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ABSTRACT  
 

This paper presents a novel method for inspecting the interior surface of pipes using laser-optics.  The variation in 
the local curvature of a laser ring projected onto the pipe’s surface is measured via an image taken by an 
omnidirectional camera, hence the name omnidirectional laser optics.  There will be sharp changes in the 
curvature when the laser ring passes over defects (i.e., dents, cracks, sliver, bad weld trims, etc.). 
Computationally-traceable digital-geometry-based metrics are used to calculate the change in curvature through 
an elliptical curve fitting in real time. Experimental results prove the high performance of the proposed method for 
detecting small defects at a high resolution and in a short time. 
 

Key words: Laser-optics, digital geometry, curvature estimation from image, omnidirectional cameras and opto-
mechatronics 
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INTRODUCTION 
 

Automated surface inspection of pipes refers to a class of methods and algorithms which detect, classify, localize 
and measure surface defects on the interior surface of the pipes. Different sensors like vision, sonar, radiography-
based, and thermal are used for pipe inspection. In this paper, we propose a laser-optics sensor for detecting external 
and visible defects. The literature on image-based inspection of pipes is vast. Duran et al. used a perspective camera 
and laser ring pattern projector for visual inspection of small sewer pipes ([6] and [7]). They used a pinhole camera 
to image the LED ring light projected onto the pipe surface, and then used artificial Neural Networks for analyzing 
the brightness of the LED ring to detect the defects. This method was used to detect large defects only. 
 

Our survey leads us to believe that the image-based inspection of sewer pipes has been mainly used by small field- 
of-view perspective camera. Because of the small FOV in the pinhole perspective cameras, it is not practical to use 
them for inspecting large pipes. Therefore, alternative imaging systems with a wide field of view (FOV) would be 
required to make the imaging of the entire interior surface of the pipes possible. There are three main approaches for 
panoramic imaging of the interior surface of a pipe: multiple camera system, rotary imaging platform ([9]) and 
omnidirectional imaging system. Multiple-camera and rotary-imaging systems can capture the pipe surface with 
higher resolution than that in omnidirectional imaging systems. However, because of the difficulties in image feature 
bundle adjustment, image stitching and mosaicking, multiple view calibration and also synchronization of the 
imaging systems, they have been rarely successful. Further- more, the overall cost of these systems is 
prohibitive. In this paper, we focus on visual inspection of the interior surface of pipes using single-view 
omnidirectional imaging sensors. Single-view Omnidirectional imaging can be categorized as: Catadioptric and 
Dioptric. Both can be used for capturing panoramic view of the scene in one single image. A catadioptric sensor 
consists of a perspective camera and a hyperbolic or parabolic mirror. Dioptric imaging sensors, on the other hand, 
consist of a camera with a compound lens (e.g., a fish- eye lens) with about 180-degree horizontal and vertical field 
of views. This would enable the camera to see a hemisphere lobe in front of i t . 
 

In this paper, we investigate defect detection on the interior surface of pipes using a laser ring, projected onto the 
pipe’s inner wall, and an omnidirectional imaging system. Furthermore, one can benefit from the simplicity, the 
compact size, and wide FOV of these sensors. However, lower resolution and higher distortion in images are two 
main drawbacks of using omnidirectional sensors. 
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There are some works on visual inspection of pipes using omnidirectional sensors cited in the literature ([3] and 
[14]). Matsui et al ([14]) used the omnidirectional camera and laser light for the digital reconstruction of the 
interior surface of the pipes. Their main focus is on the design of the optical system, thus, they do not address the 
defect detection in depth. 
 

