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ABSTRACT

The Joint Maximum Likelihood (JML) criterion is dsé derive the optimal recursive-iterative estiorafor
discrete nonlinear dynamic systems. For linear eyt this approach constitutes, in its recursivemfothe
structure of the Kalman Filter. The JML approacah dstimation of nonlinear systems can be solvethdigh
formulas at the cost of extensive computationalrgff.e. with each new measurement the for deidvadf the new
estimate all available data has to be processedis paper presents recursive-iterative implicit sgd form
solution that gives formulas of the optimal estionat.e. gives the value of the optimal estimatémtes The
computation of the estimator's gains needs thetisoluof non-symmetric Difference Matrix Riccati BEdjon
(DMRE).
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INTRODUCTION

The problem of batch and recursive optimal estiomatif continuous and discrete nonlinear systemsbieas an
ongoing research area [7] before and especiallgesihe introduction of the Kalman filter [9-10] theolved the
recursive estimation problem for linear systemcdmrse of this work the author gathered more thaety, and
counting, different approaches to estimation andathing of nonlinear systems, e.g. a recent oneTi$¢ space in
this paper is too short to cover them. All thesprapches are suboptimal and approximate. The excspmre [2, 3]
where for some restricted cases for nonlinear nantis systems there exist closed form solutionhefoptimal
filtering. These optimal solutions were derived dzhson 16 calculus and computation of the conditional
probabilities. There are no known explicit closedni solutions of the optimal filtering for discretenlinear
systems, i.e. solutions of the respective disckabnogorov's/Fokker-Plank equation that gives tlmebpbility
density function.

The most popular estimation filter of nonlinear teyss is the Extended Kalman filter (EKF). The EKIkef is
suboptimal. The EKF uses the Jacobiarf§ and m, of the system's differential equations functions

x=f(X), y=m(x) for computation of the estimator's gain. The tedaEKF (IEKF) due to Breakwell

(analyzed by [14] and [6 ch. 8], [12 ch. 6]) is BMF based algorithm that can give improved perforcea The
IEKF is based on heuristics rather on rigorousv@ion. This iteration procedure is called in [I3fferential—
Correction.

Recently the State Dependent Riccati Equation (SD&Iproach gained its place in research and apiplicaf
recursive estimators of nonlinear systems [8, L 18]. The SDRE approach uses the mdi()) andM(x) created

when the system is represented in the State Depe@tefficient (SDC) fornX = F (X)X, Yy =M (X)X. Such
representation always exists, albeit it is not ugsidrhe EKF, IEKF and SDRE filters are suboptiri&le conditions

for the stability of the EKF are quite restrictivEhe SDRE based filter needs for stability mucts lesstrictive
conditions.

The optimal discrete Kalman filter is describeddetails in [12]. The optimal discrete Kalman filteolution for
linear systems [9,10] had been obtained as wedldhying the dual of the Linear Quadratic criteremmtrol problem
[4], [5 ch. 12, 13], [6, ch. 5]. The dual of the L&@terion is the Joint Maximum Likelihood (JML)it@rion. The
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solution is derived by the use of the calculus afiations. This approach has been widely used tonarical
implicit computations of estimators and smoothersbnlinear dynamic systems. The optimal JML bassttnator
for continuous nonlinear systems has been presém{éé].

In this paper the optimal JML based estimator fecrte nonlinear systems is dealt with. This papenbines:

» the Joint Maximum Likelihood criterion;

» the State Dependent Coefficient (SDC) form reprisggm of the discrete nonlinear system; and

» Calculus of variations to derive a recursive-iteatsolution of the JML estimator for the classmanlinear
dynamic systems.

