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1. Introduction

Wind generation is one type of renewable energy resource that has been the focus
of renewable energy profile in states with strong wind resources [17, 22].Practically, the
doubly fed induction generators (DFIG). Sensorless vector control systems for Doubly
Fed Induction Generators (DFIG) baeced wind turbine. Have been previously published
by several researchers. Most of the earlier work is based on open loop methods, where
the estimated and measured rotor currents are compared in order to derive the rotor
position. The estimation of the rotor flux and speed is based on an adaptive observer.
The controlled quantities are calculated using stability analysis based on Lyapunov theory.
For controlled of DFIG, the parametric variation modifies the performances of the control
system when we use a control law with fixed parameters [3, 25]. However, the performances
will be degraded to high speed of wind turbine. To offer control robustness, the Variable
Structure Control possesses this robustness. This problem can be remedied by replacing
the switching function by a smooth continuous function [6]. The sensorless control method
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is implemented by Matlab/simulink and several steady results are given and confirm the
validity of the approach.
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Fig. 1 — Configuration of a DFIG wind turbine system

2. System Modelling

2.1. Model in a-b-c coordinate reference frame
The DFIG can be modelled as following where the voltage equations of stator and rotor
can be expressed using matrix notation by [10, 18] :

v = R+ 0 )
] = (R[] + D &)

Where : the vector of voltages, currents and flux of stator and rotor windings are
respectely.

Vil = [Via Vas Vael's Vil = Via Vi Vil
[IS] - [Isa 1 ISC]tv [Ir] - [Ira L Irc]t

[ws] = [wsa 1/}sb ¢sc]t7 [wr] = [¢ra wrb wrc]t

The stator and rotor resistances matrices are given by
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R, 0 0 R, 0 0
R)J=1|0 R, 0 |,[R]=] 0 R, 0
0 0 R, 0 0 R,

Where : R, and R, resistance of stator and rotor windings. The instantaneous stator
and rotor flux per phase are given by :

[ws] = [LSS] [IS] + [Msr] [[r] (3)
(W] = [Low] (1] + [ M) [ 1] (4)
Where :
Laa Lab Lac LAA LAB LAC
[Lss] — Lba Lbb Lbc s [er] - LBA LBB LBC (5)
Lca ch Lcc LCA LCB LCC

The mutual inductances matrix can be written :

cos (6,) cos (0, + %) cos (6, — &)
[M,] = M, | cos (6’T — %“) cos (6,.) cos (0, + %“) (6)
cos (0, +3F) cos (0, — &) cos (6,)

Where :

M, : stator/rotor mutual inductances

L, ,Lg : rotor and stator winding inductances.

Replace the relations (3) and (4) respectively in equations (1) and (2); we obtain the
following two expressions : [1, 2, 9]

SN

Ve = [R] (L] + [Les) & [1] + Z[M)' 1]

t

The electromagnetic torque is given by the following general expression [11, 12] :

d[My] (1]
dt
2.2. Modeling of DFIG with rotor short-circuit fault modeling
The modelling of DFIG rotor inter-turn short-circuit fault is similar to the previous
case following the same steps.
The new form of rotor voltages equations are rewritten as follows : [ 11, 12]

Oem =D [Is]
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[V;“] = [V;“a Vi Vie V;"d]ty [Ir] = [Im Ly L. Ird]t

[wr] = [¢ra wrb ¢rc Qzbml]t

The rotor resistance matrix can be rewritten as follows : [7, 19]

(1=~ R.- 0 0 ~.R,
0 R, 0 0
0 0 0 ~.R,

We will have the new inductance rotorique matrix following :

(1—7) 52 052 (1 —y)
‘ _a 12 ! _2
[Lir] = Lgrediag [(1=~) 11A]+ M, | 42, ) Cd (10)
2 2 2
T1-7v) -3 -3

And the matrix of mutual inductances is : [4, 20]

(1 —7)cos(#,) (1—-)cos (Qr — %’T) (1 —~)cos (GT + 2?”)

B cos (0, + %) cos (6,) cos (6, — 2)
[M,] = M cos (0, — %) cos (0, + % oS (9r)3 (11)
7y cos (6,) ~ cos (HT — %”) ~y cos (HT + 2?”)