Two main approaches widely used for illuminating the pipe wall in pipe inspection applications are: diffused and 
structured light. The former uses a high-intensity yet the diffused light source, where the latter adopts a 
collimated structured light using laser. There are different mechanisms for generating structured light patterns in 
machine vision, namely, laser pattern projectors and image fringes generated by the common data projectors. The 
laser projectors create a single-wavelength high contrast pattern of the laser light, whereas the data projectors 
project a multi-wavelength light (aka, image fringe) at a lower intensity and contrast. Although data projectors have 
the advantage of creating a dynamic range of patterns on the fly, but because of the lower intensity and contrast 
that they offer, and also the bigger size factor, they have been rarely used in industry. Recent developments on 
imaging sensors and actuators under the MEMS/NEMS, though, can be a game changer. Basu et al [3] and Inari et 
al [11] used the laser ring projector to create a narrow ring on the interior surface of a pipe. 
 

In this research, we used a high-intensity laser line projector as the lighting subsystem to produce a highly 
focused illumination inside the pipe. Rather than using laser ring projectors with a low fan angle which makes the 
inspection of large diameter pipes a serious challenge, we use the laser line projector laterally and perpendicular to 
the pipe surface to produce a laser ring inside the pipe right next to the camera. In this laser-optics imaging system, 
an elliptical curve is formed within the image whose size and form would depend on the relative position/orientation 
(aka, pose) of the laser optics imaging system inside the pipe. The curve generated by the laser line projector is the 
best source of information about the surface defects inside the pipe. Every surface defect would locally change the 
curvature of the laser line. The main idea is to extract and analyze these local changes in curvature in the elliptical 
curve seen in the image to detect, classify, localize and measure surface defects on the interior surface of the pipe. 
 

There are two main approaches for extracting defect information from the projected curve on the interior surface of 
the pipe: fixed reference and dynamic reference. The first method uses a recorded or a priori registered no-defect 
curve as the reference (or signature) curve to find the part of the instantaneous curve which is distorted by the 
defect. In this approach, one can easily calculate the differences between the reference (or signature) curve and the 
instantaneous curve in order to find defects. On the other hand, in the dynamic- reference method, one does 
not need to memorize any reference, but finds the defects using local curvature c h a n g e s on every frame 
instantaneously. A static-reference approach would be advantageous if the laser-optics sensing unit moves smoothly 
inside the pipe. However, in scenarios where the sensing unit might sway in motion, then a dynamic-referencing 
approach would yield more accurate results. 
 

In this work, we use a dynamic reference approach for extracting surface defects from the projected curve, which 
further helps us to develop the algorithms robust to t h e robot’s unwanted sway in motion. In our proposed 
method, we formulate a novel algorithm to track the local changes in the curvature of the elliptical shape of the laser 
line in the image to find defects. It is noteworthy, however, that a- prior knowledge of the curve’s geometry can 
drastically help in tracking discontinuity in the local curvature, which will be described in further details. 
 

In this paper, we present a novel approach for the surface inspection of big pipes using omnidirectional imaging 
sensors and a laser projector based on digital-geometry-based elliptical curve fitting and local curvature extraction. 
We did several experiments on the steel and PVC pipes. Results were promising. The proposed algorithm could 
detect small defects of 2 mm width or larger. We present the system set up for our pipe inspection method in the 
next section. Then, we describe the defect detection method in detail. Finally, we present a brief discussion 
about the method and our results. 
 

SYSTEM SETUP 
 

Every machine vision application consists of two main components: imaging and lighting subsystems. Appropriate 
selection of these two components highly affects the performance of the machine vision applications. The lighting 
system should be selected in a way that it will highlight features of interest. On the other hand, the main objective of 
the imaging subsystem is to see and captured highlighted features at the highest resolution. 
 