It is shown that the optimal solution includes irdwly iteration, as in the IEKF, without the useheuristics.
Based on this full and exact solution suboptimapragimations can be derived. One such approximaison
analyzed. It is shown that the JML optimal estimatees a kind of a "mix" of the EKF and SDRE basstimator
approaches. The state propagation equation hdsrtimeas that of the EKF. The optimal gain is congputia the
solution of non-symmetric Riccati equation that sudmth the Jacobians and the SDC form represemtatio
Simulations demonstrate the performance of themaptML based filter. The comparison to other eators of
nonlinear systems and stability of the proposed Jilfir and its approximations are beyond the soofpéhis paper
and are the issues of ongoing research.

PROBLEM STATEMENT OF THE GENERAL PROBLEM

A general nonlinear system is dealt with. The peabktatement follows closely the problem statendefined in
[6, ch. 5] under the title "Statistical Methods', Bect. 5.3]. Let the reality be represented by

{=¢.ut), {(t,)=2,
y=u({ 1)

where{ is the real state (unknown dimensiom)s the real (not necessarily known) driving foareinput,y is the
measured output, and the functighand i represent the reality. The functiogsind i/ that describe the real system
are not and can't be precisely represented orrikmeown precisely up to the last detail (e.g. thppoumeasurement
function may include some measurement noise orgbbms exhibit random-uncertain behaviour).

For the design of the observer (or control) wethserepresentation-model of the reality given by

Xa = FOGWLD), X)) =%,
Y, =m(x,V;,i)

wherey; is the state of the modsj,the output (the measured outpfidindm are representations (model, i.e. exactly

known) of the reality and thus approximatiaf the realityw; andv; are sequences of time that represent the
difference between the reality(1) and its model(1).

(1)

)

Problem

Derive a recursive estimator for the state of thedeh, x, from the output measurements. Here the unkngwns
andv; and the initial conditionsy, are not random function (stochastic processeser can be considered as
errors of unknown character [6, Sect. 5.3]. Tharghly speaking "we want to pass the solution toa@¥losely as
possible, through the observations". To evaluatestimate in the classical squares approach [&, S&] or the
Joint Maximum Likelihood [5, ch. 13.2, problem B]s appropriate to minimize

0=l kTR s S @+ Sl i v TR o vl @

with respect tog, 0 <7 <k, w;, 0 <7 <k-1, and X ,subject to the model (2), where
Qis an a priori estimate of the driving force es;@t is an a priori estimate of the measurement naisggP, is an
a priori covariance estimate of the initial cormtits errors,)A(0 is an a priori estimate of the initial conditions.

In other words we are looking for the representatialization of the difference between the readityl the model,
w;, that best fits, in view of the criterion (3), tbbservations. The Joint Maximum Likelihood criteriis the dual of
the LQ criterion for the control problem. Noticeaththe expectation operator does not appear inT{8% is as in
contrast to the approach that results in the Kalfitt@n for linear stochastic systems. We do natkddor solution on
the average for the whole ensemble, but ratherihgofor the best solution with respect to criteri@) for single
sample of the modelling errors.

The rationale for this is as follows. There arebpems like communication, radar, and more, wheeesyystem is
known exactly (the shape of the transmitted pudsenown) and it is measured with noise and eriamd, there are
many replicas of this pulse and statistics of thisais known (say Gaussian). Therefore one lookshe "best"
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over the whole ensemble (doing repeated trialsyvéder, there are cases when the system meets digrilifgtime
only a single sample of the noises and errorsi¢alcinissile, airplane landing in severe weather. ThHis means
that this system does not care about the averagerpance; rather it is focused on the best peréamce with the

specific single sample. In optimization of (3) theL resulting estimates avé = \IA\II and X, = )?, . The problem

above is solvable by a batch solution that will imiize the objective (3). Here we look for a recuessolution. All
vectors and matrices are of the appropriate dimessi

Remark: Ifx, w, v are independent Gaussian random vectors, the pybability density of X, w, V) is
proportional to exp(, so that minimizing) also corresponds to maximizing the joint prob&piiensity.

