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ABSTRACT

The present work examines a two dimensional axisymmetric problem of
micropolar porous thermodi¤usion circular plate due to thermal and che-
mical potential sources. The governing equations are solved by using the
potential function. The expressions of displacements, microrotation, vo-
lume fraction �eld, temperature distribution, concentration and stresses
are obtained in the transformed domain by using Laplace and Hankel
transforms. The inversion of transforms using Fourier expansion techniques
has been applied to obtain the results in the physical domain. The nume-
rical results for resulting quantities are obtained and depicted graphically
to show the in�uence of porosity, relaxation time, phase lags, with and wi-
thout energy dissipation on the resulting quantities. Some particular cases
are also deduced.

c
2017 LESI. All rights reserved.

1. Introduction

Nowacki (1966) and Eringen (1970) developed the theory of micropolar thermoelas-
ticity by extending the micropolar elasticity theory including thermal e¤ects. Tauchert,
Claus and Ariman (1968) examined the linear theory of micropolar coupled thermoelas-
ticity. Boschi and Iesan (1973) extended the linear theory of generalized thermoelasticity
for the case of a homogeneous micropolar continuum with two relaxation times. Using
Green Lindsay theory (1972), the theory of generalized micropolar thermoelasticity was
investigated by Dost and Tabarrok (1978). The theory of micropolar thermoelasticity
that includes heat �ux among constitutive variables was developed by Chandrasekha-
raiah (1986).
Iesan (1985) developed the linear theory of micropolar materials with voids and stu-

died the propagation of waves in micropolar elastic medium with voids. Marin (1996a,
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1996b) presented the generalized solutions for boundary value problems in micropolar
elastic bodies with voids. Othman and Atwa (2012) studied the deformation of micropo-
lar thermoelalstic solid with voids under the in�uence of various sources by employing
the Green Naghdi theory of thermoelasticity. Sharma and Kumar (2013) constructed the
fundamental solution of the system of di¤erential equations in thermoviscoelastic medium
with voids and also studied the propagation of plane waves. Marin Abd-Alla, Raducanu
and Abo-Dahab (2015) presented the solution of mixed initial boundary value problem for
micropolar porous materials depending continuously on coe¢ cients which couple the mi-
cropolar deformation equations with the equations that model the evolution of voids. Yong
Ai and Wu (2016) introduced the precise integrationsolution with thermal di¤usivity and
permeability for thermal consolidation problems of a multilayered porous thermoelastic
medium due to a heat source.
The theory of thermoelastic di¤usion using coupled thermoelastic model was developed

by Nowacki (1974a, b, c, 1976). Aouadi (2007) proved the uniqueness and reciprocity theo-
rems in generalized thermoelastic di¤usion medium based on the Lord Shulman theory
(1967). Sharma (2013) studied the deformation in homogeneous and isotropic thermo-
di¤usion elastic half space with normal and tangential loads. Kumar (2015) studied the
propagation of plane waves in a microstretch thermoelastic di¤usion solid. Tripathi, Kedar
and Deshmukh (2015) studied the e¤ect of axisymmetric heat supply on the phenomena
of di¤usion in a thermoelastic thick circular plate in the context of the theory of genera-
lized thermoelastic di¤usion with relaxation time. The deformation due to inclined load
in micropolar thermoelastic di¤usion medium subjected to thermal laser pulse investi-
gated by Kumar and Kumar (2016). Using generalized thermoelasticity theory with two
time delays and kernel functions, the constitutive equations for thermoelastic di¤usion in
anisotropic and isotropic solids are derived by El-Karamany and Ezzat (2016).
Roychoudhuri (2007) introduced a three phase lag model by taking the heat conduction

