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ABSTRACT

This paper presents a comparative study of poputathased intelligent techniques to solve economéd |
dispatch. In real world economic dispatch problepwssess highly non-convex objective function withd s
equality and inequality constraints. In this papaptimal load dispatch problem is solved for thremd asix
generator unit system using Particle Swarm Optitndra (PSO) and Genetic Algorithm (GA). For both e&ss
transmission losses are included. The feasibilitthese techniques are analyzed on basis of acguramimizing
error), time elapsed and its rate of convergendee Tonsequences of PSO method is compared withn@Asa
found better. The comparison shows the supericoityPSO to the traditional GA. Results obtained from
simulations also confirm its potential to handlew®s system optimization problem. All in all thispga is an
effort to present a comparative study of solviradidispatch problems using intelligent techniques.

Key words Economic Load Dispatch (ELD), Particle Swarm Optiation (PSO), Quadratic Cost Function,
Generation unit, Transmission losses, Genetic Atigar

INTRODUCTION

Principal intention of economic load dispatch cdattic power generation is to allocate optimal pogeneration
levels to each unit so that for a given load demamdimum operating cost can be achieved. EcononoiadL
Dispatch (ELD) is one of the well known optimizatiproblem [1] in power system operation, the mdijectives
of load dispatch are to ensure minimisation of ¢fanlosses, efficient power generation and lowt cperation.
All these objectives make the problem, a mixedgateoptimisation, ironically these problems inceeasth the
number of units [2]. Practically the input to outpaharacteristics of the generating units are lyigidn-linear,
non-smooth and discrete in nature owing to rame latits, prohibited operating zones, multi fuefeets. Thus
the resultant ELD becomes a challenging non-corogimization problem, which is difficult to solvesimg the
conventional methods, methods like dynamic progrargmartificial intelligence, evolutionary progranmyg, and
gradient or line search optimization [3-7] are iamgked to solve non-convex optimization problemscifiitly.
Literature reports that few methods like Priorist Imethods, Dynamic programming, Branch and bamethod,
Lagrangian relaxation, simulated annealing [8], &xystem/heuristics approach, artificial neuetinork (ANN)
are also employed to solve load dispatch problems.

In this paper two most evolutionary algorithms, @hand PSO [9] are tested to solve economic ldadadch for

three and six generating unit system.GA simuldtesntural evolution in terms of survival of theefst.

While comparing GA and PSO following points are thanentioned here

(i) PSO is equipped with evolutionary programming avolwionary strategies no selection, crossover atio
exist in PSO.

(i) All particles in PSO are members of population tigte the course of the simulation.

(iii) Inertia weight factor (W) is used to creatalénce between global and local search which israhia GA

In this process biological operators such as selectcrossover, mutation come in picture to obtéster
convergence rate. GA is modified in order to imgrake performance of conventional GA by severatasshers
[10]. PSO is based on social interaction indepehdgents and the social knowledge exchange by thearder
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to find a global minimum. The difference between @&#d PSO is while for the GA the improvement in fibeess
is governed by Pseudo biological operators, orother hand the PSO uses velocity and position epdattors.
Different methods of obtaining ELD were suggestgd/idrious researchers [11-12] and [14].

In this work a fair comparison is established betw&A and PSO methods, the parameters for compaas
error, time elapsed, and reliability of resultssutcessive runs .

PROBLEM STATEMENT

A given set of N committed units at hour t, theatdtiel cost, at that regular hour, is minimizeddnpnomically
dispatching the units subject to the constraink (6).The constraint is total generated power mesetual to the
demand. The power produced by each unit must d@nagertain limits. In all practical cases, thelfaest of any
generator uniti' can be represented as a quadratic function ofd¢hkepower generation.

C=AxP+BxP+¢ (1)
The incremental fuel-cost curve is a measure of bostly it will be to produce the next incrementoofver.

dg

— =2AP+ 2

gp ~2AR*H 2)

By approximating the fuel cost for each generatiait {F;(P;)}, to a quadratic function, can be obtained, thus the
total cost function will be changed into the followy equation

G=>G 3)
i=1

G=) AXxP+BxP+¢ (4)
i=1

HereR = Output power generation of umjtA , B ,C = Fuel cost coefficients af' unit, C, = total production cost
andng= n" generating unit

The constraints considered in this paper are

(a) Equality Constraint (Power Balance Constraint)

Equality constraint of meeting the load demand i transmission losses is as stdfijl equals the total system
load Pgy) bus system losseB\( as stated.

ng
C =2 R=R+R (5)

Here P = real power generation df unit, P, =total demand and® = system losses

To calculateR_two methods are used one is method of penalty faetd other is use & coefficient. In this work
B coefficient method is used to calculate transrais$bsses.