STATEMENT OF A SPECIFIC PROBLEM
The specific nonlinear system dealt with here ithefform
Xi+1: f(xi)+G\Ni' Xi:OZXo’
yi =m(x) + v,
The problem that is considered here is: given teasurementg, i=1,2,...k,derive the optimal estimate of the state
X; denoted)A(i by the minimization with respect & and andX,_,, of the quadratic criterion (Joint Maximum
Likelihood) [5, ch. 13.2, problem 3]

2=l TR -] Swiew + Sly -moal Ry -mo], o

subject to the nonlinear system (4). Recursivetimius sought.

(4)

THE EXISTING RESULT FOR LINEAR

The main result for linear system is presented.hdiee solution is repeated here following [5, éhahd 12]. For
the linear system

X1 = Fx +Gw, Xiz0 = X1
Yy, = Mx +v,
The minimization of (5) subject to (6) leads to thell-known closed form explicit recursive formulake Kalman
filter equations,

(6)

Xa=FX,  %o=%, %)
Ria = Xa * RMTR Y, = MKy % (+) @
N..=FRFT+GQG",  P,=R  R()
P =[N +MTRIM] R (+)

Detailed derivation of this result is in [5, chaptd2, 13]. The main consequence-conclusion ofdkalt above is
that the form of the recursive solution for lineystems (and therefore also the batch solutionyHerstochastic
problem (average over the ensemble); and for diesstal problem (optimization for single sampig)essentially
the same. As far as the author is concerned thidtris known for many years although he failedinal explicit
reference to this conclusion.

THE STATE DEPENDENT COEFFICIENT FORM

The State Dependent Coefficient (SDC) form [11] dfe nonlinear system (4), assuming that
f (0) =0, and m(0) =0, is defined as

Xig = FOGOX +GW X = X,
Yi :M()ﬂ)xl +Vi

This is a linear like structure. The SDC form alwaists albeit it is not unique.

(8)

THE MAIN RESULT FOR NONLINEAR SYSTEM

For nonlinear system the minimization of (5) subjec(4) leads to closed form implicit, iterativadarecursive
formula. The optimal JML based filter for nonlineistem is

X, P from previous step
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X1 = FIX jual X, % (=)
R =%+ REIR ] MRl R (v = IR, ])
o1 = Ry * R (Xig)' R_l[yi+1 -M (),Zi+1))_(i+1] X (+) 9)
Ny = F& )P (% )" +GQG, P, =P, R ()
P =[N+ m () ROM )] P ()
where f(x) = F(x)x, m(x) =M (X)X and f ()= 0fa_(XX) m,(x) = an;ix) are the respective Jacobians.

The optimal JML based estimator for nonlinear syste implicit. At each time propagation step thire need to
solve the set of nonlinear equations to (9) defrigen )A(i and Y;,, the new estimat%ﬂ. For linear system Eq. (9)
collapses to (7) af, = F,F(X) = F and no iteration at every time instant is needed.
The solution for discrete nonlinear systems isaso¢legant as for the nonlinear continuous cage Tbéunderstand
this let's consider first estimation step of (%), ¢h. 13.1] is followed closely). That is consider
Xl = f(xo) + GWO; Xo = )_(0’ (10)
Yy = m(x,) +v,
Let be X, and W, are the estimates based on information availatienai=0. However ay; is available improved

estimates ok, andw, could be made by using the measuremygnin other words, measurements related to state 1
provide information about the state 0 and aboutrduesition from state O to state 1, i.e. aboutftiieing vectom,,.