3. Vector Control of DFIG

In order to establish a vector control of DFIG, we recall here its modelling in the Park
frame. The equations of the stator voltages and rotor of the DFIG are defined by : (1)
and (2)

Vis = Rs.igs + % [wds] wsqu
‘/’15 - Rs‘iqs + % |:qu1| + wswds (12)
Vdr = Rr-idr + % [¢dr] - w?”¢qr
‘/:17” = Rr‘iqr + dt [¢qr] + wr¢dr

The equations of stator and rotor flux are given as follows : [21, 23]

2bds = Ls~ids + Msr-idr
Vyo = Lavigs + Maigy

. . 1
wdr = Ly.igr + Mys.igs ( 3)
Vor = Lyvige + Myigs
The electromagnetic torque can be expressed by : [16, 15]
MS'I‘
Cem =p Lr (77Z)ds]q7’ - quIdT) (14)
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We obtain Tthe rotor voltages as a function of rotor currents as follows :

‘/clr:[Rr""(L— 2)S}Idr ng(Lr—]\g—%>Iqr

(15)
Vo = | Bt (Lo = 250 ) 8] Ior + g (L = 2 ) L + guog Mt

The generator is connected directly to the power network side of the stator over the
rotor circuit the power network from the stator side, the rotor circuit is powered by a DC
source assumed constant through an inverter controlled by the PWM technique (Fig.2).
gives. We will adopt conventional controllers (PI) necessary to achieve control of reactive
power and adjusting the speed of the DFIG. The control of rotor currents is done by
regulators Proportional Integral (PI) controllers. A PI controller is also used for adjusting
reactive power controller, as shown in the figure (2). [13, 14].
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Fig. 2 — Block diagram of speed and reactive power controls of DFIG

4. DFIG in State Space

From equations (1) and (2), the dynamic model developed of the DFIG under the
stationary (af3) reference is obtained as follows :

dios __ 1 L2 1 L

= (Rs + Rrﬁ ias + ——R. =% 5 P (I>5T —svas + L STovar
digs 1 ; o Ly 1 Ly

dt ~  oLs R + RT L2 ZBS O’st (pc”" + O'LSRT L2 (1)67" + UBS + O'L L Uﬁr
ddar _ RZLmzas — —<I>a'r’ — wdpr +var

dt
—dq;fT = frlmigs — B o + wdar + vfr

The model of the observer is written frame. [5, 7, §]
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Y =CX
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R,
We define
w=w-—w (17)

The symbol A denotes estimated values and G is the observer gain matrix. We will
determine the differential system describing the evolution of the error

e=X-X (18)

The state matrix of the observer can be written as

A=A+0A (19)
With
00 0 +L42 5w
T AR 2
00 +ow 0

Then, we can write

ax .. .
= =AY+ BU+G (Y—Y)
de .

% _(A- _§AX

= (A-GC)e—0

We define the Lyapunov function

(6w)®
A
A is a positive scalar.

This function should contain terms of the difference and to obtain mechanism adapta-
tion. The stability of the observer is guaranteed for the condition

av
dt

V=cle+ (21)

<0
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We obtain the adaptation mechanism in the form

t
Lo /- i
o= / A [T <q>ﬁ5 Cins — Dar ems)] dtt (22)
0

The matrix of gain G is selected such as the eigenvalues of the matrix A-GC .
The estimated electromagnetic torque is expressed

A 3 Ly,

Ce ==
V'L,

5. Sliding Mode Observer

(Garias — Dorias) (23)

5.1. Principle of a sliding-mode observer
We consider nonlinear system of the form : [19, 26]

i(t) = f(x(t),u(t))
{ y(t) = Cx(t) (24)

where

re R ue R™

y € RP

We assume that the system is observable, for the system (28), we define the observer
by sliding mode by : [24]

&= F(E(t), ut)) + AL (25)

Or z € R", A € R™? is the matrix of the observation gains to be specified and is the
vector of discontinuous sign :

I, = Sign (S) = [sign (s1) , sign (s3) .....sign (s,),] * (26)
Where is the classic sign function and is the next slip surface

S = NCT = [s1, Sg......5p) (27)

T=x—1 (28)

Or N € RP*F is a matrix to be specified
Thus, the dynamics of the observation error becomes :

&= f(x,u) — f(&,u) + AL (29)
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5.2. Sliding mode observer applied to the DFIG
The sliding mode observer proposed for the estimation of the DFIG flows :

N RrLim Lo 4 1
Ty = awy + iy + SR Eps + Sp-Var + AT,

r

A Loy RyLoy » 1

Ty = awy — Hriaprs + TEmEs + Vs + AT,

N R.L R~ R

By = felmyy — friy — Gapas + var + AT (30)

R,L Ry, 4 A
By = Telmyy — friy — B3pas + v + AL

Ly
\ 3?‘5 = d(i’gl’g — §74i'1) — % — f7U$5 =1 (1‘5 — i’5) -+ A?;IS

1 L?
a (RS + Rr—m)

~ oL, L2
b=oL,L,
L2
— 1 m
4 L.L.
With

~

T = [ las iﬁs (I)oa“ qA)ﬁr wr }
?) = [ fzas iﬁs wr ]
I, = [ sign (S1) sign (Ss) }T

