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ABSTRACT  
 

This paper provides a method for computing search direction for constrained nonlinear optimization problems. We 
discuss some important differences in formulation and solution that arise in quadratic programming based methods 
for nonlinearly constrained optimization with particular emphasis on the treatment of inequality constraints. Some 
issues including incompatibility or ill-conditioning of the constraints determination of active set and estimation of 
Lagrange multipliers are discussed. 
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INTRODUCTION 
 

We have considered method in this paper to solve the inequality constrained nonlinear program i.e. 

P.I.              Minimize  nRxxf ∈:)(   

Subject to pixci ,...,2,1,0)( =≥   

where )(xf  is the objective function and )(xci   are the constraint functions which are two times continuously 

differentiable.. A typical iteration of a method to solve PI includes the following procedure if x is the current iterate.  
• Compute a search direction p by solving a sub-problem. 
• Determination of a stepα , such that specified properties hold at px α+ . Following these steps px α+  

becomes the new iterate. 
We shall examine and compare two extremes of QP. At one extreme, an equality constrained QP (EQP) is solved 
and at the other extreme the sub-problem is an inequality constrained QP (IQP). The two approaches are different in 
several ways. Between the two extremes, there are many variations in formulation of QP, some of which are shortly 
noted. We shall use the following notations throughout this paper i.e. 

)()(),()(),()( 2 xcxaxfxGxfxg ii ∇=∇=∇=  and  

)(),()( 2 xxcxG i ∂∇=  represents the set of active constraints at x. Let  

)(ˆ)( xCx ii ∇=∂ and )(ˆ)(ˆ 2 xCxG ii ∇= . Matrix )(xA  will denote the matrix whose ith column is )(xai . The 

solution of PI is *x . It will be supposed that the first and second order Kuhn-Tucker conditions hold at *x  i.e. there 

exist Lagrange multipliers { }*
iλ corresponding to the active constraints, such that 

*** )(ˆ)( λxAxg =           (1a) 

tii ,...,2,1,0* =≥λ           (1b) 

Let  )(xZ  denote a matrix whose columns form a basis for the set of vectors orthogonal to )(ˆ xA . Then the matrix 






∑

=





−= *

1
**)*()*( xz

t

i
xGxcTxz λ            (2) 

is positive definite. 
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We close this section by describing research related to the proposed research work. The continuously rising success 
of interior point techniques applied to linear programming has stimulated research in various related fields. 
Alizadeh, Haeberly, Jarre and Overton [2] consider a problem similar to this study. Their models allow only equality 
constraints and no inequalities. Algorithmically these authors use mostly interior point based techniques to solve the 
problem. Alizadeh [1] propose a potential reduction method and shows a polynomial running time to find an ϵ-
optimal solution. Jarre [17] uses a barrier approach and works directly on the dual. 
 

There are a number of alternative active-set methods available for solving a quadratic programming problem with 
constraints of the methods specifically designed for convex quadratic programming, [3],[8 11],[15],[16],[18-21] and 
[22]. Only the methods of Boland [5] and Wong [24] are dual active set methods. The primal active-set method 
proposed in this study is motivated by the methods of Fletcher [12], Gould and Gill [13-14] and Wong [24], which 
may be viewed as methods that extend the properties of the simplex method to generate quadratic programming. 
Alternative approaches that use a parametric active-set method have been proposed by Best [4], Ritter [21]. The use 
of shifts for the bounds have been suggested by Cartis and Gould[6] in the context of interior methods that are 
shown to be convergent for strictly convex quadratic program have been considered by Curtis, Han and 
Robinson[7]. 
 

METHODS FOR QUADRATIC PROGRAMS 
 

In order to discuss QP sub-problems we want to present a brief over view of some aspects of solving QP. 
 
Equality Constrained QP 
We consider the problem  

Minimize             nTT RpdpHpp ∈+ ,
2

1
          (3a) 

Subject to   bpAT ˆˆ =           (3b) 

where Â matrix contains t columns, Let r be the rank of Â and let the r columns of a matrix Y form a basis for the 

range space of Â .  Similarly the (n-r) columns of a matrix Z are supposed to form a basis for the set of vectors 

orthogonal to the columns of Â . 

