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ABSTRACT

The present paper deals with the propagation of Rayleigh waves in isotro-
pic homogeneous elastic half-space with double porosity whose surface is
subjected to stress-free boundary conditions. The compact secular equa-
tions for elastic solid half-space with voids are deduced as special cases
from the present analysis. In order to illustrate the analytical develop-
ments, the secular equations have been solved numerically. The computer
simulated results for copper materials in respect of Rayleigh wave velocity
and attenuation coe¢ cient have been presented graphically.

c
2014-2018 LESI. All rights reserved.

1. Introduction

Rayleigh waves are always generated when a free surface exists in a continuous body.
Rayleigh �rstly introduced them as solution of the free vibration problem for an elastic
half-space (on waves propagated along the plane surface of an elastic solid). Rayleigh
wave play an important role in the study of earthquakes, seismology, geo-physics and geo-
dynamics. During earthquake, Rayleigh waves play more drastic role than other seismic
waves because these waves are responsible for destruction of buildings, plants and loss of
human lives etc.
Porous media theories play an important role in many branches of engineering including

material science, the petroleum industry, chemical engineering, biomechanics and other
such �elds of engineering. Representation of a �uid saturated porous medium as a single
phase material has been virtually discarded. The material with the pore spaces such as
concrete can be treated easily because all concrete ingredients have the same motion if the
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concrete body is deformed. However, the situation is more complicated if the pores are
�lled with liquid and in that case the solid and liquid phases have di¤erent motions. Due to
these di¤erent motions, the di¤erent material properties and the complicated geometry of
pore structures, the mechanical behavior of a �uid saturated porous thermoelastic medium
becomes very di¢ cult. So researchers from time to time, have tried to overcome this
di¢ culty and we see many porous media in the literature. A brief historical background
of these theories is given by de Boer [1,2].
Biot [3] proposed a general theory of three-dimensional deformation of �uid saturated

porous salts. Biot theory is based on the assumption of compressible constituents and till
recently, some of his results have been taken as standard references and basis for sub-
sequent analysis in acoustic, geophysics and other such �elds. Another interesting theory
is given by Bowen [4], de Boer and Ehlers [5] in which all the constituents of a porous
medium are assumed to be incompressible. The �uid saturated porous material is modeled
as a two phase system composed of an incompressible solid phase and incompressible �uid
phase, thus meeting the many problems in engineering practice, e.g. in soil mechanics.
One important generalization of Biot�s theory of poroelasticity that has been studied ex-
tensively started with the works by Barenblatt et al. [6], where the double porosity model
was �rst proposed to express the �uid �ow in hydrocarbon reservoirs and aqui�ers.
The double porosity model represents a new possibility for the study of important

problems concerning the civil engineering. It is well-known that, under super- saturation
conditions due to water of other �uid e¤ects, the so called neutral pressures generate
unbearable stress states on the solid matrix and on the fracture faces, with severe (so-
metimes disastrous) instability e¤ects like landslides, rock fall or soil �uidization (typical
phenomenon connected with propagation of seismic waves). In such a context it seems
possible, acting suitably on the boundary pressure state, to regulate the internal pressures
in order to deactivate the noxious e¤ects related to neutral pressures ; �nally, a further
but connected positive e¤ect could be lightening of the solid matrix/�uid system.
Wilson and Aifanits [7] presented the theory of consolidation with the double porosity.

Khaled et al. [8] employed a �nite element method to consider the numerical solutions
of the di¤erential equation of the theory of consolidation with double porosity developed
by Aifantis [7]. Wilson and Aifantis [9] discussed the propagation of acoustics waves in
a �uid saturated porous medium. The propagation of acoustic waves in a �uid-saturated
porous medium containing a continuously distributed system of fractures is discussed. The
porous medium is assumed to consist of two degrees of porosity and the resulting model
thus yields three types of longitudinal waves, one associated with the elastic properties of
the matrix material and one each for the �uids in the pore space and the fracture space.
Beskos and Aifantis [10] presented the theory of consolidation with double porosity-II