law that includes thermal displacement gradient and temperature gradient among consti-
tutive variables in the theory of coupled thermoelasticity. This model is an extension of the
thermoelastic models proposed by Lord Shulman (1967) and Tzou (1995a, 1995b). Kumar
and Chawla (2013) studied the propagation of longitudinal and transverse waves at the
interface between uniform elastic solid half space and thermoelastic solid with three phase
lag model. El-Karamany and Ezzat (2013) presented the uniqueness, reciprocal theorems
and variational principle for the micropolar thermoelasticity theory with three phase lag
model. Akbarzadeh, Fu and Chen (2014) studied the heat conduction in a functionally
graded, in�nitely long hollow cylinder based on the three phase lag model. Zenkour (2016)
presented the generalized thermoelasticity theory based on the dual phase lags theory to
study the problem of a thick walled simply supported beam with di¤erent applied heat
source and mechanical loads. Kartoshov (2016) presented a mathematical theory for boun-
dary value problems of nonstationary heat conduction by using dual phase lag and also
presented the features of analytical solutions of such heat problems.
In the work, we investigate an axisymmetric problem of micropolar porous circular plate

with mass di¤usion in the context of three phase lag theory of thermoelasticity due to
thermal and chemical potential sources. The potential functions and Laplace and Hankel
transforms are proposed to solve the problem. Inversion of transforms is applied to obtain
the results in the physical domain. E¤ect of porosity, relaxation time, phase lag, with and
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without energy dissipation are presented on the resulting quantities.

2. Basic equations

Following Kumar and Partap (2008), Roychoudhuri (2007) and Kumar and Kansal
(2008), the �eld equations and the constitutive relations for a micropolar porous thermo-
di¤usion medium with three phase lag model in the absence of body forces, body couples,
heat sources and extrinsic equilibrated body force are taken as
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@2~u

@t2
(1)

(�+ � + 
)r
�
r:~�

�
� 
r�

�
r� ~�

�
+Kr� ~u� 2K~� = �j

@2~�

@t2
(2)

�
K� �1 + � � @@t�+K�

1
@
@t

�
1 + � t

@
@t

��
r2T =�

1 + � q
@
@t
+

�2q
2
@2

@t2

�
@2

@t2
[�C�T + �1T0 (r:~u) + �1T0�

� + a0T0C]
(3)

D�2r2 (r:~u) + D�2r2�� +Da0r2T + _C�Db0r2C = 0 (4)

P = ��2 (r:~u) + b0C � a0T (5)

tij = �ur;r�ij + � (ui;j + uj;i) +K (uj;i � "ijk�k)� �1T�ij � �2C�ij + b�ij�
� (6)

mij = ��r;r�ij + ��i;j + 
�j;i (7)

where ~u is the displacement vector, ~� is the microrotation vector, � is the density, j
is the micro inertia, �, �, K, �, �, 
 are micropolar constants, �1, b, �1, !0, m and {
are the elastic constants due to the presence of voids, �� is the change in volume fraction
�eld, K�

1 is the coe¢ cient of thermal conductivity, T is the change in temperature of the
medium at any time, C� is the speci�c heat at constant strain, C is the concentration of
the di¤usion material in the body, D is the thermoelastic di¤usion constant, a0, b0 are
respectively, coe¢ cients describing the measure of thermodi¤usion and of mass di¤usion
e¤ects, �1 = (3� + 2� + k)�t1, �2 = (3� + 2� + k)�c1, �1 = (3� + 2� + k)�t2, �2 =
(3� + 2� + k)�c2, �t1, �t2 are coe¢ cients of linear thermal expension and �c1, �c2 are
the coe¢ cients of linear di¤usion expansion, � t, � q and �� respectively, the phase lag of
the temperature gradient, the phase lag of the heat �ux and the phase lag of the thermal
displacement. tij, mij are the stress tensor and couple stress tensor, �ij is the kroneckor
delta and r2 = @2

@r2
+ 1

r
@
@r
+ 1

r2
@2

@�2
+ @2

@z2
is the Laplacian operator.

