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ABSTRACT

The present investigation is concerned with the eigenvalue approach in a
homogeneous, isotropic nonlocal microstretch thermoelastic circular plate
with three phase lag model subjected to thermomechanical sources. The
components of displacements, microrotation, microstretch, temperature
distribution, normal stress, shear stress and couple shear stress are ob-
tained in the transformed domain by using the Laplace and Hankel trans-
forms. The resulting quantities are obtained in the physical domain by
applying numerical inversion technique. E¤ects of nonlocal, phase lag, re-
laxation time, with and without energy dissipation are analyzed on the
resulting quantities numerically and illustrated graphically.

c
2014-2018 LESI. All rights reserved.

1. Introduction

The nonlocal elasticity theory of continuum mechanics has received more attention
recently. The basic idea behind the nonlocal theories is that the interacting forces between
material points are far-reaching in character. The nonlocal theories are di¤ering from the
local theories by taking into account the master balance laws which is valid only on the
whole body. In many cases, such as in phonon dispersion in solid, in fracture mechanics,
in surface physics, in electromagnetic solids, the nonlocal e¤ects are dominant and only
the nonlocal theories might provide the right answer, while local theories would fail.
The nonlocal elasticity theory can be employed to determine the dispersion relations of
elastic crystals, faithfully in the entire Brillouin zone. The physical phenomena involving
microscopic internal characteristic length should be predictable by means of the nonlocal
elasticity.
The nonlocal theory takes into account nonlocal e¤ects hitherto almost entirely neglec-

�Email : rajneesh_kuk@redi¤mail.com
yEmail : miglani_aseem@redi¤mail.com
zEmail : rekharani024@gmail.com

25



R. Kumar et al./ Med. J. Model. Simul. 09 (2018) 025-042

ted in the mechanics of continua. In this theory, the various physical quantities de�ned
at a point not as a function of the values of independent constitutive variables at that
point only but as a function of their values over the whole body. Eringen and Edelen
(1972) and Eringen (1972) investigated a nonlocal theory of elastic solids. In this theory,
the balance laws contain nonlocal residuals of �elds and these residuals are determined
with the constitutive equations which are the basis of certain invariance requirements and
thermodynamic restrictions. The constitutive equations and the nonlocal residuals are
functional of the motions and deformation gradients of all points of the body. A recipro-
cal theorem and two variational principles characterizing initial boundary value problems
are presented by Altan (1990). Wang and Dhaliwal (1993) established a work and energy
theorem and a uniqueness theorem without making any de�niteness assumptions about
the elastic moduli and also investigated a reciprocal theorem. Povstenko (1999) presented
the nonlocal theory of elasticity and its applications to the description of defects in solid
bodies.
Paola, Pirrotta and Zingales (2010) presented the variational formulation of the pro-

blem to describe the mathematical consistency of the proposed model of the linearly
elastic problem and also discussed the virtual work theorem in the presence of long-range
interactions chracterized by range dependent nonlocal interactions. Carpinteri, Cornetti
and Sapora (2014) used the spatial fractional calculus to investigate a material whose non-
local stress is de�ned as the fractional integral of the strain �eld. Pandey, Nashalm and
Holm (2015) applied the framework of tempered fractional calculus to discuss the spatial
dispersion of elastic waves in a one dimensional elastic bar. Koutsoumaris, Eptaimeros
and Tsamasphyros (2017) formulated the nonlocal continuum theory, either integral or
di¤erential form which is widely used to explain size e¤ect phenomena in
Corresponding Author : email-rekharani024@gmail.com
micro and nano structures. They investigated the static response of a beam by making

use of modi�ed kernel and the kernel corresponding to the two phase nonlocal integral
model with various types of loading and boundary conditions. Liew, Zhang and Zhang
(2017) presented a literature review of recent research studies on the applications of
nonlocal elasticity theory in the modeling and simulation of grapheme sheets.
Eringen (1974) derived the basic equations of nonlocal thermoelasticity. Balta and Su-

