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ABSTRACT

This paper presents a novel method for inspectiegnterior surface of pipes using laser-opticheVariation in
the local curvature of a laser ring projected ortee pipe’s surface is measured via an image takeraip
omnidirectional camera, hence the name omnidireetiolaser optics. There will be sharp changes lie t
curvature when the laser ring passes over defecws., (dents, cracks, sliver, bad weld trims, etc.).
Computationally-traceable digital-geometry-basedtniae are used to calculate the change in curvattimeugh

an elliptical curve fitting in real time. Experimiah results prove the high performance of the psgmbmethod for
detecting small defects at a high resolution and short time.

Key words. Laser-optics, digital geometry, curvature estimatilom image, omnidirectional cameras and opto-
mechatronics

INTRODUCTION

Automated surface inspection of pipes refers tdaascof methods and algorithms which detect, digskicalize
and measure surface defects on the interior sudhtiee pipes. Different sensors like vision, semadiography-
based, and thermal are used for pipe inspectiothigrpaper, we propose a laser-optics sensorefimcting external
and visible defects. The literature on image-basspection of pipes is vast. Duran et al. usedragsetive camera
and laser ring pattern projector for visual insatbf small sewer pipes ([6] and [7]). They usegirzhole camera
to image the LED ring light projected onto the pfqeface, and then used artificial Neural Netwddesanalyzing
the brightness of the LED ring to detect the defethis method was used to detect large defecys onl

Our survey leads us to believe that the image-bassgbction of sewer pipes has been mainly useshimfl field-
of-view perspective camera. Because of the small FOthe pinhole perspective cameras, it is notfical to use
them for inspecting large pipes. Therefore, alteveamaging systems with a wide field of view (FPWould be
required to make the imaging of the entire intesiorface of the pipes possible. There are three agroaches for
panoramic imaging of the interior surface of a pipwiltiple camera system, rotary imaging platfor®])( and
omnidirectional imaging system. Multiple-camera awothry-imaging systems can capture the pipe serfaith
higher resolution than that in omnidirectional inmagsystems. However, because of the difficultreBriage feature
bundle adjustment, image stitching and mosaickmgitiple view calibration and also synchronizatioh the
imaging systems, they have been rarely succes$fuither- more, the overall cost of these systems is
prohibitive. In thispaper, we focus on visual inspection of the integorface ofpipes using single-view
omnidirectional imaging sensors. Single-view Ommdiional imaging can be categorized @sitadioptric and
Dioptric. Both can be used for capturipgnoramic view of the scene in one single imageafadioptric sensor
consists of a perspective camera and a hyperbolarabolic mirror. Dioptric imaging sensors, be bthethand,
consist of a camera with a compound lemg(a fish-eye lens) with about 180-degree horizontal andoadrfield
of views. This would enable the camera to see aidgmmareobe in front of it.

In this paper, we investigate defect detectionhmn interiorsurface of pipes using a laser ring, projected omeo
pipe’s inner wall,and an omnidirectional imaging system. Furthermore carbenefit from the simplicity, the
compact size, and wide FOV tifese sensors. However, lower resolution and higlsortionin images are two
main drawbacks of using omnidirectiors&insors.
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There are some works on visual inspection of pipggagomnidirectional sensors cited in the literature] Gad
[14]). Matsui et al ([14]) used the omnidirectional camera and lasghtlfor the digital reconstruction of the
interior surface of the pipe$heir main focus is on the design of the opticatem, thusthey do not address the
defect detection in depth.

Two main approaches widely used for illuminating thipewall in pipe inspection applications adiffusedand
structured light. The former uses a high-intensity yet thefudiéd light source, where the latter adopts a
collimated structured lightising laser. There are different mechanisms foegaimg structuredight patterns in
machine vision, namely, laser pattern projectois iamage fringes generated by the common gatgectors. The
laser projectors create a single-wavelenigith contrast pattern of the laser light, wherdes tataprojectors
project a multi-wavelength light (aka, image fripgé a lower intensity and contrast. Although datejgmtorshave

the advantage of creating a dynamic range of petter the fly, but because of the lower intensity andtrast
that they offer, and also the bigger size factbgythave been rarelysed in industry. Recent developments on
imaging sensors arattuators under the MEMS/NEMS, though, can be segdranger. Baset al [3] and Inariet

al [11] used the laseaing projector to create a narrow ring on the iimtesurfaceof a pipe.