These improvegstimatessmoothing estimatesre denoted b¥,,, andW,,, to distinguish them from the estimates

X, and W,. To be least-squares estimate, the quantigg andw ,,, must be the values ok, and W, that
minimize the quadratic form

1 o _ N 1 _ _ _ 1 _
=5 (o =) R =Ro)+ = (e =, )" Q7w =, )+ (s~ mex))" Ry, = mix) (1)
with the constraint
X, = f(x,)+Gw, = F(x,)x, + Gw, (12)

where W, is the mean ofi, . In previous section it is assumed theg = O for simplicity.
The exact optimal solution for one step iterati®hig implicit and is given by
)A(0 from previous step (fow, = 0)

X = F (o)X,

Roi =%, + P, Ro) MK R (y, - m(R,)) (13)
% =% +Pm (%) Ry, ~M (%)%

R =[N+ m&) RM%)|

Nl = F(Xoll)Pofx(Xoll)T +GQGT
That is ati=1 time propagation step there is a need to findstheothing solution for=0 by solving the above
nonlinear set of equations (13), i.e. going backWaefore completing the time update. This is itergtand with
context of EKF, iterated EKF [6, Ch. 8.3, pp. 229][ and Iterated Linear Filter-Smoother (ILFS) (8. 8.3, pp.
280], and in [11] it is called Differential-Coritgan. One can clearly see that as the time propadati=2,3,...,the
depth of computing the smoothing backward solutderpens to derive the smoothing solution. Thisotsneeded
for the linear system case as the set of equagimesexplicit solution. This optimal solution refts/possesses the
properties of the batch solution, i.e. with eveswnmeasurement the estimates for the whole petiodld be
recomputed. Thus (it seems that) the exact itexatdeursive solution for the whole period givescomputational
and memory requirements advantages with respeketbatch solution.
Notice that the Iterated EKF had been derived/nafiaed by heuristics [6, 12] and thus are inhdyesuboptimal.
The presented derivation presents the optimal isolufThis gives tool to systematically derive angimpare
iterative approximations.
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SUBOPTIMAL RECURSIVE NON-ITERATIVE APPROXIMATE OF J ML BASED FILTER

To simplify-approximate (9) and avoid the solutiohthe whole set of nonlinear equations one canapmate.
There are several options of approximations. Hexemose to consider the following approximation

Xi s X
Then we have one step recursion (and no iteraéisripllows
X:, P from previous step

)_(i+1 = F[)A(.];(.
% = Rog + R (%) R Y =M (%) %] (14)
Ni+1 = F(Xiﬂ)Pi fx(Zﬂ)T +GQGT ’ |:>i:0 = Po

— -1 3 - g \[*

Pi+l - [Ni+l + rTl((XH:L)T R 1M (X1+1)]

This approximation gives immediately the recursiNgcrete Kalman filter for linear system. For noekr system
this resembles the type of the EKF and SDDRE rémursThe gain is computed by solution of non-syniuet

Riccati equation ad-(X) # fx(x) and M (X) # mx(x) for non-linear system. The analogy to existingatiohs

in KFis X, =X (7)., X, =% (+), Nj,; =R, (-)and P,; =P, (+). The reason for the different notation is
that in the nonlinear case tReandN matrices do not have the meaning of the estimatioor covariance.

Remarks: The stochastic KF for linear systems gomsnal result based on minimization of the expdotalue of
the squared error (on the ensemble), i.e. it mmdsithe expectation of the square of the estimatioor. It is

optimal on the average. The JML based filter givp8mal result based on minimization of the squagstimation

error time average per single sample of the proflésd of ergodicity?). The main consequence-caosiolu of the

result above is that the recursive solution foedinsystem for the stochastic problem (average theeensemble);
and for the statistical problem (optimization fangle sample) are essentially the same (expectati@r the

ensemble= mean in time for single sample). Thiwistrue in general for nonlinear systems.

COMPARISON OF EKF, SDDRE AND JOINT MAXIMUM LIKELIHO OD BASED ESTIMATORS

In this section the EKF and SDDRE approaches asegnted in order to point out the differences betwbem and
the JML approach. The nonlinear system is (4, 8)
Xia = FOO) +GW = F X)X +GW; - X =X,
Yi =m(x%) +v; =M (X)X +V,

First for completeness of presentation the EKFSD®RE based filters are presented.