(b) Inequality Constraint

In practical power system all the generating uhise their lower and upper production limits, sitaokously
reactive power associated with the generating walge exists in a specific range. Both of thesesféormulate
inequality constraints which are given below

PgiminSPgi < Pgimax i=1,2 -..ny (7)

WhereRy; ., = lower generating limitF,; = real power generation of ith unit aRg.,, = upper generating limit

Minimum reactive power is limited by the stabiliigit of machine and maximum reactive power is tiedi by
overheating of rotor therefore generator reactiowgrs Q should not be outside the range stateddxyuility for
its stable operation.

Q gimin < Qgi < Q gimax (8)
Here Qumin = lower reactive power generating limdy = reactive power generating limit a@@h.x= maximum
reactive power generating limit
By using the matrix form, the losses formula carshewn as in the following equation.

P -P'BP 9)
WhereP = matrix of the output powers of uni8=square matrix of transmission coefficients &d=transpose
of output powers of units.

PARTICLE SWARM OPTIMIZATION
The PSO is an analogous evolutionary computationrtigue urbanized by Kennedy and Eberhart [9] arlthsed
on the correspondence of swarm of bird and schbbile. Each particle in PSO makes its decisiomgsts own
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experience and its neighbor’'s experiences for adgweént. Particles approach to the optimum throtgleurrent
velocity, previous experience, and the best expeeeof its neighbors. The best experiences for gacticle in
iterations is stored in its memory and called peasdest(Py.s).The best value oP,. less values in iterations
determines the global be&Gt.s; The flow of algorithm is shown in Fig.1.

Vi k= W V| k+ Clrl*(PbestF_ Xk) + Czrz* (Gbestik_ Xk) (10

Xik+1: Xik+Vik+l (11)
Here Vj =velocity of particlei at iterationk, W = inertia weight factor¢;, c,= Acceleration coefficients,;, r,=
random numbers between 0 and 1 Xpd: particle position of at iterationk

Steps of |mplementation

Step 1. Initialize the Fitness Function which here is tatakt function from the individual cost function thfe
various generating stations.

Step 2. Initialize the PSO parameters, Population sizeg,, Whin., Whax €fror gradient etc.

Step 3. Input the, MW limits, Fuel cost Functions, of thengrating stations along with the B-coefficient rixat
and the total power demand.

Step 4. At the first step of the execution of the prograntae no (equal to the population size) of vecimirs
active power satisfying the MW limits are randoraliocated.

Step 5. For each vector of active power the value of theeBs function is calculated. All values obtainad i
iteration are compared to obtd.s; At each run all values of the entire populatidirthen are compared
to obtain theG,.s; At every step these values are updated.

Step 6. At each step error gradient is checked and theevaf G, is plotted till it comes within the pre-specified
range.

Step 7. This final value ofGc is the minimum cost and the active power vectgrasents the economic load

dispatch solution.

Define objective function
to be minimized

v

Initialize the parameters of PSO,
C1, Cop, it€rna, W, error

v

Randomly allocate active power to the n
units satisfying the equality, inequality constraints

lteration iter=0

le
[

| Calculate the objective function

|

| Update the gpest and prest Values |

v

| Update the position and velocity of the particles |

Iteration iter=iter+1

YES

Check the stopping criteria
according to error limit

Orest Of PSO is the solution
of economic load dispatch problem

Fig. 1 Flow Chart of Particle Swarm Optimization Algorithm
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SIMULATION RESULTSAND ANALYSIS

In this work two power system are considered fatitg the feasibility of PSO and GA system 1 iseh@rator
system and it has load demand of 150MW and systenwthich has 6 six thermal units, 26 buses and 46
transmission lines and having load demand of 1288 [42] and [13] . To check the quality extent oé tholution
error is also calculated, Error = sum of all getiagaunits - (power demand + system losses) a redde B loss
coefficients matrix of power system network was &yed to draw the transmission line loss and satiké
transmission capacity constraints. Following paramseare used to perform simulations.

i) Genetic Algorithm Method i) Particle Swarm Optimization method

» Population point = 100 >
» Generations = 200

» Crossover RatéP:)=0.8

» Mute Rate = 0.01

» Crossover Parameté) =0.5

Population size =100

Generations =200

Inertia weight factor w is set¥,,,=0.9, and\V,,;,=0.4
The limit change in the velocity of the each memiber
an individual was a¥p"=0.5, P, Vp "= -0.5P,m"

Y V V

Case Study
Case 1. Three unit thermal system with losses, Fuel co$¥lm of three thermal power plants and six therpaater
plant with losses included are
Example 1: 3Unit system C,-200+7.0P;+.008P,* $/Hr
C,- 180+6.3R+.008P* $/Hr
Cs= 140+6.8R+.008P $/Hr
WhereP,, P,, P; are in MW. Plant outputs are subjected to theWilhg limits.
10MW< P1>85MW
10MW< P2> 80MW
10MW< P3> 70 MW
0.2180 0.0093 0.0028
And B coefficient matrix is {0.0093 0.0228 0.0017)
0.0028 0.0017 0.0179
The system contains six thermal units, 26 busatA@rtransmission lines [12]. The load demand B3MW. The
characteristics of the six thermal units are giwvemable 1. In normal operation of the system,ltdss coefficient
Six unit thermal system with losses, cost coeffitdeand generator limits are shown in Table 1.

