Available online
European Journal of Advancesin Engineering and Technology, 2015, 2(8): 77-81

gl

Research Article ISSN: 2394 - 658X
e e N
Deter mination of the Search Direction in Quadratic Constrained
Optimization

Saurabh Srivastava

Department of Mathematics, Hindustan College of Science & Technology, Farah. Mathura, UP, India
saurabhsrivastava.hcst@gmail.com

ABSTRACT

This paper provides a method for computing search direction for constrained nonlinear optimization problems. We
discuss some important differences in formulation and solution that arise in quadratic programming based methods
for nonlinearly constrained optimization with particular emphasis on the treatment of inequality constraints. Some
issues including incompatibility or ill-conditioning of the constraints determination of active set and estimation of
Lagrange multipliers are discussed.
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INTRODUCTION

We have considered method in this paper to sokvénquality constrained nonlinear program i.e.
P.l. Minimize f(x) : xOR"
Subject toc, (X) 20, i =12,...,p

where f(X) is the objective function ar@j(X) are the constraint functions which are two tiraestinuously
differentiable.. A typical iteration of a methoddolve PI includes the following procedureif the current iterate.
» Compute a search direction p by solving a sub-gmbl
» Determination of a steff, such that specified properties hold 4t+ ap. Following these stepx+ap

becomes the new iterate.
We shall examine and compare two extremes of QRin&textreme, an equality constrained QP (EQP)lied
and at the other extreme the sub-problem is aruadéy constrained QP (IQP). The two approachegldferent in
several ways. Between the two extremes, there arg/ wariations in formulation of QP, some of whale shortly
noted. We shall use the following notations thraugtthis paper i.e.

g(x) =0f (x),G(x) =0°f (x),& (x) = 0c; (x) and

G(x) = O%c, (X),0(X) represents the set of active constraints het
0,(X) = Déi (X) andéi (x) = Dzéi (X) . Matrix A(X) will denote the matrix whosigh column is@, (X) . The
solution of Pl isx" . It will be supposed that the first and secondeoiiuhn-Tucker conditions hold at i.e. there

exist Lagrange multiplier%/li*}corresponding to the active constraints, such that

g(x) = A(X)A (1a)
A =20 i=12..t (1b)
Let Z(X) denote a matrix whose columns form a basis fosétef vectors orthogonal t&(x) . Then the matrix
* T * t * * *
zZ(x ) =c(x)-X A G(x jz(x j )
i=1

is positive definite.
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We close this section by describing research relate¢he proposed research work. The continuousiyg success
of interior point techniques applied to linear mamgming has stimulated research in various reldields.
Alizadeh, Haeberly, Jarre and Overton [2] consaproblem similar to this study. Their models allomly equality
constraints and no inequalities. Algorithmicallgsle authors use mostly interior point based tedlesi¢o solve the
problem. Alizadeh [1] propose a potential reductinathod and shows a polynomial running time to famk-
optimal solution. Jarre [17] uses a barrier appncand works directly on the dual.

There are a number of alternative active-set mettznilable for solving a quadratic programmingbfeo with
constraints of the methods specifically designedcémvex quadratic programming, [3],[8 11],[15],[]168-21] and
[22]. Only the methods of Boland [5] and Wong [2¢E dual active set methods. The primal activensethod
proposed in this study is motivated by the methafdsletcher [12], Gould and Gill [13-14] and Wor24], which
may be viewed as methods that extend the propestitise simplex method to generate quadratic prograng.
Alternative approaches that use a parametric astttenethod have been proposed by Best [4], RRtr The use

of shifts for the bounds have been suggested byisCamd Gould[6] in the context of interior methatthat are
shown to be convergent for strictly convex quadrgtrogram have been considered by Curtis, Han and
Robinson[7].

