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1. Introduction

Differential equations of fractional order have been of great interest for the last three
decades. It is caused both by the intensive development of the theory of fractional calculus
itself and by the applications of such constructions in the modelling of many phenomena
in various fields of science and engineering. Indeed, we can find numerous applications in
viscoelasticity, electrochemistry, control, porous media, and so forth. Therefore, the theory
of fractional differential equations has been developed very quickly. Many qualitative
theories of fractional differential equations have been obtained. Many important results
can be found in [ 4, 5, 7, 9, 16, 17, 20, 21, 25] and the references cited therein. Multi-
point nonlinear boundary value problems, which refer to a different family of boundary
conditions in the study of disconjugacy theory [ 3] and take into account the boundary
data at intermediate points of the interval under consideration, have been addressed by
many authors, for example, see [ 1, 6, 8, 10, 11, 24, 28, 29] and the references therein.
Multi-point boundary conditions are important in various physical problems of applied
science when the controllers at the end points of the interval dissipate or add energy
according to the censors located at intermediate points. Moreover, the study of coupled
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systems of fractional order is also important in various problems of applied nature [
2,12, 13, 14, 18, 25, 26, 30, 31]. Recently, many people have established the existence and
uniqueness of solutions for the multipoint boundary value problems of some fractional
systems, see [ 19, 27] and the reference therein. This paper deals with the existence and
uniqueness of solutions to the following coupled system of fractional differential equations :

( Dz (t) =y (t) f1 Ly (), (d1y) (1), (92y) (1)), T € J,
Dy (t) =y (t) fa (2 (1), (p1) (), (022) (1)), €J
2(0) = ay [ (O)] + |2 O] + ..+ [+ (0)] = 0,2/(T) = Yxx(m), (1)
y(0) =5, |y (O] + |y (0)] + ... + ‘y(H) (0)‘ =0,y(T) = éujy (&),

\

where D® and D?, denote the Caputo fractional derivatives, with n — 1 < o < n and
n—1<p <nnéeN,n#1J=1[01],\u € R ij=1,..,m, 1,1, are two
continuous functions, ¢,x,¢,y,h = 1,2 are integral operators, zj,y5 € R,0 < ni§; <
1,7, =1,...,m, fi, f2, are two functions which will be specified later, and for ~,, d,, h =
1,2:]0,1] x [0,1] — [0, 00),

(n2) (1) = / o (1 8) 2 (5) s, () (£) = / 5u (t.5) y (s)ds, h=1,2,

The rest of this paper is organized as follows. In section 2, we present some preliminaries
and lemmas. Section 3 is devoted to existence of solution of problem (1). In section 4 an
example is treated illustrating our results.

2. Preliminaries
The following notations, definitions, and preliminary facts will be used throughout this
paper.

Definition 1 The Riemann-Liouville fractional integral operator of order a > 0, for a
continuous function f on [0, 00[ is defined as :
t

JOF () = ﬁ /0 (t— 1)L F (P dr,a >0, @)
JOf(t)=[f(t),

where I' (a) = [7 e "u**du.

Definition 2 The fractional derivative of f € C™ ([0, 00]) in the Caputo’s sense is defined
as :

Df (t) = ! )/Ot(t—T)"_a_lf(”)(T)dT,n—1<a<n,nEN*. (3)

['(n—a
For more details about fractional calculus, we refer the reader to [ 22, 23].

Let us now introduce the spaces X = {x : 2 € C([0,7])} and Y = {y:y € C([0,7])}
endowed with the norm || z ||=sup |z (¢)| and || y ||= sup |y (¢)].
teJ ted
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Obviously, (X, || . ||) and (Y, || . ||) , are Banach spases. The product space (X x Y, ||(z,3)]|)
is also Banach space with norm ||(x,y)|| = ||| + ||y]| -

We give the following lemmas | 15] :

Lemma 3 Fora > 0, the general solution of the fractional differential equation D*x (t) =
0 s given by
r () = co+ it + cot® + .. A cpgt" L (4)

where ¢; € R,i=0,1,2,..,n—1,n=[a] + 1.
Lemma 4 Let o > 0. Then
JD% (t) = 2 (t) + co + et + cot® + ...+ e g t" (5)

for somec; e Rji=0,1,2,....n—1,n=[a] + 1.