3. Formulation of the problem

A homogeneous and isotropic micropolar porous thermodi¤usion elastic circular plate
of thickness 2d is considered and the region 0 � r � 1; �d � z � d is occupied by
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the plate. We consider cylindrical polar coordinate system (r; �; z) with symmetry about
z-axis. The origin of the coordinate system (r; �; z) is taken as the middle surface of the
plate. We assume that the z-axis is normal to the plate along its thickness. T0 is the initial
temperature of the thick circular plate taken as a constant temperature.
For two dimensional case, the displacement and microrotation vectors as

~u = (ur; 0; uz) ; ~� = (0; ��; 0) (8)

The following non-dimensional variables are de�ned as

r0 = !�r
c1
; z0 = !�z

c1
; u0r =

�c1!�ur
�1T0

; u0z =
�c1!�uz
�1T0

; �0� =
�c21��
�1T0

; ��0 =
�c21�

�

�1T0

T 0 = T
T0
; C0 = �2C

�1T0
; t0 = !�t; � 0t = !�� t; � 0q = !�� q; �

0
� = !�� � ; P 0 = P

�2

t0ij =
tij
�1T0

; m0
ij =

!�

c1�1T0
mij

(9)
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With the aid of expression relating displacement components ur and uz to scalar po-
tentials � and  as
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The Laplace and Hankel transforms are given by

�f (r; z; s) = L
�
�f (r; z; t)
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Z 1

0
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Making use of (9) and (10) in (1)-(5) and with the use of (11), (12) and also applying
Laplace and Hankel transforms de�ned by (13) and (14) on resulting expressions, after
simpli�cation, we obtain

�
~�; e��; ~T ; ~C� = 4X

i=1

(1; ai; bi; di)Aicoshmiz (14)

�
~ ; e��� = 6X

i=5

(1; ei)Bisinhmiz (15)

where ai; bi; di; ei and H are given in appendix I,
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also
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where P1; P2; P3; P4; Q1 and Q2 are given on appendix II.

4. Boundary conditions

The boundary conditions may be de�ned at the surface z = �d of the plate as

dT

dz
= �g0F (r; z) (18)

tzz = 0 (19)

tzr = 0 (20)

mz� = 0 (21)

d��

dz
= 0 (22)

P = p0
� (r)H (t)

2�r
(23)

where F (r; z) = z2e�!r; ! > 0:
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�() is the Dirac delta function and H()is the Heavyside unit step function.
With the use of (6)-(16), (19)-(24), the expressions of displacements, microrotation,

volume fraction �eld, temperature distribution, concentration and stresses are obtained
in the transformed domain as
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where

� =

26666664
U1 U2 U3 U4 0 0
V1 V2 V3 V4 Y5 Y6
W1 W2 W3 W4 Z5 Z6
0 0 0 0 O5 O6
X1 X2 X3 X4 0 0
P1 P2 P3 P4 0 0

37777775
and �i (i = 1; 2; 3; 4; 5; 6) are obtained from � by replacing ith column of � with

jQ; 0; 0; 0; Rjtr, also

Ui = bimisinhmid; Vi = Licoshmid; Wi = Nisinhmid; Xi = aimisinhmid; i = 1; 2; 3; 4

Oi = Ticoshmid; Yi =Micoshmid; Zi = Sisinhmid; Pi = Kicoshmid; i = 5; 6
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5. Particular Cases

1. If we take K� = 0, in equations (25)-(31), then we obtain the corresponding results
for micropolar porous thermodi¤usion with dual phase lag model.

2. If we take C = 0, in equations (25)-(31), then we obtain the corresponding results
for micropolar porous thermoi¤usion with three phase lag model.

3. If we take, K� = 0, � t = � 2q = 0 and � q = � 0, in equations (25)-(31), then we obtain
the corresponding results for micropolar porous thermodi¤usion with one relaxation
time.

4. If we take �� = K�
1 = � q = � 2q = 0, in equations (25)-(31), then we obtain the

corresponding results for micropolar porous thermodi¤usion with energy dissipation.
5. If we take, �� = � t = � q = � 2q = 0, in equations (25)-(31), then we obtain the corres-
ponding results for micropolar porous thermodi¤usion without energy dissipation.