In this research, we used a high-intensity lasee projector as the lighting subsystem to produchighly
focusedillumination inside the pipe. Rather than usingelagngprojectors with a low fan angle which makes the
inspection of large diameter pipes a serious chgélewe use the laser line projector laterally paependicular to
the pipe surface to produce a laser ring insidepthe right next to the camera. In this laser-apimaging system,
an elliptical curve is formed within the image whasze and form would depend on the relative pm®irientation
(aka, pose) of the laser optics imaging systentdésiie pipe. The curve generated by the lasempliogctor is the
best source of information about the surface dsfeside the pipe. Every surface defect would lyosthange the
curvature of the laser line. The main idea is tvaet and analyze these local changes in curvatutiee elliptical
curve seen in the image to detect, classify, laeadind measure surface defects on the intericacidf the pipe.

There are two main approaches for extracting defdotmation from the projected curve on the irdersurfaceof

the pipe:fixed referenceand dynamic referenceThe firstmethod uses a recorded or a priori registered feetie
curveas the reference (or signature) curve to find thet pf theinstantaneous curve which is distorted by the
defect. In thisapproach, one can easily calculate the differermmtseenthe reference (or signature) curve and the
instantaneous cunve order to find defects. On the other hand, in tymamic-reference method, one does
not need to memorize any reference, but finds thieats using local curvature changes every frame
instantaneously. A static-reference approaohld be advantageous if the laser-optics sensiitgnoovessmoothly
inside the pipe. However, in scenarios where shiesing unit might sway in motion, then a dynareiemrencing
approach would yield more accurate results.

In this work, we us@ dynamic reference approadbr extracting surface defects from the projected cuwkEch
further helps us to develop the algorithms robosthe robot's unwanted sway in motion. In our proposed
method,we formulate a novel algorithm to track the lochhrgesn the curvature of the elliptical shape of theetas
line inthe image to find defects. It is noteworthy, howewbat a-prior knowledge of the curve’s geometry can
drastically helpn tracking discontinuity in the local curvaturehish will bedescribed in further details.

In this paper, we present a novel approach forstiméaceinspection of big pipes using omnidirectional inraygi
sensorsand a laser projector based on digital-geometrgdbadipticalcurve fitting and local curvature extraction.
We did severakxperiments on the steel and PVC pipes. Resulte weomising. The proposed algorithm could
detect small defects of @m width or larger. We present the system set upén pipeinspection method in the
next section. Then, we describe the defect detectiethod in detail. Finally, we present a briefcdission
about the methodnd our results.

SYSTEM SETUP

Every machine vision application consists of twonmeomponents: imaging and lighting subsystems.réppate
selection of these two components highly affecésghrformance of the machine vision applicatiorige Tighting
system should be selected in a way that it wilhhight features of interest. On the other hand,niaén objective of
the imaging subsystem is to see and captured plghblil features at the highest resolution.

In this work we chose omnidirectional vision as theaging component and a green laser line projeasothe
illumination subsystem. Fig. 1 shows the schematiour imaging/lighting platform as well. We usdtetgreen
laser line projector as the light source to prodadggh intensity/contrast image of the scene. [Bser projector
produces a thin line of green light which produaesrcular ring on the interior surface of the pipais ring will be
seen as an ellipse in the image. Fig. 1 showsllipti@l curve as well. Also, it should be notdtht there are some
alternative solutions, e.g. the laser ring projecothe Axicon lenses [17], for projecting the noav laser ring
inside the pipe. But because of the complexityhefg¢etup and implementation, they were not consitier
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Fig. 1 The schematic of the proposed setup of the omnidirectional laser-opticsimaging system for pipe inspection

There are some design factors to be considered wnaidirectional laser optics system. The lightsygtem, in
particular, must provide the highest visibility aresolution. For instance, the laser line shouldéden close to the
boundary of the image for the highest resolutitinhas been experimentally verified that for acimgvthe highest
longitudinal and depth resolutions, the laser mmgst be projected onto the pipe surface right altbgereflective
mirror in Catadioptric imaging systems. This meaat the projected laser line will be reflectedotigh the
mirror's periphery in the Catadioptric sensors &isd-eye lens’s periphery in the Dioptric sens@s.one can see
in Fig. 1, laser line projector is projecting a imeperpendicular to optical axis of the camera alodecto the
periphery of the mirror.
The main characteristics of the proposed desigasfellows:

« Overlapped central axis of the camera and the mirro

« Adjustable relative position of the laser line gaipr

« Adjustable elevation of the camera and the mirror

« Adjustable relative position of the camera andniieor

METHODOLOGY

In this section, we present a set of algorithmgl dee defect detection in pipes using the propasedidirectional
laser-optics platform consisting of an omnidiregtib imaging sensor and a laser line projector. \§e the
definition of local curvature to do elliptical cunfitting on the boundary of the projected lasewelwon the interior
surface of the pipe and then detect and extractctigfarts by calculating the difference between rtteasured
boundary from the image and its elliptical fit.

Fig. 2 shows the flowchart of the defect extractalgorithm presented in this paper. We start bytwang the
image and then applying a dynamic-threshold allgorito extract the laser light projected curve. @btails of this
method will be described in the next section. la tiext step, we extract upper and lower boundaffi¢ke curve
(i.e., considering the thickness of the laser linesome discontinuities were found on the image fix it in the
digital image by stitching all the correspondingve boundary segments together to make a pair wiptie
boundary curves (pre-processing the image datdgr Afre-processing the boundaries, we apply a ffittieting

algorithm on the curve boundary points. After filtgy unwanted points on the curve boundary, dughd¢onoise in
the image, we fit two elliptical shape curves tateaide of the boundary. Finally, we compare fitdlbses to the
curve boundaries with the original images to extthe position and size of the defects. In theofolhg, further
details on each module in the aforementioned fl@stcare provided.

Dynamic Thresholding

After capturing the image, the very first taskaseitract the laser light projected curve fromithage. ae converted
the RGB images to a grey-level for simplicity, gmnwhat matters the most in our algorithm would e light
intensity and not the colour. Also, in the next igdiate step, we converted from a grey-level to a iB\&ge in a
way that all points on the laser projected cunestaghlighted.

Because of the non-uniform distribution of the fabght intensity on the surface of the pipe, a @englobal
thresholding method, which applies the same thidsioo all image pixels, may not work. However, fodlowing
observation can be made on the intensity profil¢heflaser line: the intensity of the light decemsass the polar
angle to the central axis of the laser projectalf@nthe distance to the laser’s projection ceimenreases. Assuming
that the laser projector is perfectly aligned witle pipe’s central axis, one can conclude thatiritensity would
change only radially. This helped us to design aadyic-reference thresholding algorithm that woutdcant for
non-uniform intensity profile along the curve.
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We modelled the radial intensity variation usinghad-order polynomial to adjust the average intensityeath
pixel in the image of the curve. I. 3 shows the polynomial model of the laser intenalgng the curve. A thi-
order polynomialvill provide a smooth change in the intensity ttah be calculated in a very short i

A comparison between our dynarreference thresholding and stat&ference thresholding methods was d
through experiments and former proved to work beFig. 4 shows a representative comparison betweer
dynamic- vs staticeference thresholding. As can be seen, low vadfiéise threshold cause some light diffusior
counted as part of the curve, whereas high valhesen for the threshold would eely disregard lov-illumination
part of the curve. On the contrary, the dynereference thresholding method, not only keeps ltumination parts
intact, but also it removes spattered light diffusfound at the centre of the cu

Effect of the Big Defects on the Boundary Extraction

It is a fairly straightforward process to extraot\ve boundaries from the image. For example, siroplamr-wise
scanning of the foreground pixels will find the Ibdaries. However, in case of big defects, the gién of laser
light on the defect can cause some irregularitieh sas discontinuities on the curve boundaries lwklwould be
addressed carefully. Fig.ghows the effect of the t-size defects on the boundary of the cu
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To deal with this problem, firstly we apply a siftéer to remove all the small islands on the imageich are fal
enough from th@ther connected components of the image. Thesadslasually correspond to the light distort
at the defected position that would not provide aajid information on the defect size or shape. Titiering
adopted here is based on the following infation obtained on the islands in the image:

* Size of the island

* Roundness of the island.