We need also the following auxiliary result :

Lemma 5 Let > A\l # T" L. Then for a given g € C ([0,T]), the solution of the
=1

7

equation
D% (t) = (r9) (1), t € Jn—1<a<n, (6)
subject to the boundary condition
2 (0) = a5, |7 )] + " O + ..+ [ ) = 0,2(T) = > niw (). (7)
i=1
18 given by

r(t) = %a) / (t = )7 (19) (s) ds + 2} (8)

1 T »
1 m

e @1 - T"l) 2N /0 (1= 9" (19) (s) ds.

Proof. By lemmas 3 and Lemma 4, the general solution of (6 is written as

1 ¢ .
)= —— t—s)" ds —co — et — cot? — ... — e "L 9
2 )= 5 | =97 W) (D ds— @ -t et — = )
Using the boundary condition (7), we have ¢; = ... = ¢,—9 = 0 and ¢y = —x.
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For ¢,,_1, we have

1 T o1
R (iM_T) | @ =9 ) (9 (10)

! Y " a-1
r (i Nt — T) E;A/ (= 8)" (419 (5) d.

+

Substituting the value of ¢y, ¢, ..., ¢,—2 and ¢,_1 in (10), we get (9).
3. Main Results

Let us introduce the quantities :

¢ t
wp = sup /5h(t,s)ds , T, = Sup /*yh(t,s)ds L h=1,2,
tefo, 7] 1Jo teo, 7] 1J0
A T+ g
R R p— , (1)
r 1 m
(at1) POPN L A
i=1
T+ 3 |uyl &
02 — ||w2||oo 1+ j=1
I'(p+1) m - X
Zlﬂjfj A
]:

We list also the following hypotheses :

(Hy) : The functions f1, fo :[0,7] x R® — R are continuous.

(H,) : There exist non negative continuous functions a;,b; € C([0,7]),i = 1,3 such
that for all t € [0,T] and (x,v, 2) , (71,91, 21) € R3, we have

Ifit,x,y,2) — fi (t 21,01, 21)] < ar (t) |z — 2| +az (t) |y —y| +as (t) |z — 2],
|f2(ta$ayaz)_f1<t,1‘1791,21)| S bl(t)|$—$1|+b2(t)|y—y1|+b3(t)|2—21|,

with
A = supar (t), Ay = supas (t), As = supas (1)
teJ teJ teJ
By = supb; (t),By =supby(t),Bs =supbs ().
teJ teJ teJ

(Hs) : There exists non negative continuous functions /; and I such that
\fi(tz,y,2)| <1 (t), | fo(t,z,y,2)| <y (t) for each t € J and all, (x,vy, z) € R® with

L1 = sup ll (t) ,LQ = sup lg (t) .
ted ted

Our first result is based on Banach contraction principle :
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Theorem 6 Suppose that Z ATt A TN T A T and assume that the
=1

hypothesis (Hy) and (Hs) hold
If
01 (A1 + Agdr + A302) + 02 (B1 + Bayy + Bsyy) < 1, (12)

then the boundary value problem (1) has a unique solution on J.

Proof. Consider the operator R: X x Y — X x Y defined by :
R(z,y) (1) = (Ray (1), R (1)) , (13)

where

T
+ e Jy (T =) 01 (5) fi (5,(5), (619) ()., (629) (5))
e (zgl A ™ 1)
—— i iy Jy7 (1= 5)" " 0y (5) fa (5,2 (5) , (642) (5) , (652) (5)) ds
r() (E ujs;”wﬂ) j=1
(14)
and
RQZL’ (t) =
s o (= 90, () fo (5,2 (5)  (912) ()., (03) () ds + 05
+ = Jo (T =)y () fa (5,2 (5) , (912) (5), (po) (5)) ds
I‘(,B)(Z 1y T‘_l—Tn1>
e S gy i (= 5)° 0 (5) Fo 5, (5), (0402 (5)  (652) (5)) ds
o (En )
(15)
We shall prove that R is contraction mapping :
Let us set supyepo 7y f1(¢,0,0,0) = My and sup,cjo 7y f2 (,0,0,0) = My such that
01 My + 02 Mo + |x5| + |y5| (16)

o 1 — 01 (A1 + A0y + A3ds) — 05 (By + Bay, + Bsvy,)