In this work we chose omnidirectional vision as the imaging component and a green laser line projector as the 
illumination subsystem. Fig. 1 shows the schematic of our imaging/lighting platform as well. We used the green 
laser line projector as the light source to produce a high intensity/contrast image of the scene. The laser projector 
produces a thin line of green light which produces a circular ring on the interior surface of the pipe. This ring will be 
seen as an ellipse in the image. Fig. 1 shows the elliptical curve as well. Also, it should be noted that there are some 
alternative solutions, e.g. the laser ring projector or the Axicon lenses [17], for projecting the narrow laser ring 
inside the pipe. But because of the complexity of the setup and implementation, they were not considered. 
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Fig. 1 The schematic of the proposed setup of the omnidirectional laser-optics imaging system for pipe inspection 
 

There are some design factors to be considered in an omnidirectional laser optics system. The lighting system, in 
particular, must provide the highest visibility and resolution. For instance, the laser line should be seen close to the 
boundary of the image for the highest resolution.  It has been experimentally verified that for achieving the highest 
longitudinal and depth resolutions, the laser ring must be projected onto the pipe surface right above the reflective 
mirror in Catadioptric imaging systems. This means that the projected laser line will be reflected through the 
mirror’s periphery in the Catadioptric sensors and fish-eye lens’s periphery in the Dioptric sensors. As one can see 
in Fig. 1, laser line projector is projecting a beam perpendicular to optical axis of the camera and close to the 
periphery of the   mirror. 
The main characteristics of the proposed design are as follows: 

• Overlapped central axis of the camera and the mirror 
• Adjustable relative position of the laser line projector 
• Adjustable elevation of the camera and the mirror 
• Adjustable relative position of the camera and the mirror 

 

METHODOLOGY 
 

In this section, we present a set of algorithms used for defect detection in pipes using the proposed omnidirectional 
laser-optics platform consisting of an omnidirectional imaging sensor and a laser line projector. We use the 
definition of local curvature to do elliptical curve fitting on the boundary of the projected laser curve on the interior 
surface of the pipe and then detect and extract defect parts by calculating the difference between the measured 
boundary from the image and its elliptical fit. 
 

Fig. 2 shows the flowchart of the defect extraction algorithm presented in this paper. We start by capturing the 
image and then applying a dynamic-threshold algorithm to extract the laser light projected curve. The details of this 
method will be described in the next section. In the next step, we extract upper and lower boundaries of the curve 
(i.e., considering the thickness of the laser line). If some discontinuities were found on the image we fix it in the 
digital image by stitching all the corresponding curve boundary segments together to make a pair of complete 
boundary curves (pre-processing the image data). After pre-processing the boundaries, we apply a point-filtering 
algorithm on the curve boundary points. After filtering unwanted points on the curve boundary, due to the noise in 
the image, we fit two elliptical shape curves to each side of the boundary. Finally, we compare fitted ellipses to the 
curve boundaries with the original images to extract the position and size of the defects. In the following, further 
details on each module in the aforementioned flowchart are provided. 
 

Dynamic Thresholding 
After capturing the image, the very first task is to extract the laser light projected curve from the image. ae converted 
the RGB images to a grey-level for simplicity, since what matters the most in our algorithm would be the light 
intensity and not the colour. Also, in the next immediate step, we converted from a grey-level to a BW image in a 
way that all points on the laser projected curve are highlighted. 
 

Because of the non-uniform distribution of the laser light intensity on the surface of the pipe, a simple global 
thresholding method, which applies the same threshold for all image pixels, may not work. However, the following 
observation can be made on the intensity profile of the laser line: the intensity of the light decreases as the polar 
angle to the central axis of the laser projector and/or the distance to the laser’s projection center increases. Assuming 
that the laser projector is perfectly aligned with the pipe’s central axis, one can conclude that the intensity would 
change only radially. This helped us to design a dynamic-reference thresholding algorithm that would account for 
non-uniform intensity profile along the curve. 
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We modelled the radial intensity variation using a third
pixel in the image of the curve. Fig
order polynomial will provide a smooth change in the intensity that can be calculated in a very short    time.
 

A comparison between our dynamic
through experiments and former proved to work better. 
dynamic- vs static-reference thresholding. As can be seen, low values of the threshold cause some light diffusion be 
counted as part of the curve, whereas high values chosen for the threshold would entir
part of the curve. On the contrary, the dynamic
intact, but also it removes spattered light diffusion found at the centre of the   curve.
 

