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ABSTRACT  
 

The Joint Maximum Likelihood (JML) criterion is used to derive the optimal recursive-iterative estimator for 
discrete nonlinear dynamic systems. For linear systems this approach constitutes, in its recursive form, the 
structure of the Kalman Filter.  The JML approach to estimation of nonlinear systems can be solved by batch 
formulas at the cost of extensive computational effort, i.e. with each new measurement the for derivation of the new 
estimate all available data has to be processed.  This paper presents recursive-iterative implicit closed form 
solution that gives formulas of the optimal estimator, i.e. gives the value of the optimal estimated state. The 
computation of the estimator's gains needs the solution of non-symmetric Difference Matrix Riccati Equation 
(DMRE). 
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INTRODUCTION  
 

The problem of batch and recursive optimal estimation of continuous and discrete nonlinear systems has been an 
ongoing research area [7] before and especially since the introduction of the Kalman filter [9-10] that solved the 
recursive estimation problem for linear system. In course of this work the author gathered more than ninety, and 
counting, different approaches to estimation and smoothing of nonlinear systems, e.g. a recent one [1]. The space in 
this paper is too short to cover them. All these approaches are suboptimal and approximate. The exceptions are [2, 3] 
where for some restricted cases for nonlinear continuous systems there exist closed form solutions of the optimal 
filtering. These optimal solutions were derived based on Itȏ calculus and computation of the conditional 
probabilities. There are no known explicit closed form solutions of the optimal filtering for discrete nonlinear 
systems, i.e. solutions of the respective discrete Kolmogorov's/Fokker-Plank equation that gives the probability 
density function. 
 

The most popular estimation filter of nonlinear systems is the Extended Kalman filter (EKF). The EKF filter is 

suboptimal. The EKF uses the Jacobians xf  and mx of the system's differential equations functions 

)(),( xmyxfx ==&  for computation of the estimator's gain. The Iterated EKF (IEKF) due to Breakwell 

(analyzed by [14] and [6 ch. 8], [12 ch. 6]) is an EKF based algorithm that can give improved performance. The 
IEKF is based on heuristics rather on rigorous derivation. This iteration procedure is called in [15] Differential–
Correction. 
 

Recently the State Dependent Riccati Equation (SDRE) approach gained its place in research and application of 
recursive estimators of nonlinear systems [8, 11 and 13]. The SDRE approach uses the matrix F(x) and M(x) created 
when the system is represented in the State Dependent Coefficient (SDC) form xxMyxxFx )(,)( ==& . Such 

representation always exists, albeit it is not unique. The EKF, IEKF and SDRE filters are suboptimal. The conditions 
for the stability of the EKF are quite restrictive. The SDRE based filter needs for stability much less restrictive 
conditions. 
 

The optimal discrete Kalman filter is described in details in [12]. The optimal discrete Kalman filter solution for 
linear systems [9,10] had been obtained as well by solving the dual of the Linear Quadratic criterion control problem 
[4], [5 ch. 12, 13], [6, ch. 5]. The dual of the LQ criterion is the Joint Maximum Likelihood (JML) criterion. The 
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solution is derived by the use of the calculus of variations. This approach has been widely used for numerical 
implicit computations of estimators and smoothers for nonlinear dynamic systems. The optimal JML based estimator 
for continuous nonlinear systems has been presented in [16]. 
 

In this paper the optimal JML based estimator for discrete nonlinear systems is dealt with. This paper combines:  
• the Joint Maximum Likelihood criterion; 
• the State Dependent Coefficient (SDC) form representation of the discrete nonlinear system; and  
• Calculus of variations to derive a recursive-iterative solution of the JML estimator for the class of nonlinear 

dynamic systems.  
 

It is shown that the optimal solution includes inherently iteration, as in the IEKF, without the use of heuristics. 
Based on this full and exact solution suboptimal approximations can be derived. One such approximation is 
analyzed. It is shown that the JML optimal estimator uses a kind of a "mix" of the EKF and SDRE based estimator 
approaches. The state propagation equation has the form as that of the EKF. The optimal gain is computed via the 
solution of non-symmetric Riccati equation that uses both the Jacobians and the SDC form representation. 
Simulations demonstrate the performance of the optimal JML based filter. The comparison to other estimators of 
nonlinear systems and stability of the proposed JML filter and its approximations are beyond the scope of this paper 
and are the issues of ongoing research. 
 

PROBLEM STATEMENT OF THE GENERAL PROBLEM 
 

A general nonlinear system is dealt with. The problem statement follows closely the problem statement defined in 
[6, ch. 5] under the title "Statistical Methods" [6, Sect. 5.3].  Let the reality be represented by 
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where ζ is the real state (unknown dimension), u is the real (not necessarily known) driving force or input, y is the 
measured output, and the functions ϕ and µ represent the reality. The functions ϕ and µ that describe the real system 
are not and can't be precisely represented or are unknown precisely up to the last detail (e.g. the output measurement 
function may include some measurement noise or themselves exhibit random-uncertain behaviour). 