hubi (1977) also derived the constitutive equations of the heat conduction with the se-
cond order temperature rates. Inan and Eringen (1991) studied the wave propagation in
thermoelastic plates within the context of nonlocal thermoelasticity theory. Wang and
Dhaliwal (1993) derived the work and energy equation in a generalized nonlocal thermoe-
lasticity and also proved that the initial boundary value problem has a unique solution.
Ezzat and Youssef (2013) studied the in�uence of the Thomson heating and the Fou-
rier�s heat conduction on half space thermoelectricity solid in the presence of magnetic
�eld subjected to a thermal shock. Zenkour and Abouelregal (2014) constructured a new
model of nonlocal thermoelasticity beam theory with phase lags subjected to a harmoni-
cally varying heat considering the thermal conductivity to a variable. Yu, Tian and Xiong
(2016) established a size dependent thermoelastic model for higher order simple material
by adopting both the size e¤ect of heat conduction and elasticity with the aids of extended
irreversible thermodynamics and generalized free energy.
Roychoudhuri (2007) investigated a three phase lag model by taking the heat conduc-
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tion law that includes temperature gradient and thermal displacement gradient among
constitutive variables in the theory of coupled thermoelasticity. This model is an extension
of the thermoelastic models proposed by Lord Shulman (1967) and Tzou (1995a, 1995b).
Kumar and Chawla (2013) studied the propagation of longitudinal and transverse waves
at the interface between uniform elastic solid half space and thermoelastic solid with three
phase lag model. El-Karamany and Ezzat (2013) established the uniqueness and recipro-
cal theorems and variational principle for the three phase lag micropolar thermoelasticity
theory. Othman, Hasona and Abd-Elaziz (2015) studied the e¤ect of the rotation and
initial stress on a two dimensional problem of micropolar thermoelastic isotropic medium
with three phase lag theory. Zenkour (2016) presented the generalized thermoelasticity
theory based on the dual phase lags theory to describe the problem of a thick walled sim-
ply supported beam with di¤erent applied heat source and mechanical loads. Kartoshov
(2016) presented a mathematical theory for boundary value problems of nonstationary
heat conduction by using dual phase lag and also presented the features of analytical
solutions of such heat problems. Marin, Agarwal and Coarcea (2017) established a uni-
queness and reciprocal theorem for a three phase lag dipolar thermoelastic body and also
proved variational principle. Ezzat, El-Karamany and El-Bary (2017) presented a ma-
thematical model of two temperature Green-Naghdi thermoelasticity theories based on
fractional derivative heat transfer with phase lads. Othman and Mansour (2017) studied
the deformation of thermoelastic half space under magnetic �eld, gravity, rotation and
hydrostatic initial stress in the context of three phase theory of thermoelasticity.
In this paper, we investigated an eigenvalue approach for a homogeneous, isotropic

nonlocal microstretch thermoelastic circular plate with three phase lag model subjected to
thermomechanical sources. The expressions of components of displacement, microrotation,
microstretch, temperature distribution, normal stress, shear stress and couple shear stress
are obtained in the transformed domain by using the Laplace and Hankel transforms.
These expressions are obtained in the physical domain by applying numerical inversion
technique. We have depicted the e¤ects of nonlocal, phase lag, relaxation time, with
and without energy dissipation on the resulting expressions. The resulting quantities are
presented numerically and illustrated graphically.

2. Basic equations

Following Eringen (1999, 2002) and Roychoudhuri (2007), the constitutive relations for
nonlocal microstretch thermoelastic medium in the absence of body forces, body couples,
heat sources and extrinsic equilibrated body force are taken as�

1� "2r2
�
tkl = tCkl = [�0 (x) + �"rr (x)] �kl + (�+K) "kl (x) + �"lk (x)� �rT (1)

�
1� "2r2

�
mkl = mC

kl =
�
b0"mlk ;x (x) + �
rr (x)

�
�kl + �
kl (x) + 

lk (x) (2)

�
1� "2r2

�
�k = �Ck =

�
�0 ;k (x) + b0"klm
lk (x)

�
(3)
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�
1� "2r2

�
(s� t) = (s� t)C = �1 (x) + �0"kk (x) (4)

�T0 _S = �q;ii (5)

�T0 _S = �CE _T (x) + �T0 _"kk (x) +mT0 (x) (6)