METHODS FOR QUADRATIC PROGRAMS

In order to discuss QP sub-problems we want togpitess brief over view of some aspects of solving QP

Equality Constrained QP
We consider the problem

1
Minimize > p'Hp+p'd, p0dR" (3a)
Subjectto ~ ATp=b (3b)
where A matrix contains t columns, Letbe the rank ofA and let the columns of a matri¥ form a basis for the

range space ofA. Similarly the f-r) columns of a matriZ are supposed to form a basis for the set of vector
orthogonal to the columns oA _

e. A'Z=y'Z=0 (4)
The solution of (3),p* is given by
P =Yp, +Zp; 5)
Using (5), (3b) gives.
Ap = ATy, =b ©

The vectorp,* is determined by minimizing quadratic form (3a)tlwrespect to the remaining (n-r) degrees of

freedom. Using (5) into (3a), differentiating kvitespect to knowPz and equating the derivative to zero, we get
the linear system.

T T T *
z HZp, =-z'd -z HYp, @
T * T
If Z HZ is non singular Pz is unique if Z HZ is positive definite (5) is the desired solutiorfs(8). If
T * T *
Z HZ is positive semi defin®z is not unique. IfZ HZ is indefinite, Pz defined by (5-7) is not a local

minimum of (3) and the quadratic function (3a) @ hounded below.

There are many other ways to find solution of {3)e advantage of this method is that the determimatf whether
the solution to (3) is well defined can be maderduthe computation. This procedure also providegxremely
reliable estimate of the rank.

Inequality Constrained QP
Here we consider the problems as

1 n
Minimize 2 p'Hp+p'd, pOR (8a)
Subjectto  A'PZDb (8b)

Where, A has m columns. In general the solutio(Bpimust be found by iteration. Each iteration aomt the two
procedures i.e. finding of a search direction afdstep length. To find search direction, some sulosethe
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constraints 8(b) at any current point sayﬁsconsidered as active set. L@ matrix contain the columns of A
corresponding to the active constraints and lb.dte the vector of corresponding elements of b sb tha

A'p=b 9)
Vector Pwill denote the solution of EQP (8a) Lef denote the gradient of the function (8a) Bti.e.
d= Hp+d If p# pThe search directiodd is the solution of EQP for next iterate, we need

AT (p+d)=b (10)

Then O solves,
Minimize %JT HO+d"d (11a)
Subject to ATo=0 (11b)

and can be used using (5), (6) and (7)

IfZTa:O,ﬁ: f),the Lagrange multipliers of the EQP are the soiutiof the compatible system
A =d+Hp It A>O0foralli, pis optimal for (8).

Nonlinearly Constrained Optimization
In this section we consider in some detail variasigects of the resulting procedures to computelsetirection. In
the nonlinear case, the constraints may be tramsfr A linear approximation of a smooth nonlineamstraint C,

at the poini can be derived by Taylor’s series.

1
¢ (x+Pp)=c,()+a (¥ p+5p'G(Yp+O(p| (12)
Using only linear terms, we have
C(x+p)=c(x)+q(x)' p (13)

Various options have been proposed for the RHS Bfc@nstraints. The quadratic function of the sutibfam is
usually based on the Lagrangian function becauses efssential role in the second order optimaldpditions for

nonlinear constraints. If a QP has only equalitystaints with matri>A, then its solution is unaltered if the linear
term of the objective function includes a termtod formA 8. Hence, since the gradient of the Lagrangian fanct

is g(X) — A(X)Ai , 9(X) alone is usually taken as the linear term of theailve function. In the case of inequality

constrained QP, the solution will vary dependingwdretherg(x) or g(X) — A(X)/]i is used as the linear term of
the objective function.

Incompatible Constraints

The first difficulty that can occur in the formulat of the linear constraints of the QP is incoritplty i.e. the
feasible region of the sub-problem is empty evemubh that of the original problem is not in praeti in-
computability appears to be more likely with an 1@kb-problem, for two reasons First, by definiti@P sub-
problem contains more constraints second and phpbatre important is the linearization of an ingeti constraint
represents a restriction involving the boundaryhef feasible region that is made at a point fonaeed from the
boundary.