For the design of the observer (or control) we use the representation-model of the reality given by 
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where xi is the state of the model, yi the output (the measured output), f and m are representations (model, i.e. exactly 
known) of the reality and thus approximation  of the reality, wi and vi are sequences of  time that represent the 
difference between the reality(1) and its model(1). 
 

Problem 
Derive a recursive estimator for the state of the model, xi, from the output measurements. Here the unknowns , wi  
and vi  and the initial conditions, xo, are not random function (stochastic processes), rather can be considered as 
errors of unknown character [6, Sect. 5.3]. Then roughly speaking "we want to pass the solution to (2) as closely as 
possible, through the observations". To evaluate an estimate in the classical squares approach [6, Sect. 5.3] or the 
Joint Maximum Likelihood [5, ch. 13.2, problem 3] it is appropriate to minimize 
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with respect to xi, 0 ≤ ι ≤ k,  wi, 0 ≤ ι ≤ k-1 , and ox ,subject to the model (2), where 

Q is an a priori estimate of the driving force errors; R is an a priori estimate of the measurement noise errors, Po is an 

a priori covariance estimate of the initial conditions errors, ox̂ is an a priori estimate of the initial conditions. 
 

In other words we are looking for the representation-realization of the difference between the reality and the model, 
wi, that best fits, in view of the criterion (3), the observations. The Joint Maximum Likelihood criterion is the dual of 
the LQ criterion for the control problem. Notice that the expectation operator does not appear in (3). This is as in 
contrast to the approach that results in the Kalman filter for linear stochastic systems. We do not look for solution on 
the average for the whole ensemble, but rather looking for the best solution with respect to criterion (3) for single 
sample of the modelling errors. 
 

The rationale for this is as follows. There are problems like communication, radar, and more, where the system is 
known exactly (the shape of the transmitted pulse is known) and it is measured with noise and errors, and there are 
many replicas of this pulse and statistics of the noise is known (say Gaussian). Therefore one looks for the "best" 
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over the whole ensemble (doing repeated trials). However, there are cases when the system meets during its lifetime 
only a single sample of the noises and errors (tactical missile, airplane landing in severe weather …). This means 
that this system does not care about the average performance; rather it is focused on the best performance with the 

specific single sample. In optimization of (3) the JML resulting estimates are ii ww ˆ=  and ii xx ˆ= . The problem 

above is solvable by a batch solution that will minimize the objective (3). Here we look for a recursive solution. All 
vectors and matrices are of the appropriate dimensions.  
Remark: If xi, wi, vi are independent Gaussian random vectors, the joint probability density of (xi, wi, vi) is 
proportional to exp(-J), so that minimizing J also corresponds to maximizing the joint probability density. 
 

STATEMENT OF A SPECIFIC PROBLEM 
 

The specific nonlinear system dealt with here is of the form 
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      (4) 

The problem that is considered here is: given the measurements yi, i=1,2,…k, derive the optimal estimate of the state 

xi denoted ix̂  by  the minimization with respect to wi and and 0=ix , of the quadratic criterion (Joint Maximum 

Likelihood) [5, ch. 13.2, problem 3] 
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subject to the nonlinear system (4). Recursive solution is sought. 
 

THE EXISTING RESULT FOR LINEAR 
 

The main result for linear system is presented here.  The solution is repeated here following [5, ch.13 and 12]. For 
the linear system 
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The minimization of (5) subject to (6) leads to the well-known closed form explicit recursive formulas, the Kalman 
filter equations, 

,ˆˆ,ˆ 01 oiii xxxFx == =+  )(ˆ1 −x  
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Detailed derivation of this result is in [5, chapters 12, 13]. The main consequence-conclusion of the result above is 
that the form of the recursive solution for linear systems (and therefore also the batch solution) for the stochastic 
problem (average over the ensemble); and for the statistical problem (optimization for single sample) is essentially 
the same. As far as the author is concerned this result is known for many years although he failed to find explicit 
reference to this conclusion. 

 
THE STATE DEPENDENT COEFFICIENT FORM 

 

The State Dependent Coefficient (SDC) form [11] of the nonlinear system (4), assuming that
0)0(,0)0( == mandf , is defined as 

iiii

oiiiii

vxxMy

xxGwxxFx

+=
=+= =+

)(

,;)( 01
     (8) 

This is a linear like structure. The SDC form always exists albeit it is not unique. 
 