The quantities tCkl; m
C
kl; �

C
k and (s� t)C are given by Eringen (1999) for classical local

microstretch elastic solid.
Equations of motion for a nonlocal isotropic microstretch solid are given by Eringen

(1984).

tkl;k + "imntmn + � (ll � j�ul = 0) (7)

mkl;k + "lmntmn + �
�
ll � j��l

�
= 0 (8)

�k;k + (t� s) + �

�
l � 1

2
j0� 

l

�
= 0 (9)

�
1 + �0� 0

@

@t

�
qi = �KT;i (10)

where fl is the applied body force density, ll is the body moment density and is applied
scalar microstretch tensor.
Now using the constitutive relations (1)-(6) into the equations of motion (7)-(10), we

obtain

(�+ �)r (r:~u) + (�+K)r2~u+Kr� ~�+ �0r rT = �
�
1� "2r2

� @2~u
@t2

(11)

(�+ � + 
)r
�
r:~�

�
� 
r�

�
r� ~�

�
+Kr� ~u� 2K~� = �j

�
1� "2r2

� @2~�
@t2

(12)

�0r2 � �0 (r:~u)� �1 +mT =
1

2
�j0
�
1� "2r2

� @2 
@t2

(13)

�
K� �1 + � � @@t�+K�

1
@
@t

�
1 + � t

@
@t

��
r2T =�

1 + � q
@
@t
+

�2q
2
@2

@t2

�
@2

@t2
[�C�T +mT0�

� + �T0 (r:~u)]
(14)

��i = �0 ;i + b0"ijk�j;k (15)

where �; � are Lame�s constants, �; �; 
; K are constants of local micropolarity,
m; �0; b0; �0; �1; j0 are constants of local microstretch elasticity, ~u is the displace-
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ment vector, ~� is the microrotation vector,  is the scalar microstretch, " = e0a is a
nonlocal parameter, e0 is a material constant a and being the internal characteristic
length. The internal characteristic length a is the interatomic distance or lattice distance,
� = (3�+ 2�+K)�t, �t is the coe¢ cient of linear thermal expansion, C� is the speci-
�c heat at constant strain, K�

1 is the coe¢ cient of thermal conductivity, � t, � q and ��
the phase lag of the temperature gradient, the phase lag of the heat �ux and the phase
lag of the thermal displacement, T is the change in temperature of the medium at any
time, tij; mij and �ij are the stress tensor, couple stress tensor and kroneckor delta and
r2 = @2

@r2
+ 1

r
@
@r
+ 1

r2
@2

@�2
+ @2

@z2
is the Laplacian operator.

3. Formulation of the Problem

We consider a homogeneous and isotropic micropolar porous thermoelastic circular plate
of thickness 2d occupying the region de�ned by 0 � r � 1; �d � z � d:We assume a two
dimensional problem with cylindrical polar coordinate system (r; �; z) having symmetry
about z-axis. Therefore, all the quantities are independent of � i.e. @

@�
= 0: We assume

the origin of the coordinate system (r; �; z) at the middle surface of the plate and the
z-axis is normal to it along the thickness. The initial temperature in the thick circular
plate is taken as a constant temperature T0: Since, we are considering a two dimensional
problem, so, the components of displacement vector ~u and microrotation vector ~� are
taken as

~u = (ur; 0; uz) ; ~� = (0; ��; 0) (16)

Introduce the following non-dimensional variables

r0 =
!�r

c1
; z0 =

!�z

c1
; u

0

r =
�c1!

�ur
�T0

; u
0

z =
�c1!

�uz
�T0

; �
0

� =
�c21��
�T0

;  0 =
�c21 

�T0
;(17)

T 0 =
T

T0
; t0 = !�t; �

0

t = !�� t; �
0

q = !�� q; t
0

ij =
tij
�T0

; m
0

ij =
!�

c1�T0
mij

where

c21 =
�+ 2�+K

�
; !� =

K

�j

Laplace and Hankel transforms are de�ned as

�f (r; z; s) = L
�
�f (r; z; t)

	
=

1Z
0

f (r; z; t) e�stdt (18)

~f (�; z; s) = H
�
�f (x; z; s)

