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1. Introduction

The fractional integral inequalities play a fundamental role in the theory of defferential
equations and applied sciences. These inequalities have various applications in applied
fields such as transform theory, numerical quadrature, probability, and statistical pro-
blems. Recently, by applying the fractional integral operators, many researchers have
obtained a lot of fractional integral inequalities and applications. For details, we refer to
[ 1,3, 4,5,8,9, 10, 11, 13, 14, 15, 16, 17] and the references therein. Z. Dahmani et
al. [ 6], Z. Dahmani [ 8], and A. Anber et al. [ 1], established some new fractional in-
tegral inequalities by using the Riemann-Liouville fractional integral operators. Also, V.
Chinchane et al. [ 4], W. Yang [ 19] and Z. Dahmani et al. [ 7] derived some fractional
integral inequalities involving Hadamard fractional integral operators, Saigo fractional in-
tegral operators and fractional g—integral operators. Motivated by the results presented
in [ 6, 8], we prove some new weighted fractional integral inequalities using Hadamard
fractional integral operator.

2. Hadamard fractional calcul

In the following we will give some necessary definitions and mathematical preliminaries
of Hadamard fractional calculus which are used further in this paper. More details, one
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can consult | 2, 12, 18].

Definition 1 The Hadamard fractional integral of order o € Rt of a function f(t), for
all t > 1 is defined as
t

wJt 1f O] := g [ (o8 4 By (2.1)

where I' (o) := [e "u* " du.
0

Proposition 2 If0 < a < 1, the following equality holds

gJ¢ (logt)" := % (log t)*T#~+ . (2.2)
For the convenience of establishing the results, we give the following properties

wli w B [ O):= w7 IF ) (23)
and

wIf 5y [ O):= wdi w2 1 ()] - (24)

3. Hadamard fractional integral inequalities

In this section, we prove some new weighted fractional integral inequalities concerning
the Hadamard fractional integral.

Theorem 3 Let f and h be tow positive and continuous functions on [1,00) and let
w : [1,00) = R be a positive continuous function. Then for all t > 1, we have

w7 [ (8) £747 (8] [ (8) 7 (1) £ (1)]
> fw (1) 240 (6] I [w (£ b (1) 12 (1)), (3.1)

where a >0, 6 > 60 >0, 0 > 0.

Proof. Consider

F(t,z) = o (log 1) 2@%@) 50, 050, we(1,t); t>1, (3.2)

ﬁ( T T

Since f and h are tow positive and continuous functions on [1, 00) , then for all x,y € (1,1);
t > 1 and for any o > 0, 6 > 0 > 0, we have

(A7 () f7 () = b7 (2) £7 () (£ (@) = £ (y)) = 0, (3-3)

By (3.3), we write
h? (y) £ (@) + 17 (2) £77070 (y)

> h7 (y) f7 () 00 (y) + h7 (x) f7 (y) 70 (2).

We observe that the function F (¢, z) remains positive, for all z € (1,¢); ¢ > 1. Multiplying
both sides of (3.4) by F (¢, z) and integrating the reslting inequality with respect to  from
1 to t, we obtain

e (y) mJ7 [w (@) 47 (O] + 75770 (y) w7 [w () B (1) [0 (1)]
>0 () £270 (y) w3 [w (@) £ O] + £ (y) w7 [w (@) he (8) £ (1)] -
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Now, multiplying both sides of (3.5) by F'(t,y) and integrating the reslting inequality
with respect to y from 1 to ¢, we have
w i [w () £ ()] w7 [w () () f° (1))
+ o [w () 0 () O (O] I [w(t) £ ()]
> g7 [w () 0] wIf [w ()R () £ ()]

+ i [w (@) R (1) ()] wJi [w () 7).

which implies 3.1.
We also present the Hadamard fractional result using two fractional parameters :

(3.6)