(15)

The EKF
The EKF filter is

X., P from previous step
X = F(X)=F&)X
R = X+ RaM (%) R Y0 ~m(K,)] (16)
N., = f,(X.)P fx()_§+1)T +GQGT, P,=P
Pi+l = [Ni+1_l + rrl((XﬁL)T R_lrnx()_(iﬂ)]_l

The SDDRE Estimator
The SDC form is (8).Then the SDDRE based filter is

)A(i , P from previous step
X, = F(X)=F&)X
X4 =Xy + PuM (X+1)T R_l[yi+1 - m()_<i+1)] (17)
Ni+1 = F()_(|+1)P|F(X+1)T +GQGT1 Pi=0 = Po
P =[Ny + M (%) ROM (%))
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Comparison of EKF, SDDRE and Joint Maximum Likelihood based Filters

From the equations above one can see:

(i) for nonlinear system with linear measurements fffferdnce equation that propagates the estimate $ias
similar structure, i.e.

Xy = f()A(i) = F()’Zi ))A(i
R = Ry + Pam (X,) Ry, —m(X,,)], EKF and JML (18)

%1 = %y + PuM (%) Ry, ~M(X.,)|, SDDRE

(ii) the fundamental difference between the EKF, SDDRErfand Joint Maximum Likelihood based optimal
estimator is the computation of the P matrix froimich the filter gain is computed. The Riccati magguation
associated to:

* EKEF is symmetric and uses the Jacobian of the sydignamics equatiofy(x);

» SDDRE filter is symmetric and uses the SDC repriagiem of the system dynamics equati@)andM(x);

» JML optimal estimator is asymmetric and uses bl¢hJacobian of the system equatigr), m(x) and the State
Dependent (SDC) form representation of the systgnahics equatiorr(x), M(x). Table 1 summarized the
conclusions above.

Table 1: Comparison of Riccati Matrix Equation of EKF, SDDRE Filter and JML Filter

Ni+1 — AFi’BT +C, Pi+1 — [Ni+1_1 + DT R—lE]‘l PZTR™
A B c D E z
EKF f, f, GQG' m, m, m,
SDDREF| F F GQG' M M M
IMLF F f, GQG' m, M m,
EXAMPLES

The performance of the JML based filter (9) is daestmted here. In this section it is assumed thatsampling
interval is sufficiently small such that insteadveng the complete iteration scheme the continueaision of the
JML based filter [16] is implemented and its penfiance is demonstrated.

Van der Pol equation

This section demonstrates the performance of the BAsed estimator on the nonlinear Van der Pokudfitial
equation driven by band limited white noise andlimear noise corrupted measurement. The Van deeation
in matrix from is

0 1
eI RO W
dt| x m m X 1

wherew is a system driving noise (29)
X
y=——=+V
V1+X?
Then we have
X
= k 2c .
F() -—Xx-=(x*-Dx (20)
m m
The SCD form system matrix is selected as
0 1
= k 2c
F(x)=|_K ) (21)
m m
and the respective Jacobian is
0 1
= k 4c . 2c
£ _(_+_XXJ _2 ey 22)
m m m
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X 1 1
—_ M(X)=| ——= 0 X)=|———=5 O 23
/—1+ XZ ( ) /—1+ X2 rnx( ) (1+ X2)3/2 ( )

For linear time-varying Kalman Filter for existenaesolution of the Riccati equation it is necegsand sufficient
that the respective observability and controllépiGramians are uniformly completely bounded [{Ffom above
and from below.) The observability and controll@pibnalysis of the presented example is importemever it is
beyond the scope of the paper.

The system and the JML based Filter were implenteint&IMULINK ® with the following parameters:

And  m(x) =

m=1;

c =0.1;

k =1;

R. =1e-3[1/HZ] (spectral density of the measurenneige -v)
Q.=1e0 [(1/se®?/Hz]  (spectral density of the system driving nois®
P0O=[00;00]; (initial condition of the P matyix

The measurement noise and system driving noisestate in 100 [rad/sec] bandwidth. The followingsea are
considered:

(i) No actual measurement noise and no actual systgmginoise
(i) measurement noise and system driving noise

Figs 1 and 7, present the measured outgei;+v, and the estimated outpiyt, versus time. The transient as well
the quality of estimation can be seen.