and obtained the analytical solutions to two boundary value problems. Khalili and Val-
liappan [11] studied the uni�ed theory of �ow and deformation in double porous media.
Aifantis [12-15] introduced a multi-porous system and studied the mechanics of di¤usion
in solids. Moutsopoulos et al. [16] obtained the numerical simulation of transport pheno-
mena by using the double porosity/di¤usivity continuum model. Khalili and Selvadurai
[17] presented a fully coupled constitutive model for thermo-hydro-mechanical analysis
in elastic media with double porosity structure. Pride and Berryman [18] studied the
linear dynamics of double-porosity dual-permeability materials. Straughan [19] studied
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the stability and uniqueness in double porous elastic media. Svanadze [20-24] investigated
some problems on elastic solids, viscoelastic solids and thermoelastic solids with double
porosity.
L. Rayleigh [25] investigated the propagation of waves along the plane surface of an elas-

tic solid. Lockett [26] studied the e¤ect of thermal properties on Rayleigh waves velocity.
Propagation of Rayleigh waves along with isothermal and insulated boundaries discussed
by Chadwick and Windle [27]. Kumar and Kansal [28, 29] presented the problem of Ray-
leigh waves in an isotropic generalized thermoelastic with di¤usive half-space medium.
Sharma and Kaur [29] presented the problem of Rayleigh waves in rotating thermoelas-
tic with voids. Kumar et.al. [30] discussed the problem of Rayleigh waves in isotropic
microstretch thermoelastic di¤usion solid half-space. Kumar and Gupta [30] discussed
the problem of Rayleigh waves in generalized thermmoelastic medium with mass di¤u-
sion. Abd-Alla et al. [33-40] investigated the propagation of Rayleigh waves in di¤erent
theories.
In the present paper, we investigate the propagation of Rayleigh waves in homogeneous

isotropic elastic material with double porosity structure. Secular equations are derived
mathematically for the boundary conditions. The values of phase velocity and attenua-
tion coe¢ cient with respect to wave number are computed numerically and depicted
graphically.

2. Basic equations

Following Iesan and Quintanilla [41], the constitutive relations and �eld equations for
homogeneous elastic material with double porosity structure without body forces and
extrinsic equilibrated body forces can be written as :
Constitutive relations

tij = �err�ij + 2�eij + b�ij'+ d�ij (1)

�i = �';i + b1 ;i (2)

� i = b1';i + 
 ;i (3)

Equation of motion

�r2ui + (�+ �)uj;ji + b';i + d ;i = ��ui (4)

Equilibrated stress equations of motion

�r2'+ b1r2 � bur;r � �1'� �3 = �1�' (5)

b1r2'+ 
r2 � dur;r � �3'� �2 = �2� (6)

where �, and � are Lame�s constants, � is the mass density ; ui is the displacement
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components ; tij is the stress tensor ; �1 and �2 are coe¢ cients of equilibrated inertia ;
�1 is the volume fraction �eld corresponding to pores and �2 is the volume fraction �eld
corresponding to �ssures ; ' and  are the volume fraction �elds corresponding to �1 and
�2 respectively ; �1 is the equilibrated stress corresponding to �1 ; � 1 is the equilibrated
stress corresponding to �2 ; and b; d; b1; 
; 
1; 
2 are constitutive coe¢ cients ; �ij is
the Kronecker�s delta ; a superposed dot represents di¤erentiation with respect to time
variable t.
r = {̂ @

@x1
+ |̂ @

@x2
+ k̂ @

@x3
, r2 = @2

@x21
+ @2

@x22
+ @2

@x23
are the gradient and Laplacian operators, respectively.

3. Formulation of the problem

We consider homogeneous isotropic elastic with double porous half space.We take the
origin of the coordinate system (x1; x2; x3) at any point plane on the horizontal surface
and x1�axis in the direction of the wave propagation and x3�axis pointing vertically
downward to the half-space so that all particles on line parallel to x2�axis are equally
displaced. Therefore, all the �eld quantities will be independent of x2�coordinate.
For the two-dimensional problem, we take
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; !1 =

�
�1

Here !1 and c1 are the constants having the dimension of frequency and velocity in the
medium respectively.
Using (7) in Eqs. (4)-(6) and with the aid of (8), after suppressing the primes, we obtain�
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The displacement components u1 and u3 are related by potential functions '1 and  1
as

u1 =
@'1
@x1

� @ 1
@x3

; u3 =
@'1
@x3

+
@ 1
@x1

(12)