Theorem 4 Let f and h be tow positive and continuous functions on [1,00) and let
w : [1,00) = RY be a positive continuous function. Then for all t > 1, we have

alJy [w @) b (t) 2 ()] wJp [w () £ (t)]

+ g Jf [w (@) b () £ )] wdy [w(t) 27 (1)

(3.7)
> i [w(@)he () f2 ()] wldf [w(t) f70(t)]
+ 7 [w (@) R (6) £ (0] wdy [w () F70(1)]
where « >0, 3>0,0>60>0,0>0.
Proof. Multiplying the inequality (3.4) by G (t,y), y € (1,t); t > 1, where
B—1
G(t,m):ﬁ(logi) %f‘g(y),ﬂ>0,9>0,y€(l,t);t>l- (3.8)

Integrating the reslting inequality obtained with respect to y from 1 to ¢, it yields that
£ (@) ey fw () he (6) 0 (O] + 02 (2) w7 [w(t) 21 ()]
(3.9)

> [ (x) wdy [w(@) b7 () £ (O] + 07 (2) 270 (@) w ] [w (1) f7H0(2)] -

Multiplying both sides of (3.9) by F' (t,z) and integrating the reslting inequality with
respect to x from 1 to ¢, we observe that
iy [w ()b (1) £ (O] i [w (@) £ (#)]
+ 7 [w (t) £ @] w7 [w () b (8) £ (2)]
(3.10)
> g} [w (@) he () £2 ()] [w(t) f70 (1)

+ o d?Y [w () £ ()] wde [w @) R () £2(1)] -
which implies (3.7).

Remark 5 If we take for o = 3, in Theorem 4, we obtain Theorem 3.
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We give also the following Hadamard fractional integral inequality :

Theorem 6 Let f and h are tow positive and continuous functions on [1,00) such that f
is decreasing and h is increasing on [1,00), and let w : [1,00) — R be a positive conti-
nuous function. Then for all t > 1, the following Hadamard fractional integral inequality
holds

u i [w(t) £ ()] wJ [w(t) b (1) £ (t)]

>y [w (@) b (1) 2 (O] wdp [w@) £ (@)]

forallaa>0,6>60>0,0>0.

(3.11)

Proof. Since f and h are tow positive and continuous functions on [1,00) such that f
is decreasing and h is increasing on [1,00), then for all § > 0 > 0, 0 > 0, z,y € (1,1);
t > 1, we have

(h? (y) = h? (2)) (£~ (x) = " (y)) 2 0, (3.12)
which implies that,
h (y) fO70 (@) + 17 (@) [0 (y) = h7 (y) 00 (y) + 7 () 0 (2) . (3.13)

Multiplying both sides of (3.13) by F'(¢,z) and integrating the reslting inequality with
respect to x from 1 to ¢, we get
he (y) i [w (@) £ O] + 70 () wdi [w(t)h? (#) £ (1)]

(3.14)
> 07 (y) 0 (y) wdi [w @) (O] + wf [w ) () £ (1)
Then we can write
a7 [w (t) O (8)] i [w () h? () £ (1))
+ g Ji [w (@) R () £ ()] w7 [w () (1)
(3.15)

> pdi [w () [ (O] w7 [wt)h (1) f2 (1))

+ i [w @) 7 (@) £ ()] wli [w(t) £ ()]
which implies (3.11).

The previous result can be generalized to the following :

Theorem 7 Let f and h are tow positive and continuous functions on [1,00) such that
f is decreasing and h is increasing on [1,00) and let w : [1,00) — R be a positive
continuous function. Then for all t > 1, we have

aldy [w () he (8) £ (8)] g [w(t) 2 (t)]
+ g J [w (@R (@) )] wdy [w(t) £ (t)]
(3.16)
> gy [w(t) f7 )] mJg [wt)h () ()]
o2 fw @) fO )] wP fw ) he (8) f2(1)],
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where « >0, 3>0,0>60>0,0>0.

