. However, Keh and dBbstudied
translation and rotation of a spherical particleroposed by solid core and a surrounding porous dbe#ited at
the center of a spherical cavity filled with a @udut this paper is different from that paper asecis taken porous
here in place of solid core taken by above authfarother interesting thing is that permeability adre and
surface layer on the core are taken unequal hem.the purpose of verification of results, in pattiar for the
limiting cases, the analytical solutions describthg drag force on a composite sphere in the sphedavity are
reduced here for a simple solid sphere and simpleys sphere and obtained the results similar tb Ked Chou

3.
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INTRODUCTION

The problem addressed in this paper is to obtanathll effects on the creeping motion of an arbjtreomposite
sphere in concentric spherical cavity. The flowidescavity wall and outside composite sphere isegoed by the
Stokes’ equation. The flow within the porous laysrd porous core (with different permeabilities and k;

respectively) are governed by Brinkman equatiormurilary conditions e.g. no slip and matching camatt are
employed on flow governing equations to obtain Sofuof the problem. Our objective here is to detee the
hydrodynamic drag force exerted on the compositer(porous core). The wall correction factonialeated and
its variation is studied numerically.

The problem has many applications in nature eamsport phenomena in environment, flotation, sedtatéon,
electrophoresis, spray drying, agglomeration andianoof blood cells in an artery or vein., trandpof radio-
nuclide from deposits of nuclear waste materiald ather forced and convective flow associated witk
fundamental geometries of internal (cavities, ansuétc.) and external (over surfaces) flows.

MATHEMATICAL FORMULATION

Referring to Fig. 1, consider the creeping motiba mon-deformable composite sphere of ratiiusonsisting of a
homogeneous porous core of radiesnd permeabilitk; covered by a homogeneous porous shell of thickness
with permeabilityk, in a concentric spherical cavity of radiadilled with an incompressible Newtonian fluid of
viscosityu. We shall suppose that the composite sphere tmbhaleformable and its centre translate with carista
velocity U in the positivez direction. Apart from a constant velocity, the problem is same to that of a spherical
cavity moving in the negative direction with uniform velocityJ. Let us introduce a spherical co-ordinate system
(r, 6, $) with the origin located at the cavity centre dhed lined=0 as the axis of symmetry, in the direction of the
sphere velocityJ approaching the system. The Reynolds number isnass$ to be sufficiently small so that the
inertial terms in the fluid momentum equation canneglected, in comparison with the viscous teffhe porous
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core region (< a), the porous surface layer regian<(r < b), and the region outside composite sphere andensi
spherical cavitylf <r < c), are denoted as regiohdl andlll respectively. Then, the fluid flow in regiohandll is
governed by Brinkmen equation and the equatioroofiouity:

pO%v; = (ulk)v, =0p @
v, =0 2
wherei =1, 2.
For the fluid flow in regionll is governed by Stokes equatiamd the equation of continuity:
/UDZV3 = ng (3)
Ovy; =0 @

The subscripts 1, 2 and3 refers to the physicatiifies in regions, Il andlll respectively.
Here, we have assumed that the fluid has the s&uesity inside and outside the composite sphdre [5
z r

Fig.1 Composite spher e of radius b with a porous core of radiusain a concentric spherical cavity of radiusc

BOUNDARY CONDITIONS

The following boundary conditions are used to aralghe flow in the three regioriBhe four matching conditions
are imposed on the surface of porous dorea) [2 and 7]

Vit = 2 (5)
Ver = Vg2 (6)
Tr = I 2) ©)
Loy = Trog2) (8)

The boundary conditions at the outer surface opthreus surface laygir =b) due to the continuity of velocity and
stress components, which is physically realistid mmathematically consistent for the present prollens-6, 8].