                                    i.e.                  0ˆ == ZyZA TT
            (4) 

The solution of (3), 
*p  is given by 

                          
***
ZY ZpYpp +=                  (5) 

Using (5), (3b) gives. 

                    bYpApA Y
TT ˆˆˆ ** ==             (6)  

The vector pz* is determined by minimizing quadratic form (3a) with respect to the remaining (n-r) degrees of 

freedom. Using (5) into (3a), differentiating   with respect to know Zp  and equating the derivative to zero, we get 
the linear system. 

                   
**
Y

TT
Z

T HYpzdzHZpz −−=            (7) 

If HZZ T
 is non singular  

*
Zp

 is unique if HZZ T
 is positive definite (5) is the desired solutions of (3). If 

HZZ T
 is positive semi define

*
Zp   is not unique. If HZZ T

 is indefinite, 
*
Zp  defined by (5-7) is not a local 

minimum of (3) and the quadratic function (3a) is not bounded below. 
 

There are many other ways to find solution of (3). The advantage of this method is that the determination of whether 
the solution to (3) is well defined can be made during the computation. This procedure also provides an extremely 
reliable estimate of the rank. 
 

Inequality Constrained QP 
Here we consider the problems as  

Minimize          
nTT RpdpHpp ∈+ ,

2

1
         (8a)  

Subject to          bpAT ≥           (8b) 
Where, A has m columns. In general the solution of (8) must be found by iteration. Each iteration contains the two 
procedures i.e. finding of a search direction and of step length. To find search direction, some subset of the 
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constraints 8(b) at any current point say is 
~p considered as active set. Let Α matrix contain the columns of A 

corresponding to the active constraints and Let b be the vector of corresponding elements of b so that 

bpA T =             (9) 

Vector $p will denote the solution of EQP (8a) Let d denote the gradient of the function (8a) at p i.e.

dpHd +=   If pp ˆ≠ The search direction *δ  is the solution of EQP for next iterate, we need 

bpA T =+ )( *δ           (10) 

Then *δ solves, 

Minimize dH TT δδδ +
2

1
        (11a) 

Subject to   0=δTA         (11b) 
and can be used using (5), (6) and (7)  
 

If ppdZ T ˆ,0 == ,the Lagrange multipliers of the EQP are the solution of the compatible system 

pHdA ˆˆ +=λ  If  0ˆ >λ for all i, p̂ is optimal  for (8). 
 

Nonlinearly Constrained Optimization 
In this section we consider in some detail various aspects of the resulting procedures to compute search direction. In 

the nonlinear case, the constraints may be transformed. A linear approximation of a smooth nonlinear constraint ic  

at the point x can be derived by Taylor’s series.  

3
()(

2

1
)()()( pOpxGppxaxcpxc i

TT
iii +++=+          (12) 

Using only linear terms, we have 

pxqxcpxc T
iii )()()( +≈+                         (13) 

Various options have been proposed for the RHS of QP constraints. The quadratic function of the sub problem is 
usually based on the Lagrangian function because of its essential role in the second order optimality conditions for 

nonlinear constraints. If a QP has only equality constraints with matrixÂ , then its solution is unaltered if the linear 

term of the objective function includes a term of the form $Α δ. Hence, since the gradient of the Lagrangian function 

is )(,)(ˆ)( xgxAxg iλ− alone is usually taken as the linear term of the objective function. In the case of inequality 

constrained QP, the solution will vary depending on whether g(x) or ixAxg λ)(ˆ)( −  is used as the linear term of 

the objective function. 
 
Incompatible Constraints  
The first difficulty that can occur in the formulation of the linear constraints of the QP is incompatibility  i.e. the 
feasible region of the sub-problem is empty even through that of the original problem is not in practice, in-
computability appears to be more likely with an IQP sub-problem, for two reasons First, by definition IQP sub-
problem contains more constraints second and probably more important is the linearization of an inactive  constraint 
represents a restriction involving  the boundary of the feasible region that is made at a point for removed from the 
boundary. 
with an EQP approach, the constraints are of the form, 

dpAT ˆˆ =            (14) 

if (9) is incompatible the columns of Â must be linearly dependent some algorithms  include a flexible strategy to 

specify d , which can be invoked to eliminate or reduce the likelihood  selecting active constraints can attempt to 
exclude constraints  whose gradients are linearly dependent. As a first step in this direction some pre-assigned 
strategies do not allow more than n constraints to be considered active incompatibility leads to a more complicated 
situation with an inequality constrained QP subproblem in the equality case, incompatibility can be determined 
during the process of solving, 

Minimize 
2

2
d̂pAT −   and an alternative definition of p typically makes use of the quantities already computed 

with inequalities however, incompatibility is determined only at the end of an iterative procedure to find a feasible 
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point. Obviously many other strategies are possible and will undoubtedly be proposed. It seems clear that there is a 
danger of great inefficiency with an inequality constrained QP sub problem unless the computational effort 
expended to discover incompatibility can be exploited in the same way as in the equality constrained case.  
 