Proof. Multiplying the inequality (3.13) by G (t,y), we can write
Fo0 @) wdy [w (8 R (8) £ ()] + b7 (@) i [w (t) (1))

(3.17)
>0 (y) £ (y) wd? [w (@) £ (O] + w7 [w (8)h () £ (1)] -
Consequently,
i [w @ h7 (@) £ O] i [w (@) £ (1)
+ oy [w () fO(8)] wdi [w ()R (t) £ (1)
(3.18)

> ) [w (@) )] wJ [w(t)he () £ ()]
+ i [w ()R (#) £ ()] w7 [w (B) O (1)),
which implies (3.16).

Remark 8 Tuking oo = 3, in Theorem 7, we obtain Theorem 6.

Now, we estalish some fractional results using a family of n positive functions defined
on [1,00).

Theorem 9 Let f;, i = 1,....,n, and h be positive continuous functions on [1,00) and
w : [1,00) — Rtis positive continuous function. Then for all t > 1, a > 0, the fractional
integral inequality

a5 [0 (0 F777 0 T £ O] g [w (8 b () TTy 1 (1)

(3.19)
> dp w0 () f7 (O T S O] T [w (@) f7 (0TI % ()]
is valid, for allo > 0,0 > 0, >0, k€ {1,...,n}.
Proof. Let us consider
‘ 1 (1o )L e@ T @) g : .
F*(t,z) = Ta) (logx) = , 0, >0ie{l,.,n}, ze(1,t); t>1.
(3.20)

Let z,y € (1,t);t > 1 forany 0 > 0,0 > 6, > 0,k € {1,...,n} . Then we have
(0 () g (@) = b (@) fg () (S @) = ;7% ) =0, (3.21)
It follows that

he (y) £ 770 () + he (@) F770 ()
(3.22)

> 17 (y) f7 (2) [~ (y) + b7 (@) J7 (o) i ()
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Multiplying both sides of (3.22) by F* (¢,x) and integrating the reslting inequality with
respect to x from 1 to ¢, we obtain

B (y) s [ () £ () Tl £ (1)

HAETT () mTY w () R () T, % (1)

(3.23)
> 1 (y) S () e [ (0) J7 (0 TTm S (1)
FF7 ) g (@) b (0) £ 0TI S ()]
The integration of (3.23) gives
[0 (0 777 () Tl £ O] g [w (8 b (4TI, £ (1)
g [w (0B O T O] wlt [w (@) 57 0TI £ 1)
(3.24)

> g fw (@) f7 O TT S O] w2 [w (8 b (8) 2.0 T £ ()]

g [w @R (@) O T 0] 072 [0 @) 17 (0TI £ 0]

This ends the proof.
We shall futher generalize Theorem 9 by considering two fractional positive parameters :

Theorem 10 Let f;, i = 1,...,n, and h be positive continuous functions on [1,00) and let
w : [1,00) = RY is a positive continuous function. Then for anyt > 1 and o > 0, > 0,
we have

wd? [w @ h OTLL S 0] adp [w ) f77 O T £ ()]

wt [w (@) h (O T S8 O) + w? [w(®) 57 O Tl £ )]

(3.25)

> [w O 8 0 £ 0 T £ 0] i w0 £ OTIL £ 1)

Ja [ Lo 5 n 0; J'B o n 0;

wdf jw () e () [ O T 7O + wdy [w @) f7 O TLL £ 0]

where 0 > 0,0 >0, >0, ke {l,...,n}.