with an EQP approach, the constraints are of tha,fo

Ap=d (14)
if (9) is incompatible the columns 043\ must be linearly dependent some algorithms includlexible strategy to

specify d , which can be invoked to eliminate or reduce tkelihood selecting active constraints can attetopt
exclude constraints whose gradients are lineagfyeddent. As a first step in this direction some-gssigned
strategies do not allow more than n constraintset@onsidered active incompatibility leads to aenmomplicated
situation with an inequality constrained QP subfewbin the equality case, incompatibility can beedmined

during the process of solving,

(12
Minimize HAT p- d” and an alternative definition of p typically makese of the quantities already computed
2

with inequalities however, incompatibility is datgned only at the end of an iterative procedurénd a feasible
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point. Obviously many other strategies are possbig will undoubtedly be proposed. It seems cleat there is a
danger of great inefficiency with an inequality stmined QP sub problem unless the computatiorfairtef
expended to discover incompatibility can be exphbiin the same way as in the equality constraiasd.c

Conditioning of the Constraint
In the case of a pre-assigned active set strathgycolumns of A can be nearly linearly dependent. If the original
constraints were linear the sub problem then woegdesent the intersection of the constraints ssibty X itself

is ill defined. The effect of ill-conditioning inA on the QP is thus to make the constraints of queslile value.
Usually H p*yH becomes extremely large if if i& ill conditioned, and hence tends to dominate tectedirection.

Even if by chanc#p*yu is an acceptable size the reliability m*fy is dubious because, by definition, small

perturbation in the AT p=d can induce large relative changes in its solusince this egn. provides an

approximation to the desired behaviour of the m@dr constraints, it is important to take precmgiso that the
entire sub problem is not invalidated. Moreovear¢his the danger that an algorithm will be undblenake any
progress away from the neighbourhood in which ilheonditioning is present.

Deter mining Active Set

In the nonlinear case, the active constraints atstilution are usually satisfied exactly onlyhe timit and hence
other criteria must be employed. Any method basethe Lagrangian function includes some decisidimutithe

active set in defining which constraints corresptmdon-zero multipliers with a QP-assigned actigestrategy the
Lagrange multipliers from the IQP sub problem at pinevious iteration determine the selection ofdbiive set, in
the sense that the set of active linear constraintise solution of the QP is equivalent to thedaetctive nonlinear
constraints at the solution of the original problemost any sensible set of criteria will predtbe active set
correctly in a small neighbourhood of the solutiomder the assumption required to guarantee a d¢qgsrediction

for the IQP sub problem.

The justification for any active set strategy agigeom its reliability when the current iteraterist in a small
neighbourhood of the solution. Since the predictiérthe active set influences the logic of eitharEQP or IQP
method. It is advisable to include consistencyptegliction to be reliable.

LAGRANGE MULTIPLIER ESTIMATE

Lagrange multiplier estimates are used within ti@PEapproaches in two ways i.e. and approximatiothéo
Lagrangian function must be constructed and maayapsigned active set strategies consider multiptitmates in

selecting the active set sin@(X) and A(X) are evaluated before defining the approximatiothéoLagrangian
function at x, a first order Lagrange multiplietiegate can be computed as the solution of the kasire problem.

Minimize HA(x)A - g(x)2 (15)

An alternate estimate which allows for the fact INI_E(X)” is not zero is given by
ANT A~ _1,\
A=A —[(A) A} ¢ (16)

where, is the solution of (10) andCand A are evaluated at x. When using the IQP approaehQf multipliers
from the previous iteration are used to definertber quadratic approximation to the Lagrangian fiamctin this
way, the QP multipliers can be interpreted as ipling a prediction of the active set in the sersd they define
which constraints are included in and which aréttech from the Lagrangian function with either EQPIQP sub
problem the quality of the estimate critically dege not only on the correctness of the active sealso on how

well H approximates the Hessian of the Lagrangiancfion. The right hand side oA = Hp* + g can be
interpreted as a prediction of the Lagrangian fiemctat X + p* and the value of the estimate from the above
mentioned eqn. hence depends on the factxhatp* is a better point thax consequently the value of the estimate

is questionable when a unit step is not taken a[m*ngNhich is often the case except very near thetisolu
CONCLUSION

As a consequence computing the search directiosolyng a QP is not assured for all algorithms amstrained
optimization. Certainly a QP based formulation @eanes some of the disadvantage of alternative rdstand QP
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based method typically work extremely well in treghborhood of the solution. It may be through that greater
effort involved in solving an IQP would cause l@ssjor iteration to be required to solve the origimablem. The
main objective of this paper has been to point ictemations of importance in evaluating any proposexthod that
included a QP.
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