Vr2 =Vi3 (9)

Vo2 = Vo3 (10)

Trr(2) = Trr 3 (11)

Tro2) = Tra(s) 12)
The no-slip boundary condition at the sphericaltyasurface(r =c) is

V3 = -U cosd 13)

Vs =Using (14)

Here, 7,, andr,, are the normal and shear stresses for the fluid fidevant to the particle surfaces. These

conditions take a reference frame that the compagibhere is at rest and velocity of the fluid afityavall is the
particle velocity in the opposite direction. Singe take the same fluid viscosity inside and outiidecomposite
sphere, use the fluid velocity continuity, and eegkhe possible osmotic effect in composite spheyemal
component of stress is equivalent to the continaiitgressure.
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SOLUTION OF THE PROBLEM AND DETERMINATION OF ARBITRARY CONSTANTS

As the flow is axially symmetric, we introduce tis#okes stream functiowy, (r,6) satisfying the equation of

o _ 1 oy
" ow 15
continuity on taking " r2sing 06 -
1 0y,
A 16
4 rsing o o

where ¢, (r,0), ¢,(r,8) and ¢,(r,6) correspond respectively to regiondl andlll. Eliminating pressurep, from
equation (3) by taking the curl and making usecfation (4), we get
E‘w,=0, b<r<o), 17)
Where E? denotes the Stokes stream function operator diyen
0 sindo, 1 0
E2 =t (—— 18
o r? 69(sin9 66) 18
Accordingly, Eqg. (1) and (2) can be expressed#@rand 2 in terms of the stream functions, as

E'%, - (1/K)EW, =0, (r<a) 19)

E'w, -(1/k,)E?, =0, (as r< b (20)

A solution to Eq. (17), (19) and (20) suitable $atisfying boundary conditions on the sphericalemas is [3-4, 6]
i = £(AA® + B(A K sinh 1)~ coshg ™ )))siAf, (A< a) (21

W, =€(C AT+ AN + Gk ™A coshid ) sinhkA )y B, kA7 sinhid ¥ coskll ))std (g <A< p) (22

Wy =£(CA +EA+ AN+ FA%)sin?0, (B<a<y) (23)

where the dimensionless variables and constahtsr (klkz)_m,a:a(lglg)_“,ﬁ:b(kikz)_“, y:c(kikz)_“,
2e=U (klkz)]/zand/(:(kl/kz)“. We denote the ratio of permeability of porousects porous shell of composite

sphere by*. The dimensionless constaitg Ay, As, By, B,, C,, Cs, E, FandG are found from Eq. (5) to (14). The
procedure is straightforward but tedious, and th@essions for these constants are lengthy, weotlpnesent them
here excepE which is required for the drag to the compositeesp by fluid external to composite sphere given by

E =6’ (((°By° kB~ 4583 + k ¥ °- 6 B>~ 4B )3 )+ 3B (3548 s+ ¥k 3.8 (18
+0°K°%)$, %)) /(355 § stk (K*(18QB° B~y )+ B-y) (4B*+ By+ 4°k*3+ B 4BY+ £ 280% By
+108°%2 + Vw2858 + (60 L% + B-y Y (837 + By+ F2 k% - 6(4BY+ 2B+ BY- WY °®
“P)k))88) 306 $(-908% + 2QB°- 2BY+ BY+ ¥k Kasus;+ Gt a K ’%)s,))
where the dimensionless parame®gys;, S, Sz S» S5 Ser S S8 » S0.510:511, S12:513, S14 @Nds;s are given in appendix.
EVALUATION OF DRAG ON COMPOSITE SPHERE

Evaluation of drag force is important in the apations of the flow problem we are investigatinga®ron the
sphere is the force exerted on it by the movingifllihe drag force (in thedirection) exerted by the external fluid
on the composite sphere (porous core) with thergiidoundary =b can be evaluated as:

5,0 Py
D = mufr3sin*6— 3 1do
Ho or (rzsinze} (24)
Substitution of Eq. (23) into the above integralulés in the simple relation
D =471 (kk,)"* E (25)

whereE is same as for equation (23).

RESULTSAND DISCUSSION
Some Cases and Known Results:
(A) DRAG
* Wheny - «, the expression for the drag foés the reduced result for the translation of aaitsal composite

sphere in an unbounded fluid is given by D, =4 (kk,)'* E, (26)
E. =@k’ (Brs+ $,))/(3%*$ §86+ %% 58 1% °® 56 556« coshk -8 )+ax
+sinhc @ = B)))- X, )~ € Ok .+ 5,) 85+ 335k § S K s -BX cosfk d-1))
+3(apk’ - D)sinhk @ - B )1+ a’k’s K3 )

Where
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* When permeability of core and surface layer of cosie spherical particle are equal kesk, = k(say),

(equivalently the radius of porous core is equalattius of outer surface of composite sphericatigiari.e. a=b)
the expression for the drag forbereduces as