Proof. We multiply the inequality (3.22) by G* (¢,y), y € (1,t); t > 1, where

| )T e I, £ w) :

G* (t,y) :== NG <log§> —es 0;>0,ie{l,..,n}, ye(l,t); t>1,

(3.26)
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and integrating the reslting inequality obtained with respect to y on (1,t), we can write
o+o— o n i
T (@) w] [w (8 h () T, £ (1)]

07 (@)t} [ (®) £ (0 T £ 1)
(3.27)

> fg (@) wd [w @) (@) £ 0TI S ()]

+h? (2) fi " @) w ) [w () 7 O TTL, £ ()] -

Now, multiplying both sides of (3.27) by F* (t,z), z € (1,t), t > 1, and integrating the
reslting inequality with respect to x from 1 to ¢, we obtain

I [w (O R O TTL £ (0] wli [w (0) 557 O T S (1)

g [w ) 547 O Tl S0 )] wli [ (07 () Ty £ (1)
(3.28)

> f [0 ()0 () 7 0TI £ (0] w72 [ (0) S ()T £ (1)

] [ () f7 O I £ (0] wg [w (@) ke (1) 550 TI S ()]

The proof is completed.
Remark 11 For o = 3, Theorem 10 immediately reduce to Theorem 9.
Another generalization is the following fractional inaquality :

Theorem 12 Let f;, i = 1,...,n and h be positive continuous functions on [1,00), such
that h is increasing and f;, i = 1,...,n are decreasing on [1,00) and w : [1,00) — RT.
Then for allt > 1 and a > 0, we have

wJg [0 @) £ O T £ ()] g [ (0 b (0TI 1 (1)
(3.29)

> df ()0 () £ () T £ )] e [ 0TI, £ (8)]
where 0 > 0,0 >0, >0, ke {l,...,n}.
Proof. Using the conditions of Theorem 9, we can write
(h () = b (@) (£ @) = [ W) 20, (3.30)

for any z,y € [1,t];t>1,0>0,6 >0, >0, k€{1,...,n}.
This implies that
he (y) fi % (@) + b7 (2) £y () = b2 (y) f ™ () + 07 () i7" () (3.31)
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We multiply (3.31) by F™* (¢, ) then integrate the reslting inequality with respect to = on

(1,%), we have

B () it [ (1) £ () TTig £ (0)]
A ) T (0 (0TI £ (2]
(3.32)
> 17 (y) S (y) wdf [w (0TI, % (8)]

g [w (@) (@) F () T S (1))
The inequality (3.32) implies that
i |w (8 £ O T 2 0] g [w (8 b () T £ )]

+ g [w (O R @O T (O] we [ (@) 20O T £ 0)]
(3.33)

> g [w @ TT £ O] g [w (8 h (8) 2 (0 T 1 ()]

g w0 b (0) £ O TI S (0] 12 [w O T, % 0]

The ends the proof.
We also present the following result for the Hadamard fractional integral with two

parameters :

Theorem 13 Let f;, i = 1,...,n and h be positive continuous functions on [1,00), such
that h is increasing and f;, i = 1,...,n are decreasing on [1,00) and w : [1,00) — RT.

Then we have

[0 () f O TTi £ (0] g [ (1) b (1)L S ()]

ol [w(0) O L 2 O] w? [w () b (TLy 17 (1)
(3.34)

> I [w @) 87 () £ O T % 0] T [w () T £ (1)
s [w O (@) f5 O T S (0] wd? [w ) T ()]
forallt>1, a>0,8>0,0>0,6>0,>0,ke{l,..,n}.
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Proof. Using (3.26) and (3.31), we can write

0 () df [w (0 b () T S (1)
R (@) g [ (8) S2 (O T S (

1)
> g [w () b (8) 20 TThs S ()]

(3.35)
+h7 (@) £ () T [ (0TI £ ()]
By (3.20) and (3.35), we have
a0 |w (0) 50 T S0 0] T2 [ (8 b (O T, 12 ()]
+ ] [w @B OTTL, % 0] wdt [w @) £ T £ ()]
(3.36)

> ) [ (O T £ ) s [0 087 @) F2 () Tl £ ()]

] w ()R () f7 (O Tl S O] T [w O TTL, 1 (8)]

This completes the proof of Theorem 13.

Remark 14 If we take o = 3, in Theorem 13, we obtain Theorem 12.
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