	
=

1Z
0

r �f (x; z; s) Jn (�r) dr (19)

With the aid of (16)-(19), equations (11)-(14) becomes
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fu00r = a11~ur + a14~ + a15 ~T + b12 eu0z + b13
e�0� (20)

fu00z = a22~uz + a23~�� + b21 eu0r + b24
e 0 + b25 eT0 (21)

f�00� = a32~uz + a33~�� + b31 eu0r (22)

f 00 = a41~ur + a44~ + a45 ~T + b42 eu0z (23)

fT00 = a51~ur + a54~ + a55 ~T + b52 eu0z (24)

where

a11 =

�
�2 + s2 + s1�

2s2

�2 + s1s2

�
; a14 =

p0�

�2 + s1s2
; a15 = �

�

�2 + s1s2

a22 =

�
�2�2 + s2 + s1�

2s2
�

1 + s1s2
; a23 =

�p�
1 + s1s2

; a32 =
����2

1 + s1s2

�21

a33 =

�
�2 + s2

�21
+ 2��2 + s1�

2s2

�21

�
1 + s1s2

�21

; a41 =
p0�

�
1�

1 + ��2s1s
2

a44 =

�
�2 + p1�

�
1 + ��2s

2
�
1 + s1�

2
��

1 + ��2s1s
2

; a45 =
�����1

1 + ��2s1s
2

a51 =
��s2

�
1 + � qs+

�2q
2
s2
�

Z� (1 + � �s) + (1 + � ts) s
; a54 =

���s2
�
1 + � qs+

�2q
2
s2
�

Z� (1 + � �s) + (1 + � ts) s

a55 =

�
�2 (Z� (1 + � �s) + s (1 + � ts)) +Q

�s2
�
1 + � qs+

�2q
2
s2
��

Z� (1 + � �s) + (1 + � ts) s

b12 =
�
�
1� �2

�
�2 + s1s2

; b13 =
p

�2 + s1s2
; b21 =

��
�
1� �2

�
1 + s1s2

; b24 =
�p0

1 + s1s2

b25 =
1

1 + s1s2
; b31 =

���2

1 + s1s2

�21

; b42 =
p0�

�
1

1 + ��2s1s
2
; b52 =

�s2
�
1 + � qs+

�2q
2
s2
�

Z� (1 + � �s) + (1 + � ts) s

c22 =
�+K

�
; �2 =

c22
c21
; p =

K

�c21
; p0 =

�0
�c21

; s1 =
"2!�2

c21
; ��2 =

Kc21

!�2

; �21 =
c23
c21
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c23 =



�j
; ��1 =

�c41
�0!�2

; �� =
m

�
; p1 =

�1
�c21

; ��2 =
�j0c

2
1

2�0
; Q� =

�C�c21
K�
1!

� ; � =
�2T0
�K�

1!
�

The system of equations (20)-(24) can be written as

d

dz
W (�; z; s) = A (�; s)W (�; z; s) (25)

where

W =

�
U
DU

�
; A =

�
O I
A2 A1

�
; U =

266664
~ur
~uz
~��
~ 
~T

377775 ; D =
d

dz

O =

266664
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775 ; I =
266664
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

377775

A2 =

266664
a11 0 0 a14 a15
0 a22 a23 0 0
0 a32 a33 0 0
a41 0 0 a44 a45
a51 0 0 a54 a55

377775 ; A1 =
266664
0 b12 b13 0 0
b21 0 0 b24 b25
b31 0 0 0 0
0 b42 0 0 0
0 b52 0 0 0

377775
The solution of (25) be taken

W (�; z; s) = X (�; s) eqz (26)

which yield

A (�; s)W (�; z; s) = qW (�; z; s)

which leads to the eigenvalue problem. The characteristic equation corresponding to
the matrix A is given by

det (A� qI) = 0

which on expansion gives

q10 � �1q
8 + �2q

6 � �3q
4 + �4q

2 � �5 = 0 (27)

where �1; �2; �3; �4 and �5 are given in appendix I.
Let the roots of equation (27) be �qi; i = 1; 2; 3; 4; 5.
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The eigenvectors Xi (�; s) corresponding to the eigenvalues qi can be determined by
solving