Effect of the Big Defects on the Boundary
It is a fairly straightforward process to extract curve boundaries from the image. For example, simple column
scanning of the foreground pixels will find the boundaries. However, in case of big defects, the diffusio
light on the defect can cause some irregularities such as discontinuities on the curve boundaries which should be 
addressed carefully. Fig. 5 shows the effect of the big
 

Fig. 2 Flowchart of the proposed defect extraction algorithm
 

 
To deal with this problem, firstly we apply a size filter to remove all the small islands on the image which are far 
enough from the other connected components of the image. These islands usually correspond to the light distortion 
at the defected position that would not provide any valid information on the defect size or shape. The filtering 
adopted here is based on the following inform

• Size of the island  
• Roundness of the island. 
• Distance to closest connected component 
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We modelled the radial intensity variation using a third-order polynomial to adjust the average intensity of each 
pixel in the image of the curve. Fig. 3 shows the polynomial model of the laser intensity along the curve. A third

will provide a smooth change in the intensity that can be calculated in a very short    time.

A comparison between our dynamic-reference thresholding and static-reference thresholding methods was done 
through experiments and former proved to work better. Fig. 4 shows a representative comparison between the 

reference thresholding. As can be seen, low values of the threshold cause some light diffusion be 
counted as part of the curve, whereas high values chosen for the threshold would entirely disregard low
part of the curve. On the contrary, the dynamic-reference thresholding method, not only keeps low illumination parts 
intact, but also it removes spattered light diffusion found at the centre of the   curve. 

Defects on the Boundary Extraction 
It is a fairly straightforward process to extract curve boundaries from the image. For example, simple column
scanning of the foreground pixels will find the boundaries. However, in case of big defects, the diffusio
light on the defect can cause some irregularities such as discontinuities on the curve boundaries which should be 

shows the effect of the big-size defects on the boundary of the curve. 

 

Fig. 3 Third-order polynomial fit: grey curve is the column
average threshold, red curve is the column

map 

Flowchart of the proposed defect extraction algorithm Fig. 4 Static- vs. Dynamic-reference Threshold a) Ori
static-reference threshold at t=30 c) static

t=80 d) Dynamic-reference threshold

To deal with this problem, firstly we apply a size filter to remove all the small islands on the image which are far 
other connected components of the image. These islands usually correspond to the light distortion 

at the defected position that would not provide any valid information on the defect size or shape. The filtering 
adopted here is based on the following information obtained on the islands in the image: 

Distance to closest connected component neighbour. 
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order polynomial to adjust the average intensity of each 
3 shows the polynomial model of the laser intensity along the curve. A third-

will provide a smooth change in the intensity that can be calculated in a very short    time. 

reference thresholding methods was done 
4 shows a representative comparison between the 

reference thresholding. As can be seen, low values of the threshold cause some light diffusion be 
ely disregard low-illumination 

reference thresholding method, not only keeps low illumination parts 

It is a fairly straightforward process to extract curve boundaries from the image. For example, simple column-wise 
scanning of the foreground pixels will find the boundaries. However, in case of big defects, the diffusion of laser 
light on the defect can cause some irregularities such as discontinuities on the curve boundaries which should be 

size defects on the boundary of the curve.  

 
polynomial fit: grey curve is the column-wise 

average threshold, red curve is the column-wise polynomial-based 
 

 
reference Threshold a) Original  image b) 

reference threshold at t=30 c) static-reference threshold at 
reference threshold 

To deal with this problem, firstly we apply a size filter to remove all the small islands on the image which are far 
other connected components of the image. These islands usually correspond to the light distortion 

at the defected position that would not provide any valid information on the defect size or shape. The filtering 
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The weights to be adopted on each factor can be learned through experiments and/or a machine
After filtering the unwanted islands, we apply the merge algorithm which merges adjacent curve segments. To do 
the merge operation, we check the points on both ends of each curve segment to find corresponding pairs and then 
do the merge. We repeat the merge o
boundary curves. Fig. 6 shows the result of the boundary merge process. As shown in this figure, unwanted islands 
are filtered out prior to the merge process and then remaining com
boundaries. 