6. Neglecting the porous e¤ect i.e., �1, b, �1, !0, { and �� tend to zero. Then, the
boundary conditions for two temperature micropolar thermoelastic solid with three
phase lag model are given by

dT

dz
= �g0F (r; z)

tzz = 0

tzr = 0

mz� = 0
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P = � (r) � (t)

and the corresponding expressions are given by
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6. Inversion of Transforms

We have to obtain the transformed displacements, microrotation, volume fraction �eld,
temperature distribution, concentration and stresses in the physical domain, so, we invert
the transforms in the resulting expressions (25)-(31). All these expressions are functions
of the form ~f (�; z; s). Therefore, we get the function f (r; z; t) by using the inversion of
the Hankel and Laplace transforms are de�ned by

~f (�; z; s) =

Z 1

0

� �f (�; z; s) Jn (�r) d� (31)

f (r; z; t) =
1

2��

Z c+�1

c��1
�f (r; z; s) e�stds (32)

where c is an arbitrary constant greater than all real parts of the singularities of
�f (r; z; t).

7. Numerical Results and Discussions

Following Eringen (1984), the values of micropolar parameters is taken as

� = 9:4� 1010Nm�2; � = 4:0� 1010Nm�2; K = 1:0� 1010Nm�2

� = 1:74� 103Kgm�3; j = 0:2� 10�19m2; 
 = 0:779� 10�9N

Following Dhaliwal and Singh (1980), the values of thermal parameters are given by
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C� = 1:04� 103JKg�1K�1; K�
1 = 1:7� 106Jm�1s�1K�1; �t = 2:33� 10�5K�1

� t = 0:1s� 10�13sec; � q = 0:2s� 10�13sec; � 0 = 6:131� 10�13sec

� � = 8:765� 10�13sec; T0 = 0:298� 103K; m = 1:13849� 1010N=m2K

The di¤usion parameters are given by

�t1 = 2:33� 10�5K�1; �t2 = 2:48� 10�5K�1; �c1 = 2:65� 10�4m3Kg�1

�c2 = 2:83� 10�4m3Kg�1; a0 = 2:9� 104m2s�2K�1; b0 = 3:2� 105Kg�1m5s�2

D = 0:85� 10�8Kgm�3s

The values of void parameters are given as

�1 = 3:688� 10�9N; b = 1:138494� 1010N=m2; �1 = 1:1475� 1010N=m2

� = 1:1753� 10�19m2; !0 = 0:0787� 10�1N � sec=m2

We have determined the variations of normal stress, shear stress, couple shear stress,
volume fraction �eld, temperature distribution and concentration with distance r in case
of micropolar thermodi¤usion porous with three phase lag (MDPT), micropolar thermo-
di¤usion with three phase lag (MDT), micropolar thermoelastic porous with three phase
lag (MPT), micropolar thermodi¤usion porous with dual phase lag model (MDPD), mi-
cropolar thermodi¤usion porous with Lord Shulman theory (MDPL), micropolar thermo-
di¤usion porous with energy dissipation (MDPII) and micropolar thermodi¤usion porous
without energy dissipation (MDPIII). In all these �gures, MDPT, MPT, MDPD, MDT,
MDPL, MDD, MDPII and MDPIII corresponding to solid line, small dash line,dash line,
small dash line with centered symbol, small dash line with star, small dash line with cross
symbol and small dash line with zero sympol respectively.
Figure 1 displays that the values of tzz decay sharply for MDPII for 1 � r � 1:5,

increase for 1:5 � r � 3:4 in comparison to MDPT, MPT and MDPIII and then decrease
for 3:4 � r � 4. Its values for MDT, MDPD and MDPL, initially increased and then
decreased. It is also seen that for 1 � r � 2:3, the values are higher for MDT and smaller
for MDPII whereas for 2:8 � r � 3:9, the values are higher for MDPII and smaller for
MDT. All the quantities have similar values away from the source.
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Fig. 1 �Variations of normal stress tzz.