We show that RB, C B,, where B, = {(z,y) € X x Y, ||(z,y)| <r}.
For (z,y) € B,, we have :
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|Rly( )|
w7 Jo (¢ “Hsupgeacr U1 ()] 11 (5,9 (5) . (31y) (5), (d) ()] ds

Flail + ; 1y (T =8

()| 35 Ay~ -1 n
xsupo<s<le1( 11 (5.5 (5): (919) (5) s (D) ()] ds (
+r(a)’2/\ n=l_qn— 1' rzl |/\Z| fo’ <ni - S)
X suPg<gar |1 (8)| 11 (5,9 (s), (019) (5), (doy) (5))| ds

Hence
|Riy (t)] < p(la fot —5)"" SUpogngWl (s)]
X< (1fi (5.9 () (@1y) (5). (¢2yT) (5)) = f1(5,0,0,0)| 4 | f1 (5,0,0,0)]) ds

+ || + @) in:; e fo (T — 3)(171 |SUP0§s§T (oM (3)‘
< (I (s, <sl:f<¢1y>< ), (6a1) (5 >> fl (5,0,0,0)] + |f1 (5,0,0,0)]) ds (18)
+ A Z |\i ‘foz 1; ot |SUP0§3§T (3 (5)|

PR =
X (If1 (5,5 (s), (1) (s) , (d2y) (5)) = f1(5,0,0,0)| + |f1 (5,0,0,0)) ds
Thanks to (Hz) ,we obtain

Ry (1) <
#Eﬂl) (supseio.ry a1 () [ly ()|l + supseio.ry a2 () (|61 (5) || + supieo 7y as () | dsy (s)|| + M)

* P T
+Jag| + — (suPrey a1 () 1y ()] + sup,epor az () |61 (5)]]
Ca+1)| > Ny~ =Tt
1=1

m
%1100 ZIIMW?
i=

m 1
> Aimg T =Tt ‘
i=1

+ SUDy¢0,7) az (t) |ésy ()| + Ml) + (SuPtG[OT ay (t) [ly ()]

I'(a+1)

+ S 77 @z (1) [ d1y (5)|| + supyeo 1y as (8) ldsy (s) + Ma)

(19)
Consequently,

|Ruy ()] < £l [(Ay + Agdy + Asdy) |lyll + M) + |
+ S (A1 + Asd1 + Asds) ||yl + M)

P(at1)| 3o A}~ =17

1 ll oo Z | Ailng

+ ——— [(As + Agdy + Asby) [lyl] + M) (20)

I'(a+1) Z iy =Tt

=1

™ Ta*i'*"‘"? \
< e ] 4 = (A1 + Ay + A3d2) |yl + Mi] + |23

(L -1
an —Tn—1
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which implies that
|Riy (t)] < 01 [(Ar + Agdy + Asdo) r + M| + |xg|, (0,77,

Hence,
Ry (y)]] < 01 [(Ar + A2y + Asda) v+ My + |g] .

With the same arguments as before, we have
[R2 (2)|| < 62 [(B1 + Bayy + Bavy) r+ Ma] + [yg] -

And by (22) and (23), we obtain

|R(z,y)] <
01 [(Ar + A201 + Azda) r + My| + 02 [(By + Byyy + Bsyg) r + Ma] + |5 + |y5]

Consequently,
R (z,y)|| <.

Now for (z1,11), (x2,y2) € X x Y, and for any t € [0,T], we get

|[Ruys (t) — Ry ()] <
ﬁ fot (t — 5)(171 SUPo<s<T |11 (s)]
X fi(s,51(5) . (D1y1) (5) 5 (Day1) (8)) — f1 (5,92 (5), (D192) (), (D2y2) (5))] ds

+ o (T - 5)* 'su s S
(a)‘Z/\mf 1_pn— 1' fo ( ) Po< §T|w1( )|

< 1f1 (5,91 (5) (D11) (5) (Do) (5)) = J1 (5,92 () (D112) () (B12) (5))] s

tnfl ) o1
YoMl ) (= s SUP(« s
F(a)‘Z AT 1' i:1| [ Jo" (0 ) Po<s<r [¥1 (8]