[A� qI]Xi (�; s) = 0

The set of eigenvectors Xi (�; s) may be written as

Xi (�; s) =

�
Xi1 (�; s)
Xi2 (�; s)

�
where

Xi1 (�; s) =

266664
aiqi
bi
��
di
ei

377775 ; Xi2 (�; s) =

266664
aiq

2
i

biqi
��qi
diqi
eiqi

377775 ; q = qi; i = 1; 2; 3; 4; 5

Xj1 (�; s) =

266664
�aiqi
bi
��
di
ei

377775 ; Xj2 (�; s) =

266664
aiq

2
i

�biqi
�qi
�diqi
�eiqi

377775 ; j = i+5; q = �qi; i = 1; 2; 3; 4; 5

where ai; bi; di; ei; �i; r1; r2; r3; r4 and r5 are given in appendix II.
We assume the solution of equation (25) as

W (�; z; s) =
5X
i=1

NiXi (�; s) cosh (qiz) (28)

where N1; N2; N3; N4 and N5 are arbitrary constants.

4. Boundary conditions

A concentrated normal force and thermal source are acting on the surface of the plate
z = �d along with the vanishing of shear stress, couple shear stress and normal micros-
tretch component. Mathematically, these conditions are de�ned as

dT

dz
= �g0F (r; z) (29)

where F (r; z) = z2e�!r; ! > 0; F (r; z) is a function that increases in the axial
direction symmetrically and falls o¤ exponentially as one moves away from the center of
the plate along the radial direction. g0 is the constant.

tczz = � (t) � (a� r) (30)

where �() is the Dirac delta function.
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tczr = 0 (31)

mc
z� = 0 (32)

��cz = 0 (33)

where tczz =
�
1� "2r2

�
tzz; tczr =

�
1� "2r2

�
tzr; mc

z� =
�
1� "2r2

�
mz�; �

�c
z =�

1� "2r2
�
��z are given by

tczz = (�+ 2�+K)
@uz
@z

+ �

�
@ur
@r

+
ur
r

�
� �

�
1 + � 1

@

@t

�
T + �0 (34)

tczr = (�+K)
@ur
@z

+ �
@uz
@r

�K�� (35)

mc
z� = b0

@ 

@r
+ 


@��
@z

(36)

��cz = �0
@ 

@z
� b

@��
@z

(37)

The expressions of displacements, microrotation, microstretch, temperature distribution
and stresses are obtained in the transformed domain with the aid of (1)-(3), (16)-(19) and
(28)-(37) as

�
~ur; ~uz; e��; e ; ~T� = 1

�

5X
i=1

(aiqi; bi; ��; di; ei)�i cosh (qiz) (38)

�ftzz; ftzr; gmz�

�
=
1

�

5X
i=1

(Li; Mi; Pi)�i cosh (qiz) (39)

where

� =

����������
S1 S2 S3 S4 S5
T1 T2 T3 T4 T5
U1 U2 U3 U4 U5
V1 V2 V3 V4 V5
W1 W2 W3 W4 W5

����������
and�i (i = 1; 2; 3; 4; 5) are obtained from� by replacing ith column of� with jQ; R; 0; 0; 0jtr ;
also

Si = eiqi sinh (qid) ; Ti = Li cosh (qid) ; Ui =Mi cosh (qid) ; Vi = Pi cosh (qid)
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Wi = Qi sinh (qid) ; Q = �g0
z2!

(z2 + !2)3=2
; R = aJ0 (�a)

Li =
�
1 + s2

�
�2 � q2i

�����aiqi
�c21

+ p0di � ei + biqi

�
; i = 1; 2; 3; 4; 5

Mi =

�
���bi
�c21

+
�K

�c21
+

�
�+K

�c21

�
aiq

2
i

�
; i = 1; 2; 3; 4; 5

Pi =

�
�
�!�2

�c41

�
(p0di + qi) ; i = 1; 2; 3; 4; 5

Qi =
!�2qi
�c41

(�0di + b0�) ; i = 1; 2; 3; 4; 5

5. Particular cases

1. Taking " = 0; in equation (38)-(39), yield the corresponding results for microstretch
thermoelastic medium with three phase lag model.