« Distance to closest connected compoineighbour.
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The weights to be adopted on each factor can weddahrough experiments and/or a mac-learning algorithm.
After filtering the unwanted islands, we apply the geealgorithm which merges adjacent curve segméiatsio
the merge operation, we check the points on bodls @f each curve segment to find correspondings@id thet
do the merge. We repeat the merperation until all the curve segments are mergetheotwo lower and uppt
boundary curves. Fig. ¢hows the result of the boundary merge processhdsin in this figure, unwanted islan
are filtered out prior to the merge process and ttemaining colponents are merged to the upper and lo

boundaries.

Fig. 5 Effect of the big-size defects on the boundary of thelight curve

Fig. 7 Effect of the defect points on deviation of thefitted ellipse: red:
upper boundary points, blue: lower boundary points, yellow: thefitted
ellipseto the upper boundary green: thefitted ellipseto the lower
boundary
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Fig. 8 Result of the point filtering algorithm applied to the Fig. 9 Result of the ellipsefitting algorithm applied on thefiltered
upper boundary curve seen in fig. 6 red: original boundary upper boundary curve yellow: filtered points on boundary curvered:
curve green: pointsremained after filtering thefitted elipse
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Point Filtering on Boundary Curves

After extracting upper and lower boundary curves,fiv an elliptical curve to each boundary. Forteboundary
curve, there will be two classes of points. Infingt class, the points correspond to the non-dedegas of the pipe.
These points preserve the smoothness of the fitieee. In the second class, however, the pointespond to the
defect areas. These points violate the smooth hgndithe fitted curve. They can shift the fittdtiptical curve by

large away from non-defect points. Fig. 7 showdbeiation of the fitted ellipse caused by the poion the defect
area. As one can see in this figure, yellow ellipgeéch is fitted to the upper boundary curve isidead from the
non-defect points on the upper boundary becausmatdiding defect points to the curve fitting prosedhis

necessitates devising an efficient algorithm farleding the major defect points from the fittingopess.

To resolve the aforementioned problem, we prerfittee major defect points by adopting a local ctuka
calculation originally proposed by Mariji ([13]). fact, there are many different definitions for theal curvature of
the digitized curves. Local curvature can be egdtghasing one of the following criteria:

» The change in the slope angle of the tangent kng, (elative to the x-axis).

» The derivatives along the curve.

* The radius of the osculating circle (also calledlei ofcurvature).

Majdi [13] fitted binomial curves to any point, aitd immediate neighbouring points, on the digitizairve and
then used derivative of them to calculate the locaturvature. Also Hermann et al [15] used maxirdangth

8DSS, [5], definition on bi-lateral sides of anyiqigp on the digitized curve to calculate the locatvature at that
point.

In this work, we calculate the local curvature wé®ly point along the digitized curve using the noetlcited in [13]
and then filter out the boundary points using thlWing two metrics:

« Points with high local curvature value.

« Points with high fluctuation in the local curvaturetheir vicinity.

In fact, all the points violating the smoothnesstbé curve will be removed through this procesomid
implementing the next step, namely ellipse fittikig. 8 shows the result of the filtering algorittapplied to the
points on the upper boundary as seen in Fig. Thitnfigure, green points correspond to the poivitich are not
filtered. As we can see in this figure, using tlier@mentioned simple rules can correctly rejectodlithe defect
points. One can also optimize the design paramétdte local curvature rejection hypothesis viperimentation.
These parameters would affect the overall sentitivi the algorithm to the local fluctuation on tharve. They
would also affect the filtering process. Howevérshould be noted that false rejection of a fewnmalong the
curve would not affect the final results by largasen that only 6 points are necessary to fit dipsd to the laser
image boundaries. In the next subsection we wiltass the fitting process in details.