Making use of (13) in equations (9)-(12), we obtain�
r2 � @2

@t2

�
'1 + a1'+ a2 = 0 (13)

�a5r2'1 +

�
a3r2 � a6 �

@2

@t2

�
'+

�
a4r2 � a7

�
 = 0 (14)

�a10r2'1 +
�
a8r2 � a11

�
'+

�
a9r2 � a11 �

@2

@t2

�
 = 0 (15)

and�
a12r2 � @2

@t2

�
 1 = 0 (16)

4. Solution of the problem

We assume the solution of the form

('1; ';  ;  1) = ('
�
1; '

�;  �;  �1)e
i�(x1�ct) (17)

where � is the wave number, ! = �c is the angular frequency and c is the phase velocity
of the wave.
Making use of (18) in Eqs. (14)-(16), we obtain three homogeneous equations in three

unknowns and these equations have non-trivial solutions if the determinant of the coe¢ -
cient '�1, '

� and  � vanishes, which yield to the following characteristics equation :

E1
d6

dz6
+ E2

d4

dz4
+ E3

d2

dz2
+ E4 = 0 (18)

where
E1 = a3a9 � a4a8
E2 = a3g7 + a9g4 � a4g5 � a8a6 + a1(a5a9 � a4a10) + a2(a3a10 � a5a8) + g1(a3a9 � a4a8)
E3 = g4g7 � g5g6 + g1(a3g7 + a9g4 � a4g5 � a8g6)� a1(a9g2 � a5g7 + a10g6 � a4g3)

+a2(a8g2 + a10g4 � a5g5 � a3g3)
E4 = a1(g6g3 � g2g7) + a2(g2g5 � g3g4) + g1(g4g7 � g5g6)
Here
g1 = �2(c2 � 1); g2 = a5�

2; g3 = a10�
2; g4 = �2(c2 � a3)� a6;

g5 = �a8�2 � a11; g6 = �a4�2 � a7; g7 = �2(c2 � a4)� a12
and
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�
d2

dx23
� �24

�
 �1 = 0 (19)

where
�24 = �2

�
1 + c2

a12

�
Since we are interested in surface waves only, it is essential that the motion is con�ned

to the free surface x3 = 0 of the half-space. Therefore, to satisfy the radiation conditions,
'1; ';  ;  1 ! 0 as x3 !1 are given by

('1; ';  ) =
3X
i=1

(1; ri; si)Bie
�mix3ei�(x1�ct) (20)

and

 1 = B4e
�m4x3ei�(x1�ct) (21)

Here, m4 =
p
�4

and Bi (i = 1; 2; 3; 4) are arbitrary constants in equations (21)and (22) , the coupling
constants ri, si are given as

ri = � (a4a10�a5a9)m4
i+(a9g2�a5g7+a10g6�a4g3)m2

i+(g2g7�g3g6)
(a3a9�a4a8)m4

i+(a3g7+a9g4�a4g5�a8g6)m2
i+(g4g7�g5g6)

;

si =
(a3a10�a5a8)m4

i+(a8g2+a10g4�a5g5�a3g3)m2
i+(g2g5�g3g4)

(a3a9�a4a8)m4
i+(a3g7+a9g4�a4g5�a8g6)m2

i+(g4g7�g5g6)
;

i = 1; 2; 3

(22)

5. Boundary conditions

The boundary conditions are the vanishing of the stress components at the free surface
x3 = 0. Mathematically these can be written as

t33 = 0 (23)

t31 = 0 (24)

�3 = 0 (25)

� 3 = 0 (26)

The expressions for normal stress t33, tangential stress t31 and equilibrated stress �3,
� 3 in non-dimensional form are

t33 = p1
@u3
@x3

+
@u1
@x1

+ p2'+ p3 (27)
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t31 = p4

�
@u3
@x1

+
@u1
@x3

�
(28)

�3 = p5
@'

@x3
+ p6

@ 

@x3
(29)

� 3 = p6
@'

@x3
+ p7

@ 

@x3
(30)

where
p1 =

�+2�
�
; p2 =

b�1
��1!21

; p3 =
d�1
��1!21

;

p4 =
�
�
; p5 =

�1
�1!21

; p6 =
b1�1
��1!21

; p7 =

�1
��1!21

6. Derivation of the secular Equations

Making use of equations (21) and (22) in the boundary conditions (24)-(27) and with
the aid of (28)-(31), we obtain a system of four simultaneous homogeneous linear equations