D™ = 47UKY2EM @27)

for the translation of an isolated porous sphemadiusb in a spherical cavity, here
E =—~(68°(B(156° + B~ y°)coshB - (1B°+ B°-y°)sini A (@°+ A~ BY+ o+ py
+2f°y(5y% - 63)- P (90- 207+ B* )cosil ) AT+ B~ WY+ yi+ By u5&  36)
-B°/(90- 20/* + F*))sinhf3 )

Moreover, when c is very large, we haye- « , the expression for the drag foldaeduces as

Jk(Beosh3 ) sinh@ )
B(3+26%) coshp - 3sintgg (28)

for the translation of an isolated porous spheranirunbounded fluid. The expression conform with physics of
flow as it shows that the magnitude of drag forpettee particle decreases on increasing radiuseobtiter cavity
sphere and is least for unbounded medium. In aatdiff radius of particle is small so that its foidrder can be
neglected in the expression for the magnitude a dorcep~ is approximated as

D% =4k (29)
This shows that under above limitations, the dragaases cubically on increasing radius of theripaeticle.

D =127z

« If we have impermeability condition i.& - 0, in the expression (27)for the drag force, thailtesconform with
the physics of flow due solid particle. Remembetth is function of permeability Now, the drag force!

becomes DY =67z4Ub (30)
which is same as classical result for the trarmtatf an isolated solid sphere of radiusy an unbounded fluid.

Moreover, whenk - « , the expression (28) for the drag force reduces as Doliw =0 (31)

(B) WALL EFFECTS

» The wall correction factor K is ratio of the actulhg D experienced by the porous particle in the conaentr
spherical cavity and the draB,, on the porous particle in an infinite expanse lofdf Observe that =1 as
Bly=0 andl<K asp< B/y<1. The presence of the cavity wall always enharicesiydrodynamic drag on the
composite sphere since the fluid flow vanishedatwall as required by no slip boundary conditiappeared in
€q.(14)-

* Whenk =1 (k, =k, =K) (permeability of core and surface layer of comfgosphere are equal), the expression for
the wall correction factor of a composite sphererdps corek reduces for the wall correction fact&r® of an
isolated porous sphere in a spherical cavity

K 1 :DKl/Dofgl (32)

where Dt and D are given in expressions (27) and (28).

* Whenk =0 in above case we get the translation of a soligspin a spherical cavity.

GENERAL CASESOF THE WALL CORRECTION FACTOR

We now examine the some general cases of the wabation factor K This depends upom/y also. The ratio
B1y ranges from 0 (when radius of outer cavity sphengls to infinity i.ey — « ) to 1 (when no cavity). So this

ratio reflects the extent of closeness betweemdéntcle and cavity wall. Figs (2-8) depict the roatof translating
composite sphere (porous core) in a concentricrgfieavity. These Figs are drawn for describimg telationship
between the wall correction factorand radii of spheres for various values of perritidials.

In Figs (2-7), is plotted for different cases foranda/ g, as a function ofg/y (on horizontal axis) over the entire
ranges of the separation and some values betweerl6f the parameter/ 8. Fig. (2) describes the relationship
between the wall correction factak (on vertical axis) and ratigz/y (on horizontal axis) keepings =1 fix
a/ B =0.20bserve that six curves in this fig are characeerifor six values of. In the Fig., it is evident that value
of K increases on increasimgy . Further, it may be interesting to observe thaemy >k, i.e. wherk >1, the

curve for greater vales &fareabove the curve fdesser values (shows that K increases with thee&sing values of
Kk whenk >1.), however, whek, <k, i.e. whernx <1 the curve for greater vales wofare below the curve folesser
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values. (shows tha¢ decreases with the increasing valueg @fhenk <1).Observe that cases far= 0.9 and 0.1,
the curves are much closed, so that approximatahcient. Fig. (3) is similar as Fig. (2) excepe tvalue of g

which is now 4 (instead of 1 as in fig. 2) Furthemay be interesting to observe that the slopeuote in fig 3 are
greater than the slope of curves in fig 2. So im&met in g also increases the value Kf Now the curve fork =

0.05 and 0.1, are very much closed. The fig. 4e8saiccession of the above but the pattern have pemdiarities,
e.g. in fig. 4 it may be interesting to observet tive curve fork =2 lies between curves fer=0.9 andx =0.1. In

fig. 5 the curve fork =0.9 intersect to the curves=0.05 andx =0.1 ata/p = 0.8475 and 0.8805 respectively. In
fig. 6 the curve fork =10 is intersecting to the curves= 0.1 ata /5 =0.456. In fig. 7 curve fok =5 is intersecting
to the curvesk =0.05 and 0.1 air/3=0.6004 and 0.6344and curve fer=0.9 is intersecting to the curves=2
a/p=0.7646 and in this Fig. curve for = 10 is not analysed here &sis very large in amplitude showing
fluctuation about initial line.