Ellipse Fitting
Projection of the laser on the interior surfacetaf pipe would be seen as a smooth elliptical cimhe image
under ideal conditions. It can be a perfect cirdethe laser was perfectly aligned with the pipenite line,
otherwise the curve would have an elliptical shaje best fitted elliptical curve can be then uas@ reference (or
signature) curve to find and extract all the defetit general, one can represent an ellipse ifotime of a quadratic
equation:

ax? +by> +cxy+dx+ey+f =0 (1)
In this equation x,y > are the coordinates of the ellipse points in a gére. By having 6 different points on the
ellipse, one can uniquely determine the coeffidartp f usingleast-square-error fitting algorithm. There ane¢h
main approaches for the ellipse fitting toset of data pointsAlgebraic Fitting (8] and [10],Orthogonal Least
Square Fitting2] and [1], andMaximum Likelihood4] and [12].

In this paper, we used the algebraic fitting metlpodposedby Hal etal [10]. It represents a non-iterative least
square minimization method which guarantees apselspecific solution even for scattered or noigtadFig. 9
shows the fitted ellipse to the filtered upper émder boundaries of the curve as well. As shown in tliggire,
the algorithm efficiently finds the best ellipse fit the filtered pointof the curve boundaries. After finding the
reference ellipse for upper and lower boundarietheflight curve, we have to detect the defectditging the
difference between the reference ellipse and aldioundary points.

Defect Extraction

As discussed earlier, we eliminate the defecteatpdirom theboundary curves in the image to find a precise
elliptical fit to the non-defecteg@oints. Now this elliptical-fit curve can be used ¢xtractdefected points at a
higher resolution. We refer to this agascaded filtering strategy

To detect and extract the defects on the boundaryecwe calculate the distance from the original boundar
pointsto their corresponding points on the ellipse based/erticalandRadial displacements
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Let us suppose that =< x,,y, > is a point on the boundary curve. We defime vertical displacement this
point as:

dy() = llp = poll | xp, =x, " p, € Ellipse @)

In fact, the vertical displacement of point p iEaclidean distance from the point p to th@responding point
on ellipse having the samecoordinates. We also define the radial displacemgtite poinip as:

@) =lp=pll | F=E=8 " by € Ellipse 3)

In this equatiorr =< x,,y. > is the center point, or ttpoint inthe middle of two pivot points of the ellipses
to the lower and upper boundaries. As one see in this equation, the corresponding radialtpsithe point on th
ellipse with the same orientation of the boundasinpellipse p relative to the cter of the ellipse c. Fig. : depicts
the vertical and radial displacement as well. Caingathese two shows that although the vertical resoluti
much simpler to calculate, the error in calculaiiecreases as the pop goes far from the center of the ellif

One can calculate thdisplacemer profile as the profileof the displacement ahe points on the bound:
curves.It can be used as the input data for defect deke andextraction. Welefine the defected region as a s¢
consecutivepoints on the profile which have the displacementr largerthan a usedefined specific threshold
value. We use thithreshold value to filter out small displacem calculatedalong the profile, which basically
correspond to the noise tine image rather than a defect (i.e., light fluctuation dweeflection/refraction). Fig.
11 shows the radial profile dhe boundary curveAs shown in this figure, radial displacement ciéefind the
defected points effectivelyn the next section, we present some represen experimental results on surfa
inspection of the PVC and stgaipes Defects could be detected, and separditeth imagenoise, with a high
confidence.

C

Fig. 10 Result of the ellipse fitting algorithm applied on thefiltered upper boundary cuﬁrveyellow: filtered pointson boundary curvered:
thefitted ellipse

@

Fig. 11 Radial profile of the boundary curves extracted using fitted ellipse. a) Boundary curve and corresponding fitted ellipse b) The
radial profile of the boundary curve
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DISCUSSION
In this section, we discuss some outstanding isatmsd the proposed algorithm as a design goilel

Omnidirectional vs. Pinhole Per spective | maging System

In this work, we used the omnidirectional imagirensor instead of perspective camera for imaging &&free
inside the pipe. The main drawback of the omnidio®al sensors is the high image distortion andelomesolution.
However, for larger pipes, the resolution in omradtional imaging systems can be comparable to ithat
perspective imaging systems. We applied our algaoribn a 24-inch PVC pipe. Our experiments showatl tthe
resolution of the omnidirectional sensor used g@sd enough to detect defects about 2mm in widtarger. Fig.
12 illustrates detection of a 2mm crack on the aangfof 24 inch PVC pipe as well. Our studies shat the
accuracy of the imaging system, when using the ggeg algorithm, is good enough for the quality camf the
pipes.