THE MAIN RESULT FOR NONLINEAR SYSTEM 
 

For nonlinear system the minimization of (5) subject to (4) leads to closed form implicit, iterative and recursive 
formula. The optimal JML based filter for nonlinear system is 

ii Px ,ˆ  from previous step  
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where ( ) ( )xxFxf := , ( ) ( )xxMxm :=   and ( )
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 are the respective Jacobians. 

 
The optimal JML based estimator for nonlinear system is implicit. At each time propagation step there is a need to 

solve the set of nonlinear equations to (9) derive from ix̂  and 1+iy  the new estimate 1ˆ +ix . For linear system Eq. (9) 

collapses to (7) as FxFFf x == )(, and no iteration at every time instant is needed. 
 

The solution for discrete nonlinear systems is not as elegant as for the nonlinear continuous case [16]. To understand 
this let's consider first estimation step of (4) ([5, ch. 13.1] is followed closely). That is consider 
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Let be ox̂ and ow  are the estimates based on information available at time i=0 . However as y1 is available improved 

estimates of xo and wo could be made by using the measurement y1. In other words, measurements related to state 1 
provide information about the state 0 and about the transition from state 0 to state 1, i.e. about the forcing vector wo. 

These improved estimates-smoothing estimates are denoted by 1/ˆ ox  and 1/ˆ ow  to distinguish them from the estimates

ox̂  and ow . To be least-squares estimate, the quantities 1/ox  and 1/ow  must be the values of ox  and ow  that 

minimize the quadratic form 
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with the constraint  

ooooo wGxxFwGxfx +=+= )()(1        (12) 

where ow  is the mean of ow .  In previous section it is assumed that 0=ow  for simplicity. 

The exact optimal solution for one step iteration (8) is implicit and is given by 

ox̂  from previous step (for 0=ow )  
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That is at i=1  time propagation step there is a need to find the smoothing solution for i=0  by solving the above 
nonlinear set of equations (13), i.e. going backward before completing the time update. This is iteration, and with 
context of EKF, iterated EKF [6, Ch. 8.3, pp. 279][10] and Iterated Linear Filter-Smoother (ILFS) [6, Ch. 8.3, pp. 
280], and in [11]  it is called Differential-Correction. One can clearly see that as the time propagates for i=2,3,…, the 
depth of computing the smoothing backward solution deepens to derive the smoothing solution. This is not needed 
for the linear system case as the set of equations give explicit solution. This optimal solution reflects/possesses the 
properties of the batch solution, i.e. with every new measurement the estimates for the whole period should be 
recomputed. Thus (it seems that) the exact iterative-recursive solution for the whole period gives no computational 
and memory requirements advantages with respect to the batch solution. 
Notice that the Iterated EKF had been derived/rationalized by heuristics [6, 12] and thus are inherently suboptimal. 
The presented derivation presents the optimal solution. This gives tool to systematically derive and compare 
iterative approximations. 

)(ˆ1 −x
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SUBOPTIMAL RECURSIVE NON-ITERATIVE APPROXIMATE OF J ML BASED FILTER  
 
To simplify-approximate (9) and avoid the solution of the whole set of nonlinear equations one can approximate. 
There are several options of approximations. Here we chose to consider the following approximation 

iii xx ˆˆ 1/ ≅+  

 Then we have one step recursion (and no iteration) as follows 
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This approximation gives immediately the recursive discrete Kalman filter for linear system. For nonlinear system 
this resembles the type of the EKF and SDDRE recursion. The gain is computed by solution of non-symmetric 

Riccati equation as ( )xfxF x≠)(  and ( )xmxM x≠)(  for non-linear system. The analogy to existing notations 

in KF is )(ˆ11 −=+ xxi , )(ˆˆ 11 +=+ xx i , )(11 −=+ PNi and )(11 +=+ PPi . The reason for the different notation is 

that in the nonlinear case the P and N matrices do not have the meaning of the estimation error covariance.  
 

Remarks: The stochastic KF for linear systems gives optimal result based on minimization of the expected value of 
the squared error (on the ensemble), i.e. it minimizes the expectation of the square of the estimation error. It is 
optimal on the average. The JML based filter gives optimal result based on minimization of the squared estimation 
error time average per single sample of the process (kind of ergodicity?). The main consequence-conclusion of the 
result above is that the recursive solution for linear system for the stochastic problem (average over the ensemble); 
and for the statistical problem (optimization for single sample) are essentially the same (expectation over the 
ensemble= mean in time for single sample). This is not true in general for nonlinear systems. 

 
COMPARISON OF EKF, SDDRE AND JOINT MAXIMUM LIKELIHO OD BASED ESTIMATORS 

 

In this section the EKF and SDDRE approaches are presented in order to point out the differences between them and 
the JML approach. The nonlinear system is (4, 8) 
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First for completeness of presentation the EKF and SDDRE based filters are presented. 
 