Bly
Fig.2 K versus gly for a/f=0.2 and g =1 and six values of k

I/

k=10 k=S

k=0.05 «=0.9

Bly
Fig. 3K versusg/y for a/=0.2 and g =4 and six values of k
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Fig.4. K versus ply for a/f=0.5and # =1 and six values of k
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Fig.5. K versus gy for a/f=0.5and # =4 and six values of k
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Fig.6. K versus gy for a/f=0.9 and # =1 and six values of k
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Fig.7 K versus gly for a/$=0.9 and g =4 and five values of k
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Fig.8 K versus gfy for a/$=0.9 and g =4 and k=9.8938688
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In fig. 7 various curves show that when permeabiit composite sphere core is less than permeabiishell of
composite spherex(<1) , the wall correction factor increases on dasingx. Howeverwhen permeability of
composite sphere core is greater than permeabflishell of composite sphere (@<9.8938688 approx.), the wall
correction factor increases with increasiign Fig. 8 , it may be observe that the wall cotien factorK for «
=9.89387 initially increases with maxima at therpoB/y =0.972 (approx). Fgg/y>0.972. The wall correction
factor decreases and had been negative value 9648<s/ )y <0.9778(approx). The negative is caused by the
high permeability produced by porous core of thegosite sphere with respect to of porous shelhefdomposite
sphere.Case o/ g =0 (similar as casec =1 ora/pg =1 ) provides the results for simple porous partidiattis
discussed by Keh and Chou [3] and Khe and Lu Rljys do not discuss here.

CONCLUSION

An analytic solution of the governing equations tloe problem of the motion of a composite sphera gpherical
cavity filled with an incompressible Newtonian fiuhas been obtained. Brinkman’s model is used mysregion

and Stokes’ equations in the liquid region to am@lthe problem. An expression for the hydrodynasnég on the
composite sphere in a spherical cavity is obtaiffde wall effect is computed and presented the evhahge of
influences of the considered porous parameter fitenlimiting case of nearly porous sphere to sefitiere by
Fig.s. It has been found that, the wall correcfaxtor of the composite sphere is increasing famctf separation
parameter (ratio of radius of composite spheregtwscal cavity). The analysis assumes that cortgpgghere and
its core are non deformable. We believe that osulte provide useful insights into the actual pheena of the
motion of a composite sphere in a spherical céostytainer, also these results are more realistppte geometries
for the spherical cavity and wall effects of theitawall on this motion can be significant in appriate situations.
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Appendix

Entities used above are as:
$ =acosh@/k }-k sinh@/k )5 = s,5,-3k° §, 5, =a’s (3 $- $9)+f° $5 5, =6a°3 3,
s, = -k 5 5( $(K*B (3> § 5+a? sinhka ))-a*(3 5 65 costB Y« ? sink@ § 6sinfic §) K s -a’s 95
S =-k55($(K°B°(3k* § s+ a? scoshka )-a’ (3§85~ &3 SinkKB ¥y «k*a® cosklr 9 6cosB ) -X° Bls -a’s $)ss
S = s (KBBR8 + 2%+ Bk - sk BrH Yk = BBy k W+ 66 Bk X BR 2y R
+53° (-9+ YK P )% + K (45@ — BB+ (3T — B P+ B-a y? (B +y 24, Jcosd-B B d kA Ak ?
+VP K2 +50°(-9+ y Kk )5, +(-456° + (45aB° - 218°+ By +y k +aB (B°- BY -y °F ‘% )sinK A= 5 )
S, =2+k%, 5 = -1+k*, S = g sinh(Bk )— g coshPk ) s, = §SiNh(Bk)— s, coshPk ) s, = s,sinh(ax)— § coshfk )
S, = §Sinh(@x)— , coshgk ) s, = a?sinhi Ix), S,4 = Kk cosh@k )- sinh@x ) s; =—cosh@k Yrak sinhgx
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