Fig. 5 Effect of the big
 
 

Fig. 6 Merged points on the boundary curves

 

Fig. 8 Result of the point filtering algorithm applied to the 
upper boundary curve seen in fig. 6 red: original boundary 

curve green: points remained after filtering
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The weights to be adopted on each factor can be learned through experiments and/or a machine
er filtering the unwanted islands, we apply the merge algorithm which merges adjacent curve segments. To do 

the merge operation, we check the points on both ends of each curve segment to find corresponding pairs and then 
do the merge. We repeat the merge operation until all the curve segments are merged to the two lower and upper 

shows the result of the boundary merge process. As shown in this figure, unwanted islands 
are filtered out prior to the merge process and then remaining components are merged to the upper and lower   

Effect of the big-size defects on the boundary of the light curve 

 
Merged points on the boundary curves 

Fig. 7 Effect of the defect points on deviation of the fitted ellipse: red: 
upper boundary points, blue: lower boundary points, yellow: the fitted 

ellipse to the upper boundary green: the fitted ellipse to the lower 
boundary

 

Result of the point filtering algorithm applied to the 
upper boundary curve seen in fig. 6 red: original boundary 

points remained after filtering 

Fig. 9 Result of the ellipse fitting algorithm applied on the filtered 
upper boundary curve yellow: filtered points on boundary curve red: 

the fitted ellipse
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The weights to be adopted on each factor can be learned through experiments and/or a machine-learning algorithm. 
er filtering the unwanted islands, we apply the merge algorithm which merges adjacent curve segments. To do 

the merge operation, we check the points on both ends of each curve segment to find corresponding pairs and then 
peration until all the curve segments are merged to the two lower and upper 

shows the result of the boundary merge process. As shown in this figure, unwanted islands 
ponents are merged to the upper and lower   

 

 
Effect of the defect points on deviation of the fitted ellipse: red: 

upper boundary points, blue: lower boundary points, yellow: the fitted 
ellipse to the upper boundary green: the fitted ellipse to the lower 

boundary 

 
Result of the ellipse fitting algorithm applied on the filtered 

ow: filtered points on boundary curve red: 
the fitted ellipse 
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Point Filtering on Boundary Curves 
After extracting upper and lower boundary curves, we fit an elliptical curve to each boundary. For each boundary 
curve, there will be two classes of points. In the first class, the points correspond to the non-defect areas of the pipe. 
These points preserve the smoothness of the fitted curve. In the second class, however, the points correspond to the 
defect areas. These points violate the smooth bending in the fitted curve. They can shift the fitted elliptical curve by 
large away from non-defect points. Fig.  7 show the deviation of the fitted ellipse caused by the points on the defect 
area. As one can see in this figure, yellow ellipse which is fitted to the upper boundary curve is deviated from the 
non-defect points on the upper boundary because of including defect points to the curve fitting process. This 
necessitates devising an efficient algorithm for excluding the major defect points from the fitting process.  
 

To resolve the aforementioned problem, we pre-filter the major defect points by adopting a local curvature 
calculation originally proposed by Marji ([13]). In fact, there are many different definitions for the local curvature of 
the digitized curves. Local curvature can be estimated using one of the following criteria: 

• The change in the slope angle of the tangent line (e.g., relative to the x-axis). 
• The derivatives along the curve. 
• The radius of the osculating circle (also called circle of curvature). 

 

Majdi [13] fitted binomial curves to any point, and its immediate neighbouring points, on the digitized curve and 
then used derivative of them to calculate the local    curvature. Also Hermann et al [15] used maximum-length 
8DSS, [5], definition on bi-lateral sides of any point p on the digitized curve to calculate the local curvature at that   
point. 
 