Table -1 Cost Coefficents and Generator Limits of 6 Generator System

Prnax Prin A B C

500 100 0.007 7 240
200 50 0.0095 10 200
300 80 0.009 8.5 220
150 50 0.009 11 200
200 50 0.008 10.5 220
120 50 0.0075 12 190

Figure 1 shows iteration v/s error curve initiadiiyes a large error although PSO gives large evimn iteration is
count low but it gives fine results when comparediteration count 200 the error of PSO is -0.00@I3®888
while error with GA is 0.0058. Iteration v/s timipsed curve shows Figure 2, here it can be obdahat time
elapsed (in seconds) in case of PSO is less aitenayion count. Generations cost v/s iteratioshiswn in fig. 3.
No. of runs v/s generation cost it is observed ttmatvergence of PSO is much better than GA showiigid.
Similar simulation is carried out on 6 generatasteyn fig 5 to fig 6 shows the response for the sdrable 2 and 3
shows the error and real power allocation to than8 6 generator system respectively and Table 4vsho
comparisons of computational efficiencies of twamoes.

Table- 2 Results of 3 generatorsby GA and PSO

Power .
Sj Method Demand P P, P; Total Fuel Cost Error Time Elapsed A
(Mw) (Mw) (Mw) (Mw) $ Sec
1 GA 150 32.7301 | 67.9823 | 51.6916 1597.8 0.0104 13.955459 7.5237
2 PSO 150 32.7266 | 67.9792 | 51.6875 1597.7 -00.843 5.061409 7.5236
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Table- 3 Results of 6 Generatorsby GA and PSO

Power Time
Py P, Ps Ps Ps Ps Total Fuel Cost
Method D(evagnd Mw) | (Mw) (Mw) (Mw) Mw) | (Mw) (Mw) $ Error E(Ig;;ic)ad A
GA 1263 449 173.1 | 266.05 | 127.16 | 174.3 | 85.92 | 1275.74 | 15444.94 0.0102 9.173908 | 13.29
PSO 1263 449 173.1 | 266.05 | 127.16 | 174.3 | 85.92 | 1275.73 15444.8 -4 55E-13 | 3.724375 | 13.29
10 20
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Fig.8 Iteration v/stime elapsed for 6 Generators

Fig. 9 Iteration v/s generation cost
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Table- 4 Comparison of Computation Efficiency of GA and PSO

Example Method Generations 20 50 100 150 200
GA Generation Cost($) 1597.7109 1597.7244 1597.6431 97.7535 1597.7351

3-UNIT CPU Time(Sec) 2.73181 3.732394 5.964074 8.4438p 15287

SO Generation Cost($) 1609.483 1597.691 1597.69 1997.6  1597.69

CPU Time(Sec) 0.588216 0.68927 0.901895 0.8390f7 3523
GA Generation Cost($) 15445.31]| 15444.86 15444.926 3642 15444.989

6-UNIT CPU Time(Sec) 3.621933 4.56594 9.43201 10.4977p3 882905
PSO Generation Cost($) 15446.2 15446.104 15445.08 18074 15444.986

CPU Time(Sec) 0.606582 0.967139 0.742008 0.83788 026361

CONCLUSION

In this paper the problem of economic load dispditat been investigated on two test cases of reetmpsystem.
The simulation results have shown that the PSO odethcapable in obtaining better optimization hsswalthough
the error difference is small but PSO proposed feathematical complexity due to its simple struetitollowing
are key points of this work:

Solution Quality: As observed from the responses in figures the R®Mod can obtain lower average generation
cost than the GA method, thus resulting in the éigiuality solution. Almost all generation costgaibed by the
PSO method were lower, thus verifying that the P@€thod has better quality of solution and convetgen
characteristic.

Computational Efficiency: The comparison of computation efficiency of boththods is shown in Figs.5 and 9.
From the results it can be concluded that the P®thad has better computation performance. In additach
sample system is performed 100 times at same nuofiiterations (generations) using both the methd@BU time
elapsed for each sample system is different. tarathe graphical representation clearly indicdted time taken
by particle swarm optimization is much lesser tiyae taken by genetic algorithm method hence pargevarm
optimization is able to produce faster results tb@mventional GA method.
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