2. Taking K� = 0; in equation (38)-(39), yield the corresponding results for nonlocal
microstretch thermoelastic medium with dual phase lag model.

3. Taking K� = 0; � t = � 2q = 0 and � q = � 0; in equation (38)-(39), yield the corres-
ponding results for nonlocal microstretch thermoelastic with one relaxation time.

4. Taking �� = K�
1 = � q = � 2q = 0; in equation (38)-(39), yield the corresponding

results for nonlocal microstretch thermoelastic medium with energy dissipation.

5. Taking �� = � t = � q = � 2q = 0; in equation (38)-(39), yield the corresponding results
for nonlocal microstretch thermoelastic medium without energy dissipation.

6. Inversion of transforms

We have to obtain the transformed displacements, microrotation, microstretch, tempe-
rature distribution and stresses in the physical domain, so, we invert the transforms in the
resulting expressions (38)-(39). All these expressions are functions of the form ~f (�; z; s) :
Therefore, we get the function f (r; z; t) by using the inversion of the Hankel and Laplace
transforms are de�ned by

~f (�; z; s) =

1Z
0

� �f (�; z; s) Jn (�r) d� (40)

f (r; z; t) =
1

2��

c+1Z
c�1

�f (r; z; s) e�stds (41)

where c is an arbitrary constant greater than all real parts of the singularities of
�f (r; z; t) :
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7. Numerical results and discussions

Following Kiris and Inan (2008), Tomar and Khurana (2008), the values of parameters
for nonlocal microstretch elastic solid are given by

� = 7:59� 109Nm�2; � = 41:90� 109Nm�2; K = 1:3234� 105Nm�2;

� = 2192kgm�3; j; j0 = 0:196� 10�6m2; e0 = 0:39; a = 0:5� 10�9m;

� = 8:3255� 10N; � = 0:10282� 103N; 
 = 0:779� 10�9N;

�0 = 15:947� 103N; b0 = 0:096� 106N; �0 = 0:57702� 103N;

�1 = 34:650� 103N

Following Dhaliwal and Singh (1980) give the values for thermal parameters as

C� = 1:04� 103JKg�1K�1; K�
1 = 1:7� 106Jm�1s�1K�1; �t = 2:33� 10�5K�1;

� t = 0:1s� 10�13sec; � q = 0:2s� 10�13sec;

� 0 = 6:131� 10�13sec; � 1 = 8:765� 10�13sec;

T0 = 0:298� 103K; m = 1:13849� 1010N=m2K; t = 0:01sec

Figures 1-5 represent the variations of normal stress, couple stress, couple shear stress,
microstretch and temperature distribution with distance r in case of nonlocal microstretch
thermoelastic with three phase lag model (NMT), microstretch thermoelastic with three
phase lag model (NM), nonlocal microstretch thermoelastic with dual phase lag model
(NMD), nonlocal microstretch thermoelastic with Lord Shulman theory (NML), nonlo-
cal microstretch coupled thermoelasticity (NCT), microstretch coupled thermoelasticity
(WNCT), nonlocal microelongated thermoelastic (NMT) and microelongated thermoe-
lastic (WNMT). In all these �gures, NLS, WNLS, NGL, WNGL, NCT, WNCT, NMT
and WNMT corresponding to solid line (� � ), solid line with centred symbol (� *� *� ),
dash line(� �), dash line with centred symbol (-*-*-*-*-), dash line (� - � -), dash line
with centred symbol (� -*� -*), dash line (� � � ) and dash line with centred symbol
(� *� *� ) respectively.
Figure 1 exhibits that the values of tzz initially increase sharply for 1 � r � 2:2 and

then oscillate for 2:2 � r � 6 for NMT, NMD and NMIII. The values of tzz increase for
1 � r � 1:2; decrease for 1:2 � r � 2:2 and then oscillate for 2:2 � r � 6 for MT and
NMII. Its value decreases for 1 � r � 2:5; increases for 2:5 � r � 5 and then becomes
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stationary for 5 � r � 6: It has been seen that the value of tzz for MT is almost same as
NMII except in the range 1:2 � r � 3: It is clear from the �gure that the magnitude of
tzz for NMT is lesser than that of all other cases at the beginning.