In this work, we calculate the local curvature of every point along the digitized curve using the method cited in [13] 
and then filter out the boundary points using the following two metrics: 

• Points with high local curvature value. 
• Points with high fluctuation in the local curvature in their vicinity. 

 

In fact, all the points violating the smoothness of the curve will be removed through this process prior to 
implementing the next step, namely ellipse fitting. Fig. 8 shows the result of the filtering algorithm applied to the 
points on the upper boundary as seen in Fig. 7. In this figure, green points correspond to the points which are not 
filtered. As we can see in this figure, using the aforementioned simple rules can correctly reject all of the defect   
points. One can also optimize the design parameters in the local curvature rejection hypothesis via experimentation. 
These parameters would affect the overall sensitivity of the algorithm to the local fluctuation on the curve. They 
would also affect the filtering process. However, it should be noted that false rejection of a few points along the 
curve would not affect the final results by large, given that only 6 points are necessary to fit an ellipse to the laser 
image boundaries. In the next subsection we will discuss the fitting process in details. 
 

Ellipse Fitting 
Projection of the laser on the interior surface of the pipe would be seen as a smooth elliptical curve in the image 
under ideal conditions. It can be a perfect circle, if the laser was perfectly aligned with the pipe centre line, 
otherwise the curve would have an elliptical shape. The best fitted elliptical curve can be then used as a reference (or 
signature) curve to find and extract all the defects. In general, one can represent an ellipse in the form of a quadratic 
equation:                                  

�	�� 	+ 	�	�� 	+ 	�	�	�	 + 			�	 + 	
	�	 + 	�	 = 	0                        (1) 
In this equation < 	�, �	 > are the coordinates of the ellipse points in a 2D space. By having 6 different points on the 
ellipse, one can uniquely determine the coefficients a to f using least-square-error fitting algorithm. There are three 
main approaches for the ellipse fitting to a set of data points: Algebraic Fitting (8] and [10], Orthogonal Least 
Square Fitting [2] and [1], and Maximum Likelihood [4] and [12]. 
 

In this paper, we used the algebraic fitting method proposed by Hal et al [10]. It represents a non-iterative least 
square minimization method which guarantees an ellipse-specific solution even for scattered or noisy data. Fig. 9 
shows the fitted ellipse to the filtered upper and lower boundaries of the curve as well. As shown in this figure, 
the algorithm efficiently finds the best ellipse fit to the filtered point of the curve boundaries. After finding the 
reference ellipse for upper and lower boundaries of the light curve, we have to detect the defects by finding the 
difference between the reference ellipse and original boundary points. 
 

Defect Extraction 
As discussed earlier, we eliminate the defected points from the boundary curves in the image to find a precise 
elliptical fit to the non-defected points. Now this elliptical-fit curve can be used to extract defected points at a 
higher resolution. We refer to this as a cascaded filtering strategy. 
 

To detect and extract the defects on the boundary curve, we calculate the distance from the original boundary 
points to their corresponding points on the ellipse based on: Vertical and Radial displacements. 
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Let us suppose that � =< �� , �� �

point as: 
	���� �

In fact, the vertical displacement of point p is a Euclidean distance  from  the  point  p  to  the  corresponding  point    
on  ellipse having the same � coordinates. We also define the radial displacement of the point 

	���� �

In this equation �	 �� 	�� , �� 		� is the center point, or the 
to the lower and upper boundaries. As one can
ellipse with the same orientation of the boundary point ellipse p relative to the cen
the vertical and radial displacement as well. Comparing the
much simpler to calculate, the error in calculation increases as the point 
 

One can calculate the displacement
curves. It can be used as the input data for defect detection
consecutive points on the profile which have the displacement error
value. We use this threshold value to filter out small displacements
correspond to the noise in the image
11 shows the radial profile of the
defected points effectively. In the next section, we present some representative
inspection of the PVC and steel pipes.
confidence. 
 