Catadioptric vs. Dioptric Sensors

As mentioned earlier, the proposed algorithm idiagple to both Catadioptric and Dioptric sensoffiese systems
were experimentally tested in our lab. One can lemiecthat distortion of the image in the Dioptmigaging systems
(a camera with a fisheye lens) is higher for thagsoon the periphery of the image. However, Dipimaging
sensors are more compact in size and easier twrat@lidue to the fewer number of moving parts. Alkey would
provide a higher resolution than that in the Catptitic imaging sensors with the same focal lenigtlconclusion,
for the applications where 3D reconstruction oftbene is needed, because of the low distortitimegperiphery of
the image, the Catadioptric sensors would be pabfer For defect detection purposes, when no nogjyols
needed. However, a dioptric imaging sensor wouldd&antageous.

Dynamic Thresholding

In this paper, we presented a column-wise dynagference thresholding method in order to compenfate
intensity changes in the laser light projected ahw interior surface of a pipe in the image. Rissshow major
improvement in the quality of the extracted binamage. We used a third order polynomial to model light
intensity changes along the curve.

Point Filtering of the Boundary Curves

We used the local curvature information to filtert aefected points on the lower/upper boundary esiin the
image before fitting elliptical curves to them. ®aghout this process, false removal of a few ndealed points
would not affect the final result by large. Thislggeus fit the elliptical curves faster and morécédntly. This
would be in particular useful for conducting reiaté inspection of pipes.

Real-Time Surface I nspection

In every machine vision application time complexafytheimage processing algorithms plays an important. role
In thiswork we applied five main steps to extract the disfeon theboundary of the curve (See Fig. 2). Table 1
show the time complexity associated with each sfefine proposed method. As can be seen, exceptytgmic-
reference threshold algorithm which needs to sdamha image pixels with a time complexity @r(nz), the
remaining steps in the proposed algorithm can kecwed in a linear time, simply because they justcess
the pixels onthe boundary points and not the entire image. dukhbe alsmoted that we also extract all the
white points on the image a specific generic list, which would further pelis to do allother steps in the
proposed algorithm linear time.

75 Upper Border
Lower Border

54

25+

o 0 100 200 300 400 500 600 FOO0 800
e (b
Fig. 12 Detection of a 2mm crack on the surface of 24 inch PV C pipe. a) Boundary curve and corresponding fitted ellipse b) Radial
displacement profile of the boundary curves
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Comparing the proposed algorithm with other Fixederence frame methods, shows that the overall time
complexity of the algorithm doesn’t change and cawe use this approach in real-time as well.

Table-1 Time Complexity of the Main Steps on the Proposed Surface Inspection Algorithm

Dynamic Thresholding O(nz)
Boundary Extraction O(n)
Point Filtering O(n)
Ellipse Fitting O(n)
Defect Extraction O(n)
CONCLUSION

We presented a novel approach for surface inspectfigipes using a laser-optics technology thatsisis of an
omnidirectional imaging sensor and a collimate@ddime projected onto the pipe’s wall. We usedeeg laser line
projector to highlight a very thin ring inside thipe, and fitted two elliptic curves to the low&daupper boundaries
of the image of this laser ring. These curves weased as two signature curves for detecting defdbts.
concluded:

» Despite the fact that the overall spatial resolupoo- vided by the Catadioptric and Dioptric imagisensors is
lower than that in the perspective cameras ([18igy provide a compact and cost-effective solution
panoramic imaging of pipes of any size. Furthermarkigh resolution can be also achieved througbpimal
configuration setup.

« Structured light can highlight defects better thhe diffused light. However, the light intensity tfe laser,
projected onto the pipe wall, can change radi&lfe. proposed a dynamic-thresholding technique topemsate
for the light intensity variations in the projectieder ring. Further tuning would be required tecdiminate the
defects from image noise. The mathematical toadsl irs this method can be tuned via machine learning

« Calculating the variation of the local curvaturera) the lower/upper boundaries of the structurgtitican
identify defects. After some nominal tuning of tharameters, we were able to detect defects witligha h
confidence. This algorithm could separate the intagise from real defects with a low computatioradtahat is
required in real-time applications.
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