Conditioning of the Constraint 

In the case of a pre-assigned active set strategy, the columns of Â  can be nearly linearly dependent. If the original 

constraints were linear the sub problem then would represent the intersection of the constraints or possibly *x  itself 

is ill defined. The effect of ill-conditioning in  Â on the QP is thus to make the constraints of questionable  value. 

Usually yp*  becomes extremely large if if is Â  ill conditioned, and hence tends to dominate the search direction. 

Even if by chance yp*  is an acceptable size the reliability ofyp*  is dubious because, by definition, small 

perturbation in the  dpA T =  can induce large relative changes in its solution since this eqn. provides an 

approximation to the desired behaviour of the nonlinear constraints, it  is important to take precautions so that the 
entire  sub problem is not invalidated. Moreover there is the danger that an algorithm will be unable to make any 
progress away from the neighbourhood in which the ill-conditioning is present.  
 
Determining Active Set 
In the nonlinear case, the active constraints at the solution are usually  satisfied exactly only in the limit and hence 
other criteria must be employed. Any method based on the Lagrangian function includes some decisions about the 
active set in defining which constraints correspond to non-zero multipliers with a QP-assigned active set strategy the 
Lagrange multipliers from the IQP sub problem at the previous iteration determine the selection of the active set, in 
the sense that the set of active linear constraints at the solution of the QP is equivalent to the set of active nonlinear 
constraints at the solution of the original problem. Almost any sensible set of criteria will predict the active set 
correctly in a small neighbourhood of the solution under the assumption required to guarantee a correct prediction 
for the IQP sub problem. 
 

The justification for any active set strategy arises from its reliability when the current iterate is not in a small 
neighbourhood of the solution. Since the prediction of the active set influences the logic of either an EQP or IQP 
method. It is advisable to include consistency the prediction to be reliable. 
 

LAGRANGE MULTIPLIER ESTIMATE 
 

Lagrange multiplier estimates are used within the EQP approaches in two ways i.e. and approximation to the 
Lagrangian function must be constructed and many pre-assigned active set strategies consider multiplier estimates in 

selecting the active set since )(xg  and  )(ˆ xA  are evaluated before defining the approximation to the Lagrangian 

function at x, a first order Lagrange multiplier estimate can be computed as the solution of the least square problem.  

  Minimize    2
2)()(ˆ xgxA −λ           (15) 

An alternate estimate which allows for the fact that )(xc is not zero is given by 

( ) cAA
T

ˆˆˆ
1−





−= λλ           (16) 

where λ1 is the solution of (10) and  ĉ and Â are evaluated at x. When using the IQP approach, the QP multipliers 
from the previous iteration are used to define the new quadratic approximation to the Lagrangian function. In this 
way, the QP multipliers can be interpreted  as providing a prediction of the active set in the sense that they define 
which constraints are included in  and which are omitted  from the Lagrangian function with either EQP or IQP sub 
problem the quality of the estimate critically depends not only on the correctness of the active set but also on how 

well H approximates the Hessian of the Lagrangian function. The right hand side of gHpA += *λ can be 

interpreted as a prediction of the Lagrangian function at *px +  and the value of the estimate from the above 

mentioned eqn. hence depends on the fact that *px + is a better point than x. consequently the value of the estimate 

is questionable when a unit step is not taken along*p , which is often the case except very near the solution. 

CONCLUSION 
 

As a consequence computing the search direction by solving a QP is not assured for all algorithms in constrained 
optimization. Certainly a QP based formulation overcomes some of the disadvantage of alternative methods and QP 
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based method typically work extremely well in the neighborhood of the solution. It may be through that the greater 
effort involved in solving an IQP would cause less major iteration to be required to solve the original problem. The 
main objective of this paper has been to point considerations of importance in evaluating any proposed method that 
included a QP. 
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