Fig. 10 Result of the ellipse fitting algorithm applied on the filtered upper boundary curve yellow: filtered points on boundary curv

 
 

Fig. 11 Radial profile of the boundary curves extracted using fitted ellipse. a) 
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�		is a point on the boundary curve. We define the vertical displacement of 

� � � ‖� � ��‖														|			���
� ��			^				�� ∈ ��� �!
        

 

In fact, the vertical displacement of point p is a Euclidean distance  from  the  point  p  to  the  corresponding  point    
coordinates. We also define the radial displacement of the point 
� � � ‖� � ��‖									| 	

"#$%"&

'#$
%'&

�
"#%"&

'#%'&
			^			�� ∈ ��� �!
     

is the center point, or the point in the middle of two pivot points of the ellipses fit 
to the lower and upper boundaries. As one can see in this equation, the corresponding radial point is the point on the 
ellipse with the same orientation of the boundary point ellipse p relative to the center of the ellipse c. Fig. 10
the vertical and radial displacement as well. Comparing these two shows that although the vertical resolution is 
much simpler to calculate, the error in calculation increases as the point p goes far from the center of the ellipse.

displacement profile as the profile of the displacement of the points on the boundary
It can be used as the input data for defect detection and extraction. We define the defected region as a set of

points on the profile which have the displacement error larger than a user
threshold value to filter out small displacements calculated along the

image rather than a defect (i.e., light fluctuation due to
the boundary curve. As shown in this figure, radial displacement criteria find

In the next section, we present some representative experimental results on surface 
pipes. Defects could be detected, and separated from

 
Result of the ellipse fitting algorithm applied on the filtered upper boundary curve yellow: filtered points on boundary curv

the fitted ellipse 

              
 

Radial profile of the boundary curves extracted using fitted ellipse. a) Boundary curve and corresponding fitted ellipse b) The 
radial profile of the boundary curve 
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e the vertical displacement of this 

            (2) 

In fact, the vertical displacement of point p is a Euclidean distance  from  the  point  p  to  the  corresponding  point     
coordinates. We also define the radial displacement of the point � as: 

                 (3) 

the middle of two pivot points of the ellipses fit 
see in this equation, the corresponding radial point is the point on the 

ter of the ellipse c. Fig. 10 depicts 
se two shows that although the vertical resolution is 

goes far from the center of the ellipse. 

the points on the boundary 
define the defected region as a set of 

than a user-defined specific threshold 
the profile, which basically 
to reflection/refraction). Fig. 

As shown in this figure, radial displacement criteria find the 
experimental results on surface 
from image noise, with a high 

Result of the ellipse fitting algorithm applied on the filtered upper boundary curve yellow: filtered points on boundary curve red: 

 
curve and corresponding fitted ellipse b) The 
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DISCUSSION 
 

In this section, we discuss some outstanding issues around the proposed algorithm as a design   guideline. 
 

Omnidirectional vs. Pinhole Perspective Imaging System 
In this work, we used the omnidirectional imaging sensor instead of perspective camera for imaging 360 degree 
inside the pipe. The main drawback of the omnidirectional sensors is the high image distortion and lower resolution. 
However, for larger pipes, the resolution in omnidirectional imaging systems can be comparable to that in 
perspective imaging systems. We applied our algorithm on a 24-inch PVC pipe. Our experiments showed that the 
resolution of the omnidirectional sensor   used was good enough to detect defects about 2mm in width or larger. Fig. 
12 illustrates detection of a 2mm crack on the surface of 24 inch PVC pipe as well. Our studies show that the 
accuracy of the imaging system, when using the proposed algorithm, is good enough for the quality control of the 
pipes.  
 