Figs 2 and 8 present the real positienand the estimated position state,versus time. The transient as well the
quality of estimation can be seen.

Figs 3and 9 present the output estimation erradgpasition estimation error versus time.

Figs 4 and 10 present the real velocit)t— and stienated velocity —X versus time.
Figs 5 and 11 present the filter's gains, K1- gdithe position state, K2 - gain of the velocitgtstversus time.
Figs 6 and 12 present the terms of the solutiothefmatrix Riccati equationP versus time. One can see that

K1=P11/R and K2=P21/R. One can clearly see thaPthwtrix is non-symmetric P¥P21. The difference in this
example is small.

These figures demonstrate the performance of tHehided estimator.
No actual measurement noise and no actual systemiving noise

measured and estimated output real and estimated position

s real position
== estimated position

1

0.8
0.6
0.4

0.2

= measured output
== estimated output

0

-0.2

state no. 1 - position

0.4

-0.6

-0.8

. . . . . . . . . . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20 [ 2 4 6 8 10 12 14 16 18 20
time [sec] time [sec]

Fig. 1 The measured output y=x+v and the estimateautput j Fig. 2 The real position x and the estimated posin stateX versus
versus time time

estimation error measured and estimated velocity

m— output estimation error — real velocity
s = position estimation eror | | = estimated \elocity

state no. 2 - velocity
o

o 2 4 & 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 2
time [sec] time [sec]

Fig. 3 The estimation errors versus time Fig. 4 The real velocity — X' and the estimated veldyi— X
versus time
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gains of the filter solution of the nonsymmetric Riccati equation
35 0.45
P11
0.4 — P12
30 P21 |
0.35 —— P22|4
25
0.3
L2 025
B 15 0.2
0.15
10
0.1
5
0.05
% 2 4 & s 10 12 1 1 18 20 % 2 4 6 s 10 12 1 1 18 20
time [sec] time [sec]
Fig. 5 The filter's gains K1- gain of the positiorstate, K2 - gain of  Fig. 6 The terms of the solution of the matrix Ricati equation - P
the velocity state versus time versus time
With measurement noise and with system driving noes
measured and estimated output real and estimated position
3
measured output el position
— estimated output m— estimated position
P 2

state no. 1 - position
°

-2
2 2 4 & 8 10 12 14 1 18 2 S0 2 4 6 8 10 12 14 1 18 2
time [sec] time [sec]
Fig. 7 The measured output, y=x+v and the estimateautput X Fig. 8 The real position x and the estimated posin statex versus
versus time time
estimation errors measured and estimated velocity
25 4
s filter innovation m— real velocity
2 = position estimation error [ 3 = estimated velocity
2
Z.
&0
g1
2
3
2 2 4 & 8 10 12 14 15 18 2 Y2 4 6 8 10 12 14 1 18 2
time [sec] time [sec]
Fig. 9 The estimation errors versus time Fig. 10 The real velocity — X' and the estimated velitg — X
versus time
gains of the filter solution of the nonsymmetric Riccati equation
40 0.45
K1 P11
35 — K2 0.4 P12
P21
30 0.35 p22ll
|
25
” 0.25 1
£ 20
= 0.2
15
0.15
10
0.1
5 0.05
% 2 4 & s 10 1 1 1 18 2 % 2 4 6 s 10 12 14 1 18 20
time [sec] time [sec]

Fig. 11 The filter's gains, K1 gain of the positiorstate, K2 gain of  Fig. 12 The terms of the solution of the matrix Ricati equation -P
the velocity state versus time versus time

CONCLUSION

The Joint Maximum Likelihood criterion was usedderive explicit solution of the optimal estimatar fdiscrete
nonlinear dynamic systems. Examples demonstraeribrmance.
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