4X
j=1

QijBj = 0 for i= 1; 2; 3; 4 (31)

where

Q1j =

�
p1m

2
j � �2 + p3rj + p4sj; for j = 1; 2; 3

(1� p1)i�mj; for j = 4
(32)

Q2j =

�
�2i�mjp4 ; for j = 1; 2; 3
(m2

j � �2); for j = 4
(33)

Q3j =

�
�mj(p5rj + p6sj); for j = 1; 2; 3
0; for j = 4

(34)

Q4j =

�
�mj(p6rj + p7sj); for j = 1; 2; 3
0; for j = 4

(35)

The system of Eq. (32) has a non-trivial solution if the determinant of the unknowns
Bj (j = 1; 2; 3; 4) vanishes i.e.

jQijj4�4 = 0 (36)

Particular case
If b1 = 
 = �3 = �2 = d ! 0, the Eqs. (37) yield the expressions for elastic material

with voids.
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7. Numerical results and discussion

� = 7:76� 1010Nm�2; � = 3:86� 1010Nm�2; !1 = 1� 1011s�1; � = 1:3� 10�5N;
t = 0:1s; � = 8:954� 103Kgm�3; �1 = 1:65� 1010Nm�2; �2 = 1:96� 1010Nm�2;
�3 = 1:86� 1010Nm�2; 
 = 0:19� 10�5N; b1 = 0:12� 10�5N; d = 0:49� 1010Nm�2;
�1 = 0:1456� 10�12Nm�2s2; �2 = 0:1546� 10�12Nm�2s2; b = 0:4� 1010Nm�2

Fig. 1 �Determinant of Rayleigh waves secular equation with varies values of � when
c = 0:1.

Fig. 2 �Rayleigh waves velocity with varies values of � when c = 0:1.

Fig. 3 �Attenuation coe¢ cient with varies values of � when c = 0:1.
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Fig. 4 �Determinant of Rayleigh waves secular equation with varies values of c with
respect to �.

Fig. 5 �Rayleigh waves velocity with varies values of c with respect to �.

Fig. 6 �Attenuation coe¢ cient with varies values of c with respect to �.

Figs. 1- 3 depict the variation of determinant of Rayleigh wave secular equation, Ray-
leigh wave velocity and Attenuation coe¢ cient w.r.t � for c = 0:1.
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Fig. 1 shows that variation of determinant of Rayleigh wave secular equation with � for
c = 0:1. It is found that the variation is harmonic in nature. Also, the magnitude of the
determinant of Rayleigh wave secular equation increases with the increasing value of �.
Fig.2 and 3 represent that variation of Rayleigh wave velocity and attenuation coe¢ cient

with � for c = 0:1. An oscillatory trend of variation is noticed for both Rayleigh wave
velocity and attenuation coe¢ cient .Also, it is evident that the amplitude of oscillations
increases as value of � increases.
Figs. 4, 5 & 6 depict the variation of determinant of Rayleigh wave secular equation,

Rayleigh wave velocity and Attenuation coe¢ cient w.r.t � for di¤erent values of c. In all
these �gs. solid line, small dashes lines and big dashes line correspond to the value of
c = 0:1, 0:12 and 0:13 respectively.
From �g. 4, it is noticed that variation of determinant of Rayleigh wave secular equation

is harmonic in nature. It is also clear from the �g. that magnitude of the determinant of
Rayleigh wave secular equation increases as value of � increases.
Fig.5 shows that Rayleigh wave velocity has oscillatory variation and the amplitude of

oscillations increases with the increase in value of � for all values of c.
It is found from �g. 6 that trend of variation of attenuation coe¢ cient is oscillatory in

nature. It is evident that amplitude of oscillations increases with the increase in value of
c for all �.

8. Conclusions

A problem of propagation of Rayleigh waves in elastic material with double porosity
structure has been investigated. It is observed that porosity has a signi�cant e¤ect on the
propagation of Rayleigh waves. It found that values of determinant of Rayleigh wave secu-
lar equation, Rayleigh wave velocity and Attenuation coe¢ cient, all have similar trend of
variation with respect to the wave number. It is also observed that amplitude of variation
in the resulting quantities increase as the value of phase velocity increases.
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