Catadioptric vs. Dioptric Sensors 
As mentioned earlier, the proposed algorithm is applicable to both Catadioptric and Dioptric sensors.  These systems 
were experimentally tested in our lab. One can conclude that distortion of the image in the Dioptric imaging systems 
(a camera with a fisheye lens) is higher for the points on the periphery of the image. However, Dioptric imaging 
sensors are more compact in size and easier to calibrate due to the fewer number of moving parts. Also, they would 
provide a higher resolution than that in the Catadioptric imaging sensors with the same focal length. In conclusion, 
for the applications where 3D reconstruction of the scene is needed, because of the low distortion at the periphery of 
the image, the Catadioptric sensors would be preferable. For defect detection purposes, when no metrology is 
needed. However, a dioptric imaging sensor would be advantageous. 
 

Dynamic Thresholding 
In this paper, we presented a column-wise dynamic-reference thresholding method in order to compensate for 
intensity changes in the laser light projected onto the interior surface of a pipe in the image. Results show major 
improvement in the quality of the extracted binary image. We used a third order polynomial to model the light 
intensity changes along the curve.  
 

Point Filtering of the Boundary Curves 
We used the local curvature information to filter out defected points on the lower/upper boundary curves in the 
image before fitting elliptical curves to them. Throughout this process, false removal of a few non-defected points 
would not affect the final result by large. This helps us fit the elliptical curves faster and more efficiently. This 
would be in particular useful for conducting real-time inspection of pipes. 
 

Real-Time Surface Inspection 
In every machine vision application time complexity of the image processing algorithms plays an important role. 
In this work we applied five main steps to extract the defects on the boundary of the curve (See Fig. 2). Table 1 
show the time complexity associated with each step of the proposed method. As can be seen, except the dynamic-
reference threshold algorithm which needs to scan all the image pixels with a time complexity of (�)2�, the 
remaining steps in the proposed algorithm can be executed in a linear time, simply because they just process 
the pixels on the boundary points and not the entire image. It should be also noted that we also extract all the 
white points on the image in a specific generic list, which would further help us to do all other steps in the 
proposed algorithm linear time. 

 
Fig. 12 Detection of a 2mm crack on the surface of 24 inch PVC pipe. a) Boundary curve and corresponding fitted ellipse b) Radial 

displacement profile of the boundary curves 
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Comparing the proposed algorithm with other Fixed reference frame methods, shows that the overall time 
complexity of the algorithm doesn’t change and one can use this approach in real-time as well. 
 

Table -1 Time Complexity of the Main Steps on the Proposed Surface Inspection Algorithm 
 

Dynamic Thresholding O(n2) 
Boundary Extraction O(n) 

Point Filtering O(n) 

Ellipse Fitting O(n) 

Defect Extraction O(n) 
 

CONCLUSION 
 

We presented a novel approach for surface inspection of pipes using a laser-optics technology that consists of an 
omnidirectional imaging sensor and a collimated laser line projected onto the pipe’s wall. We used a green laser line 
projector to highlight a very thin ring inside the pipe, and fitted two elliptic curves to the lower and upper boundaries 
of the image of this laser ring. These curves were used as two signature curves for detecting defects. We   
concluded: 

• Despite the fact that the overall spatial resolution pro- vided by the Catadioptric and Dioptric imaging sensors is 
lower than that in the perspective cameras ([16]), they provide a compact and cost-effective solution for 
panoramic imaging of pipes of any size. Furthermore, a high resolution can be also achieved through an optimal 
configuration setup. 

• Structured light can highlight defects better than the diffused light. However, the light intensity of the laser, 
projected onto the pipe wall, can change radially. We proposed a dynamic-thresholding technique to compensate 
for the light intensity variations in the projected laser ring. Further tuning would be required to discriminate the 
defects from image noise. The mathematical tools used in this method can be tuned via machine learning. 

• Calculating the variation of the local curvature along the lower/upper boundaries of the structured light can 
identify defects. After some nominal tuning of the parameters, we were able to detect defects with a high 
confidence. This algorithm could separate the image noise from real defects with a low computational cost that is 
required in real-time applications. 
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