Figure 2 describes that the values of tzr initially increase for 1 � r � 1:5, decrease for
1:5 � r � 3:5 and the values are stationary for 3:5 � r � 4 for MDPT and MDPD. The
small variation are exhibited in the case of MDPL. The value is initially increased and then
decreased for MPT. Its value for MDT is stationary in the beginning and then increased
and further gets decreased slowly. For MDPII and MDPIII, its values initially decreased
rapidly and then increased gradually for the further range. The values are maximum for
MDPIII and minimum for MDT near the application of the source.

Fig. 2 �Variations of shear stress tzr.

Figure 3 shows that the values ofmz� increase for 1 � r � 2:5, decrease for 2:5 � r � 3:6
and then its values become stationary for 3:6 � r � 4 for MDPT, MDT, MDPD, MDPL,
MDPII and MDPIII. Its value for MPT initially decreases for 1 � r � 2:3, increases
for 2:3 � r � 3:7 and then becomes stationary for the remaining range. The maximum
magnitude is occurred in the case of MDPII.
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Fig. 3 �Variations of couple shear stress mz�.

Figure 4 shows that the value of �� initially increases for 1 � r � 1:3, decreases for
1:3 � r � 3:5 and again increases for 3:5 � r � 4 for MDPT. Its values decrease for
1 � r � 1:3, increase for 1:3 � r � 3:3 and again decrease for 3:3 � r � 4 for MPT,
MDPD, MDPL and MDPII. Its values are decreasing in the case of MDPIII over the
whole range. �� takes large value in the case of MDPT and small value in the case of
MDPL for 1 � r � 2:5. The values are the same for MDPT, MPT, MDPD, MDPL and
MDPII away from the source.

Fig. 4 �Variations of volume fraction �eld ��.

Figure 5 exhibits that the value of T increased at the beginning, then decreased and
then again increased away from the source. The maximum value is exhibited in the case
of MDPT. Near the application of the source, the values are similar for MDPT, MDPL
and MDPIII. The values are also similar for MPT, MDPIII and MDT, MDPD, MDPL,
MDPII for the ranges 3:4 � r � 3:8, 3:2 � r � 3:7 respectively.
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Fig. 5 �Variations of temperature distribution T .

Figure 6 represents that the values of C decrease at the beginning for 1 � r � 2:7
and then increase for 2:7 � r � 4 for MDPT, MDPL and MDPIII. Its value is increased
for 1 � r � 2:5 and decreased for 2:5 � r � 4 for MDPD and MDPII. The value of
C is decreased and attains its minimum value for 1 � r � 1:3, rapidly increased for
1:3 � r � 3:4 and then again decreased for 3:4 � r � 4 for MDT. All the curve obtained
have a di¤erent starting point. The values are coinciding for MDPL and MDPIII for
1:7 � r � 3:8.

Fig. 6 �Variations of concentration C.

8. Conclusion

In the paper, a two dimensional axisymmetric problem of micropolar porous thermodif-
fusion circular plate with thermal and chemical potential sources has been investigated.
The potential functions and Laplace and Hankel transforms are used to solve the problem.
We have presented the e¤ect of porosity, relaxation time, phase lags, with and without
energy dissipation on the resulting quantities.
For couple shear stress, all the quantities have similar behavior except MPT. Volume

fraction �eld has also similar behavior for MPT, MDPD, MDPL and which is opposite
to MDPT. The decreasing behavior is observed in the case of MDPIII for volume frac-
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tion �eld. Similarity is also exhibited in the cases of MDPT, MPT, MDPII and MDPIII
whereas reserved behavior is observed in the case of MDT for normal stress. The values
are decreased in the cases of MDPD and MDPL for normal stress. For shear stress, it is
observed that the variations are small in the cases of MDPD and MDPL. For MDPII and
MDPIII, the variations are similar. Due to void and di¤usion e¤ect, the values are initially
increased and then decreased. For concentration, the variation are similar for MDPD and
MDPII which is opposite to MDPT, MDPL and MDPTIII. For temperature distribution,
the variations remain almost same in all the cases. Thus, we have observed that most
of the quantities are similar in nature which concludes that the e¤ect of void, di¤usion,
phase lags, thermal relaxation time have an important role in micropolar thermoelasticity.
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