X1 f1(s,y1(s), (D191) (5), (Daun) () = f1 (5,42 (5), (D132) (5) , (Dap2) (3))| ds

Thanks to (Hs), we can write

| Ry (t) — Rl?h( )| <

le\l f
0
(wmme(Mm() Y2 ()| + supe oy az (1) |61 (s) — by ()]
+wmmT%<W%mw>¢wxﬂD@+ e VA
I'(a) ;)\mi —Tn—1

X (supreo.ry an (£) 91 (5) — v (]| + Supyegory a2 (1) (5) = 110 (5)]
+supcom @3 () |65y1 (5) — dsys (5)]]) ds + ——rr 2l > I (o

F(Oé) Zl)\in;l 1_7n-1

X supyeporp @1 () |91 (8) = y2 (8)[| + sup,epory as (t) |y (5) — ¢1yz (s)l
+ SUDy¢(0,7] az (t) [[@sy1 (5) — d3y0 (5>H) ds

Therefore,

51
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|Riy1 (1) — Ry (1) <

Walles (A + Agdy + Asb) llyr — el

n ||lep1||ooTa1 (A1 + Asdy + A385) lyr — va|
D(a+1)| > i =11
i=1

Wl 3 il (28)
= (Ay + A201 + Asd2) [|[y1 — va|

+

m
D(a4+1)| 3 At =Tt
=1

T4+ 3 [Ailng
< ||¢1||oo 1 + i=1

Cp—— (A1 + Az01 + Asda) [y — 12|
in, 1T
=1

and consequently we obtain

[ Ry (y1) — Ry (yo)|] < 01 (A1 + Azd1 + Asda) [y — vel|- (29)
Similarly,
| R2 (z1) — Ry (z2)]| < 02 (By + Bayy + Bsvy) |21 — 22| . (30)

It follows from (29) and (30) that

|R(z1,91) — R (22,90)]| <

31
[01 (Ay + Azd1 + A3dz) + 03 (By + Byyy + Bsv,)] [[(21 — 22,51 — 32) || (31)

Thanks to (12), we conclude that R is contraction. As a consequence of Banach fixed
point theorem, we deduce that R has a fixed point which is a solution of the problem (1).

The second main result is the following theorem :

Theorem 7 Suppose that Y Ainf~" # T" 1,5 p;€'" # T"' and assume that the
i=1 =1

hypotheses (Hy) and (H3) are satisfied.
Then, the coupled system (1) has at least a solution on J.

Proof. We shall use Scheafer’s fixed point theorem to prove that R has at least a fixed
point on X x Y. The continuity of f; and f (hypothesis (H7)) implies that the operator
R is continuous on X x Y.

[1x :] : We shall prove that R maps bounded sets into bounded sets in X x Y : Taking
p>0,and (z,y) € B, = {(z,y) € X xY;|(z,y)|| < p}, then for each ¢t € J, we have

| Ry (f)| <
w7 Jo (=) supgcyer [y ()] 1f1 (5,5 (5), (619) (5), () ()] ds
gl + ——m e fy (T =)

Ia) igl Ayt =Tn1

(32)

X SUPg<s<T |1 () ‘f}n(s’ Yy (), (61y) (s), (¢2y) ()| ds
+ i SNl S (= 9)"

m
Ta)| > Amy*LTn—l' i=1
=1

X supo<s<r [¥1 ()] 11 (5,4 (5) (019) (5) , (D) ()] ds
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Thanks to (H3), we can write

|I¢1l|oostu§ I (1) 1911l T Sup I (1)
Ry (t)] < < +
I (CY + 1) (a + 1) zni n—1 Tn_l

191l o Z |Ail 7 sup y (1)

ted

+ + |5 (33)
['(a+ 1) =11
T+ 22 Al
< supl (t) —P“(wl_n:ol) 1+ =1 + |xg] -
teJ a it — T
Therefore,
|Ryy ()] < Li6y + |xg] .t € [0,T7]. (34)
Hence, we have
1By ()]l < Laby + [ag] - (35)
Similarly, it can be shown that,
[ B (2)[| < Lo + o] - (36)
It follows from (35) and (36) that
IR (z,y)|| < L6y + L2 + |5 + [yo] - (37)
Consequently
IR (z,y)|| < oc. (38)