Fig. 1 �Variations of normal stress tzz.
Figure 2 displays that the values of tzr initially decrease for 1 � r � 1:6 and then

oscillate for the remaining range for NMT, NMD and NMIII. tzr increase for 1 � r � 1:6,
1 � r � 1:8 for NM and NMII and then oscillates. The oscillatory behavior is also noticed
in the case of NML. The values are similar for NMT and NMIII except for 1:2 � r � 2:
Also it can be noticed that the values of tzr are maximum in the case of NM and minimum
in the case of NMIII. It is observed that the variation of tzr is oscillatory in nature, but
the amplitude of the oscillation is di¤erent for each curve.

Fig. 2 �Variation of shear stress tzr.
Figure 3 shows that the values of mz� sharply decrease for NML for 1 � r � 1:7 in

comparison to NMT, NMD and NMII and oscillate for these cases for 1:7 � r � 6. Its
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values increase for MT and NMIII and then oscillate with large amplitude. The values
of couple shear stress are higher in the cases of NML and NMIII near the application of
the source. A similar trend of variation is noticed for NMT, NMD, NML and NMII. It is
noticed from the �gure that the variation is similar for MT and NMIII.

Fig. 3 �Variation of couple shear stress mz�

Figure 4 exhibits that the values of microstretch  �rst decrease for 1 � r � 2; increase
rapidly for 2 � r � 4:7 and then again decrease smoothly for 4:7 � r � 6 for NMT and
NMT. Also, its value for NML, initially increase for 1 � r � 2:7; decrease for 2:7 � r � 5:2
and then its value are stationary for 5:2 � r � 6 as the radial distance increases further.
Moreover, similar behavior is noticed for MT and NMIII. The behavior of  for NMII
is opposite to behavior of MT and NMIII. Initially the value for NMIII is large and for
NMII is small in comparison to other cases.

Fig. 4 �Variation of microstretch  .

Figure 5 shows that the value of T initially increasing and then decreasing for NMII.
Its value initially increases for 1 � r � 1:2, decreases for 1:2 � r � 2:5 and then oscillates
for 2:5 � r � 6 for NMT. The values of T initially decrease for 1 � r � 2:3 and then
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oscillate for 2:3 � r � 6 for MT, NMD, NML and NMIII. Away from the source, all the
quantities have similar variation except for NMII. Near the application of the source, T
has similar variation for MT and NML. Initially, the values are large for NMT and small
for NMII in comparison to the other cases.

Fig. 5 �Variations of temperature distribution T .

8. Conclusions

In this paper, an axisymmetric problem of microstretch thermoelastic circular plate with
three phase lag model by employing eigen value approach subjected to thermomechanical
sources has been investigated. Laplace and Hankel transforms are applied to solve the
problem. All the resulting quantities are in�uence by the e¤ect of nonlocal, phase lag,
relaxation time, with and without energy dissipation. All the resulting quantities have
signi�cant oscillatory behavior. It is observed that the behavior of normal stress and
shear stress are similar for NMT, NMD and NMIII while reverse behavior is observed for
MT and NMII. However, couple shear stress has also similar behavior for NMT, NMD and
NML which is opposite to MT and NMIII. Temperature distribution has similar behavior
for all the resulting quantities except for NMII. It is clear from the �gure that the values
for all the cases are oscillate with di¤erent amplitude for microstretch. Its value initially
increased and then decreased smoothly for NMII. All the quantities have similar behavior
for NMT and NMD. This study is very important for the researchers who work in the
�eld of geophysics, earthquake engineering and for seismologists working in the �eld of
mining tremors and drilling into the earth�s crust.