The EKF  
The EKF filter is 
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The SDDRE Estimator 
The SDC form is (8).Then the SDDRE based filter is 
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Comparison of EKF, SDDRE and Joint Maximum Likelihood based Filters 
From the equations above one can see: 
(i) for nonlinear system with linear measurements the difference equation that propagates the estimated state has 

similar structure, i.e. 
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(ii)  the fundamental difference between the EKF, SDDRE filter and Joint Maximum Likelihood based optimal 
estimator is the computation of the P matrix from which the filter gain is computed. The Riccati matrix equation 
associated to: 

• EKF is symmetric and uses the Jacobian of the system dynamics equation fx(x);   
• SDDRE filter is symmetric and uses the SDC representation of the system dynamics equation F(x)and M(x); 
• JML optimal estimator is asymmetric and uses both the Jacobian of the system equation fx(x), mx(x) and the State 

Dependent (SDC) form representation of the system dynamics equation F(x), M(x). Table 1 summarized the 
conclusions above.  

 

Table 1: Comparison of Riccati Matrix Equation of EKF, SDDRE Filter and JML Filter 
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EXAMPLES 

 

The performance of the JML based filter (9) is demonstrated here. In this section it is assumed that the sampling 
interval is sufficiently small such that instead solving the complete iteration scheme the continuous version of the 
JML based filter [16] is implemented and its performance is demonstrated. 
 
Van der Pol equation 
This section demonstrates the performance of the JML based estimator on the nonlinear Van der Pol differential 
equation driven by band limited white noise and nonlinear noise corrupted measurement. The Van der Pol equation 
in matrix from is 
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where w is a system driving noise            (19)         

Then we have 
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The SCD form system matrix is selected as 
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and the respective Jacobian is 
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And 
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For linear time-varying Kalman Filter for existence of solution of the Riccati equation it is necessary and sufficient 
that the respective observability and controllability Gramians are uniformly completely bounded [17]. (From above 
and from below.) The observability and controllability analysis of the presented example is important however it is 
beyond the scope of the paper. 
 

The system and the JML based Filter were implemented in SIIMULINK® with the following parameters: 
m =1; 
c  =0.1; 
k  =1; 
Rc =1e-3[1/Hz]  (spectral density of the measurement noise - v) 
Qc =1e0 [(1/sec2)2/Hz]  (spectral density of the system driving noise - w) 
P0=[0 0 ; 0 0];  (initial condition of the P matrix) 

The measurement noise and system driving noises are white in 100 [rad/sec] bandwidth. The following cases are 
considered: 
(i) No actual measurement  noise and no actual system driving noise  
(ii)  measurement  noise and system driving noise 
 

Figs 1 and 7, present the measured output, y=x+v, and the estimated output,ŷ , versus time. The transient as well 

the quality of estimation can be seen. 
Figs 2 and 8 present the real position, x, and the estimated position state,x̂ , versus time. The transient as well the 
quality of estimation can be seen. 
Figs 3and 9 present the output estimation errors and position estimation error versus time. 

Figs 4 and 10 present the real velocity – and the estimated velocity –  versus time. 
Figs 5 and 11 present the filter's gains, K1- gain of the position state, K2 - gain of the velocity state versus time. 
Figs 6 and 12 present the terms of the solution of the matrix Riccati equation - P versus time. One can see that 
K1=P11/R and K2=P21/R. One can clearly see that the P matrix is non-symmetric P12≠P21. The difference in this 
example is small. 
These figures demonstrate the performance of the JML based estimator.  
 

No actual measurement noise and no actual system driving noise 
 

  
Fig. 1 The measured output  y=x+v and the estimated output ŷ 

versus time 
Fig. 2 The real position x and the estimated position statex̂  versus 

time 

  

Fig. 3 The estimation errors versus time Fig. 4 The real velocity – and the estimated velocity –  
versus time 
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Fig. 5 The filter's gains K1- gain of the position state, K2 - gain of 

the velocity state versus time 
Fig. 6 The terms of the solution of the matrix Riccati equation - P 

versus time 
 
With measurement noise and with system driving noise 
 

  
Fig. 7 The measured output, y=x+v and the estimated output x̂  

versus time 
Fig. 8 The real position x and the estimated position statex̂  versus 

time 

  

Fig. 9 The estimation errors versus time Fig. 10 The real velocity – and the estimated velocity –  
versus time 

  
Fig. 11 The filter's gains, K1 gain of the position state, K2 gain of 

the velocity state versus time 
Fig. 12 The terms of the solution of the matrix Riccati equation - P 

versus time 
 

CONCLUSION 
 
The Joint Maximum Likelihood criterion was used to derive explicit solution of the optimal estimator for discrete 
nonlinear dynamic systems. Examples demonstrate it performance. 
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