[2% :] : Now, we will prove that R is equicontinuous on J : For (z,y) € B,, and t1,t5 € J,
such that ¢; < t5. We have :

|Ruy (t2) — Ry (t1)] (39)
< ”fpiﬂffo ((t =) = (2= )7V 1 (5,.(5) . (619) (5) . (39) ()| ds

* ”ﬁb Eﬂf / (tr = 9)" 11 (5.9 () (641) (5) . (65) ()] ds

P Rl / (T = 9)" 7 [£1 (5,9/(5), (619) (5, (doy) ()] ds

F (CY) Z )‘1771 Tnil
=1
()

I («) Z )\mZ —Tn-1

S =9 06 010 9, ) (9] .
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Thus,

| Ry (t2) — Ruy (t1)|

191l o sUD 1 (£) 2|91l sUP 1 (2)

< teJ o g teJ
- (a+1) (- &)+ [(a+1)

1911l oo T sup s (t)

+ — teJ (tg,—l . t'iz—l)

Cla+1)|> )\m?’l — Tt
i=1

(tg —t1)"

1911l ; [Ail 73t sup ly (2)

+ = e’ (Lt — et (40)
T (a4 1) |3 gt =T
=1
Ly (|94 ]] 2Ly |19l a
_ - Hrlllco ta — ta __—Hrilioo t — t
F(Oé+1)(1 2)+ F(Oé+1)(2 1)
Ly |9 ]| o, T

+

0 Caps
(a+1) |3 ! =Tt
=1

Lyf[¢yllo 22 [l

+ - i=1 (t?fl o tgfl) )

(1) |35 A - T
i=1

With the same arguments as before, we get

L 2L
1Rar (1) — Raw ()] < P2 Walen (45 4 2Vl g,

I'(g+1) I'(sg+1)
+ L2 |T|n¢2Hoo Tﬁ (tgfl . t?fl) (41)
r+1) Zlujﬁ?*l — Tt
j=

La [¥alle 32 ;| €

+ (B =),

L(p+1)

> Mjf?_l —Tn=t
j=1

Thanks to (40) and (41), we can state that ||R (x,y) (t2) — R(x,y) (t1)|]| — 0 as to —
t1. Combining [1x :] and [2% :] and using Arzela-Ascoli theorem, we conclude that R is
completely continuous operator.
[3% :] : Finally, we shall show that the set {2 defined by
Q={(z,y) e X xY,(z,y) =cR(z,y),0 <o <1}, (42)

is bounded :

o4
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Let (z,y) € Q, then (z,y) = oR (z,y), for some 0 < ¢ < 1. Thus, for each ¢t € J, we
have :

z(t)=0Ry(t),y(t) =0cRex(t).

Then
O] < w0 s U () (600) (). (029) (3))] ds
tnfl T
o)+ — T - (43
r(o)| S a7 l
< sup [ (5] 1 (5.3 (5). (649) (5. (629) (5))
tn—l M4
Sy > I
F(a) 2 i771 _ Tn—-1| i=1 /

X Sup [0y ()11 (5,5 (5), (D19) (5) , (D2y) (5))] ds.

Thanks to (H3), we can write

1 [allesipl @)l T sup s (1)
—lz ()] < : + (44)
r 1
7 (a+1) I'(a+ 1) R A
14110 Z [Ail it sup by (2)
+ - +]ag) -
['(a+ 1) - Tl
Therefore,
2] Ta*ﬁ“"'”?
le(t)| <o | L1 |m=F7——=< |1+ = + |zg| | - (45)
r (Oé + 1) 2771 Tn—l
Hence, we have
2]l < o (L1b1 + |2g)) (46)
Analogously, we can obtain
lyll < o (Lab2 + |yg]) - (47)
It follows from (46) and (47) that
1@, y)|| < o (L1b1 + L2 + [g] + [y5]) - (48)
Hence,
IR (z,y)|| < oc. (49)
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This shows that the set (2 is bounded.
Thanks to [1x :], [2* :] and [3* :| , we deduce that R has at least one fixed point, which
is a solution of the problem (1).