9. Conclusion

In this paper, an axisymmetric problem of microstretch thermoelastic circular plate with
three phase lag model by employing eigen value approach subjected to thermomechanical
sources has been investigated. Laplace and Hankel transforms are applied to solve the
problem. All the resulting quantities are in�uence by the e¤ect of nonlocal, phase lag,
relaxation time, with and without energy dissipation. All the resulting quantities have
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signi�cant oscillatory behaviour. It is observed that the behaviour of normal stress and
shear stress are similar for NMT, NMD and NMIII while reverse behaviour is observed for
MT and NMII. However, couple shear stress has also similar behaviour for NMT, NMD
and NML which is opposite to MT and NMIII. Temperature distribution has similar
behaviour for all the resulting quantities except for NMII. It is clear from the �gure that
the values for all the cases are oscillate with di¤erent amplitude for microstretch. Its value
initially increased and then decreased smoothly for NMII. All the quantities have similar
behaviour for NMT and NMD. This study is very important for the researchers who work
in the �eld of geophysics, earthquake engineering and for seismologists working in the
�eld of mining tremors and drilling into the earth�s crust.
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Appendix I

�1 = � (a11 + a22 + a33 + a44 + a55 + b12b21 + b13b31 + b25b52 + b24b42)

�2 = �a14a41 + a33a55 + a44a55 + a11a55 + a22a55 + a33a44 + a11a33 + a22a33

+a11a44 + a22a44 + a11a22 � a15a51 � a45a54 � a23a32 + (a33 + a44 + a55) b12b21

� (a14b42 + a15b52 + a32b13) b21 + (a11 + a33 + a55) b42b24 + (a11 + a33 + a44) b25b52

� (a41b24 + a23b31 + a51b25) b12 + (a22 + a44 + a55 + b42b24 + b25b52) b31b13

�a45b52b24 � a54b42b25

�3 = (a11a22 + a22a55) (a33 + a44)� a23a32 (a11 + a44 + a55) + a11a55 (a22 + a33 + a44)

+a33a44 (a11 + a22 + a55)� a45a54 (a11 + a22 + a33)� a14a41 (a22 + a33 + a55)

�a15a51 (a22 + a33 + a44) + b42b25 (a14a51 � a11a54 � a33a54)

+b52b25 (�a14a41 + a11a33 + a14a44 + a33a44) + b52b24 (a15a41 � a11a45 � a33a45)

�b12b25 (a33a51 + a44a51 � a41a54)� b12b24 (a33a41 � a45a51 + a41a55)

+b42b24 (�a15a51 + a11a33 + a11a55 + a33a55)� a32b21b13 (a44 + a55)

+b31b13 (a22a44 + a22a55 + a44a55 � a45a54) + b21b42 (a15a54 � a14a33 � a14a55)

+b21b52 (a14a45 � a15a33 � a15a44) + b12b21 (�a45a54 + a33a44 + a44a55 + a33a55)

�b12b31 (a23a44 + a23a55)� b31b13 (a54b42b25 � a44b52b25 + a45b52b24 � a55b24b42)

+a32b13 (a51b25 + a41b24) + a15a41a54 + a14a45a51 + (a14b42 + a15b52) a23b31

�4 = (a44a55 � a45a54) (a33b12b21 � a23b12b31) + (a15a54 � a14a55)

(a33b21b42 � a23b31b42) + (a14a45 � a15a44) (a33b21b52 � a23b31b52)

+ (a45a54 � a44a55) (a32b21b13 � a22b31b13) + a33b12b24 (a45a51 � a41a55)

+a33b42b24 (�a15a51 + a11a55) + a32b13b24 (a41a55 � a45a51 )

+ (a41a54 � a44a51) (a33b12b25 � a32b13b25) + a33b42b25 (a14a51 � a11a54)

+a33b52b25 (a11a44 � a14a41) + a15a51 (a23a32 � a22a33 � a22a44 � a33a44)

+a14a45a51 (a22 + a33) + a15a41a54 (a22 + a33) + a45a54 (a23a32 � a11a22 � a11a33 � a22a33)
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+a14a41 (a23a32 � a22a33 � a22a55 � a33a55)� a11a23a32 (a44 + a55)

+a55 (a11a22a33 � a23a32a44) + a11a22a44 (a33 + a55) + a33a44a55 (a11 + a22)

+ (a15a41 � a11a45) a33b24b52

�5 = (a22a33 � a23a32) (a11a44a55 � a11a45a54 + a14a45a51)

+ (a15a54 � a14a55) (a22a33a41 � a23a32a41) + (a23a32 � a22a33)a15a44a51
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