{Slzl‘l—i'l

52:.112—52’2

S1 and Sy represent the sliding surfaces.
The gains : ¢, AT, AT, AT AT, Al are calculated to ensure the asymptotic convergence
of the error estimate. They are given by :

AT 6 O B 1 a  —kpxs
[Ag}_D [0 02 andD—<a2+(kpx5)2) kpxs  «

FRARICEDIEFICR)

01 02

Sach as :

01 > |e3ax
52 > |€4|

max
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@ >0
(]3>0
qs >0

The residual signal is calculated as follows, r = [y — §] and we define as the detection
threshold (lower limit).

6. Simulation Results

The technique presented has been implemented in the MATLAB /simulink. The simu-
lation test involves the wind speed variation and the reactive power reference constant
equals to zero, as shown in the table below :

Table 1 — Variation of wind speed

t(s) 0 |4 |7
V (m/s) |12 ]17] 16
Qsrey (var) [0 |0 |0

6.1. The healthy operation
To illustrate the performance of the proposed sensorless control, we will study several
modes of operation. The first mode corresponds to the over speed operation. Then we treat

the healthy functioning. Finally, we will study the impact of the following disturbances :
high speed.
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Fig. 3 — Rotation speed and electromagnetic torque of the DFIG
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Fig. 4 — Active and reactive stator power with variation of wind speed
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Fig. 5 — Park’s rotor currents (i,q4,,,) with variation of wind speed
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Fig. 6 — Stator currents (/,,, [s3) with variation of wind speed
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6.2. Operation with high speed
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Fig. 7 — Variation of wind speed and rotation speed of the DFIG
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Fig. 8 — Active and reactive stator power
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Fig. 10 — Stator Current (154, Is3)

6.3. Interpretation of results

The present rotational speed of the ripple relative to the healthy operation is noted.
The active and reactive stator power and the direct and quadrature rotor currents and
the stator phase current have oscillations of higher amplitudes than those corresponding
to the healthy operation. Consequently, the control with sliding mode observer has good
performances of robustness and precision of operation in degradation against high speed.

6.4. Spectral analysis in the DFIG
6.4.1. Introduction

In this section we will present the application of the technique of three-phase stator
current spectral analysis, of the Park vector module for detection of the DFIG. The
simulations are made for a supposedly constant wind speed equal to 12 m/s and the
reference reactive power Ovar. the calculation is performed under the MATLAB/Simulink
environment with a calculation step of 0.03ms.

6.4.2. Spectral analysis of the current of the stator phase "a"
(Fig.11), We notice that the spectrum of the three-phase stator current appear harmo-
nics (close to the fundamental) which corresponds to the supply frequency fs = 50H z.

140

120 foooeeees e O — - N
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e Y M 1 et | 8 aiin B 14 it ”

40 e I -_Mahsitiititoi”iill : e b B

20 I i i i i
[5] 50 100 150 200 250
frequence(Hz)

Fig. 11 — Three - phase stator current spectrum
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7. Conclusion

A new approach to doubly-fed induction generator (DFIG) based wind turbine modeling
has been presented. It can be readily applied for the analysis of healthy of the DFIG. The
global control scheme introduces high performances of robustness ; stability and precision,
particularly, under uncertainty caused by load variation. Furthermore, this observation
method presents a simple algorithm that has the advantage to be easily implantable in a
calculator. The sliding mode observer uses an adaptation mechanism for the rotor flux and
speed estimation. This approach relies on the improvement of an estimation of the rotor
flux components and rotor speed. The estimation of the rotor flux has well made more
robust and more stable the DFIG based Vector Control. Through simulation strategy has
been validated steady-state conditions by Matlab/simulink.
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Appendix 1 - Wind Turbine Parameters

Rated power : P, = 7500

Moment of the inertia : J = 0.31125kg.m?
Wind turbine radius : R = 3m

Gear box ratio : G =54

Air density : p = 1.25kg/m?

Appendix 2 - DFIG Parameters

Rated power : 7500/

Mutual inductance : L,, = 0.0078 H
Stator leakage inductance : L, = 0.0083H
Rotor leakage inductance : L, = 0.0081 H
Stator resistance : Ry = 0.455(2

Rotor resistance : R, = 0.62()

Number of pole pairs : P = 2

Moment of the inertia : J = 0.31125kg.m>
Viscous friction : fv = 0.00673kg.m?.s~!
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