Corollary 8 Suppose that > A\t # T 1 S ﬂjfz-l_l # T"1 and and there exist non
i=1 j=1

negative real numbers ky, ko, such that for all t € [0,T] and (z1,y1,21), (T2, Y2, 22) € R3,
we have

kv (Jer — @a] + [y — w2 + |21 — 22]),
ko (Jzy — 22| + [y1 — w2 + |21 — 22]) -

|f1(t, 21,01, 21) — f1 (L, 22,92, 22))|

<
|fo (t,x1, 1, 21) — f1 (@2, Y2, 22)| <

If
O1k1 (1 + 01 + 62) + O2ko (1 4+, +17,) < 1,

then the fractional system (1) has a unique solution on J.

Corollary 9 Assume that (H1) holds and >_ A\t #1715 ujf?_l 4 T, If there
i=1 j=1
exists two positive constants N1 and Ny such that

|fi(t,z,y,2)| < N, |fa (t,2,y,2)] < Ny for each t € J and all z,y, z € R,
then, the coupled system (1) has at least a solution on .J.

4. Examples

Example 10 Let us consider the following coupled system :
(

3 _ In(1+7) ly(®)] 1 t gt—s
D2z (t) = mze (32+t2(§*f+ly(t)|) + e Jo T Y (5)ds
t et_?s
+16(et12+1) Jo =y () ds) ,t€0,1],
8 e*ﬂ't . t —8
Dy (t) = mimme <207r1+t2 sin | (£)] + 16(ﬂ§z+1) Jo (tg L1 (s) ds (50)
me”?t t et—s
+—(ef2+167r) 5T (S) dS) ,T € [0, 1] ,
2(0) = VA[a! (0) = 0,2 (1) = 42 (1) +22 (2) + 32 (3)
\ y(O):\/§7|y’(0)|=0,y(1)=y(z)+gy(7)+gy(g)-

For this example, we have

_ |z (¢)] 1 e
fl <t7$7¢1 (‘r)7¢2 (ZE)) - 32+t2 (€_t+|$(t)|) + 18111(1—1—75)/0 2 JI(S)dS
1 tet;s
+16(et2—|—1)/0 3 z(s)ds,t € [0,1],z € R,
Rt (@) @0) = gk O]+ gy [ e

7T€7t t etfs
+(6t2+167r)/0 5 JI(S)dS,t S [0,1],JZGR.

o6
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Let t € [0,1] and z,y € R. Then
|f1 (ta Z, ¢1 (‘I) ) ¢2 (l’)) - fl (tv Y, ¢1 (y) ) ¢2 <y>>’

1 t etfs
< —|r— _ d -
S el YT Bnae 2P /O g ds|le =l
+ /t et;d |z — g
——————— sup sl e —yl,
16 (e +1) ey |Jo 3 Y
|f2 (t,l’,g@l ([E) y P2 (:E)) - f2 (t»y7901 (y) y Pa (y))|
1 Pt —s)
< — |z — _ d —
S Srre Y e o] /0 g ds|le =l
N 7T€7t /t etfsd | |
———— sup sl |z —yl|.
(et +167T) tefo,1] |Jo 5
So, we have
In (1+¢) e
t S N ) e —
v () 17 (1 + 12) Y2 (0) 201/1 + t2
¢ s t t—s
w; = Sup/e ds,wgzsup/e2ds,
tel0,1] [Jo 2 tel0,1] [JO 3
t t t—s
t_
wy = sup /( S)ds,zEg:sup /e ds|,
te0,1]Jo 3 tef0,1][Jo D
1 1 1
al) = HrreO=gunary®W = Gy
1 1 me !
bhi(t) = ——.0(t)=———=.5(t) = ——7.
1) el 16 (72 + 1) 3 (¢) (e* + 167)
It follows then that
A L A ! A L 0.8591 0.2863
! 327777 182 327! e ’
1 1 T 1
B = — By=—+—— By3=——— = = 0.6320
LT 0 P T 6 (k) T 1 16n T ™

[eby]l. = 0.0407, [|¢b,]l. = 0.0245,0; = 0.0307, 6, = 0.0891.

and
[91 (Al -+ A2w1 + AgCL)Q) + 92 (Bl + ngl + Bg@g)] = 0.0108 < 1.

Hence by theorem 8 then the system (50) has a unique solution on [0, 1].
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