THE PERMANENT MAXILLARY FIRST MOLAR: CANAL NUMBERAND ONFIGURATIONS IN A TUNISIAN POPULATION

Soumaya Touzi¹, Rim Kallala¹, Mohamed Romdhane¹, Nissaf Daouahi², Imen Guesmi², Jilani Saafi², Mounir Cherif²

- ¹. Department of Dental Anatomy of the Dentistry Clinic of Monastir, Tunisia;
- ². Department of Fixed Prosthodontics of the Dentistry Clinic of Monastir, Tunisia.

ABSTRACT:

Introduction:Canal morphology of the maxillary first molar is very particular and the knowledge of root canal anatomy is necessary in the success of endodontic therapy. The purpose of this study is to determine the frequencies of root and canal morphologies of permanent maxillary first molar in a sample of 85 molars in Tunisia.

Materials and methods:In this study, we used 85 maxillary first molars extracted for periodontal reasons. Each tooth is macroscopically examined to determine the number of roots and then we grind progressively at the root surface to highlight the path of the root canals. Canal number and configurations of both mesial and distal roots are observed and analysed using sections.

Results:In the present study, most of maxillary first molars were 3 rooted(96.9 %) and 3.4% were 2 rooted. This study showed in the mesio buccal root the predominance of Vertucci type I cases(67%). In the disto buccal root, this study showed the presence of a single canal in 100 % of cases. Palatal root had mainly one canal (97.6%).

Conclusion:The prevalence of two roots was 3.4%. In the mesio buccal root, the most prevalent configuration was type I (67%). In the disto buccal root, we found vertucci type I on 100% of cases. Palatal root had mainly one canal (97.6%).

Key words: Anatomy, maxillary first molar, morphology, root, canal

INTRODUCTION

Complete and thorough chemo mechanical debridement of the root canal system is pivotal for the optimal outcome of the root canal treatment. The clinician should be aware of the possible root canal configurations and the presence of additional canals, which are of vital importance to the complete instrumentation and disinfection of the root canal system, thus minimizing the risk of treatment failure [1].

Root and canal morphologies can vary in different populations and ethnic groups. Thus, identifying the root canal anatomy of different ethnic populations is essential for successful endodontic treatment [2].

MATERIALS AND METHODS

In this study, we used 85 molars that have been extracted mainly for periodontal reasons. The teeth were stored in a sodium hypochlorite solution

diluted to 5% during 3 days and then washed in running water and then dried.

Each tooth is macroscopically examined to determine the number of roots and then we grind progressively at the root surface to highlight the path of the root canals. Canal number and configurations are observed and analysed using sections:

-Mesio buccal and disto buccal root:bucco-lingual sections

-Palatal root: mesio-distal sections.

RESULTS

1- Number of roots by tooth (table 1)

Table 1: Number of roots by tooth:

Rootnumber	1 root		2 roots		3 roots		4 roots	
tooth	number	%	number	%	number	%	number	%
	0	0%	3	3.4%	85	96.9%	0	0%

2- Number of canals by root (table 2)

Table 2: number of canals by root

	1 canal	2 canals	3canals
Mesiobuccalroot	67%	33%	0%
Distobuccalroot	100%	0%	0%
Palatal root	97.6%	2.4%	0%

3- Canal configurations (table 3)

Table 3: canal configurations

root	Canal configuration (class. Vertucci)									
	I	Ш	III	IV	V	VI	VII	VIII		
Mesio buccal	67	21.1	0	9.4	1.2	1.2	0	0		
Disto buccal	100	0	0	0	0	0	0	0		
Palatal	97.6	2.3	0	0	0	0	0	0		

- 4- Different canal configurations observed at the mesio-buccal root (Figures 1-5)
- 5- Different canal configurations observed at the disto-buccal root (Figure 6)
- 6- Differents canals configurations observed on the palatal root (Figure 7-8).

DISCUSSION

Number of roots

In the present study, most of maxillary first molars were 3 rooted (96.9 %) and

3.4% were 2 rooted. The sample didn't

include 1 or 4 rooted molars (table 4).

Table 4: Roots number

Authors	year	Sample	2 rooted	3 rooted
Cleghorn BM [3]	2000	83	2,4%	97,6%
Ng et al ^[4]	2001	90	0%	100%
Alavi et al [5]	2002	52	0%	100%
Neelakantan P et al [6]	2010	220	1.3 %	96.8%
Zheng Q.H ^[7]	2010	627	2.23%	97.29%
Sert S ^[8]	2011	355	6.47%	92.96%
Kim Yet al ^[9]	2012	814	1.11%	97.91%
Gu Y et al [10]	2015	1365	2.12 %	97.58%
Alrahabi Met al [11]	2015	100	6%	94%
Personal study	2015	88	3.4%	96.9%

The Percentage of 3 rooted maxillary first molars was variable for consulted studies from 92.96% $^{[8]}$ to 100% $^{[4, 5]}$. For the 2 rooted molars, it was from 0% $^{[4, 5]}$ to 6.47% $^{[8]}$.

Internal morphology:

Mesio buccal root:

- Number of canals:

Our study showed that 67% of the sample had only one canal in the mesio buccal root and 33% had 2 canals.

Our results are in agreement with those of Semipra et al $^{[12]}$ who found that

Table 5: Canals number in the mesio buccal root.

66,9% had one canal and 33,1% had 2 canals by using operating microscopeon a sample of 130 maxillary first molars .

Others studies reported various results: from $0\%^{[13]}$ to $75\%^{[14]}$ had one canal and from $25\%^{[14]}$ to $100\%^{[13]}$ had 2 canals in the mesial root (table 5).

These differences can be explained by the sample size or the difference of used techniques.

Authors	Year	Technique	sam	1	2
Addiois	i Cai	reciiiique	ple	canal	canals
Weine [15]	1969	sectionning	208	48,5%	51,5%
Vertucci ^[16]	1984	Clearing	100	45,0%	55,0%
Kulild et al [17]	1990	telescopy	51	4,0%	96,0%
Pecora et al [14]	1992	Clearing	120	75%	25%
Weine et al [18]	1999	radiographic in vitro	293	42,0%	58,0%
] Cleghorn BM [3]	2000	Clearing	83	22,0%	78,0%
Sempira et al [12]	2000	Clinic (Microscope)	130	66,9%	33,1%

Touzi S.et al, Int J Dent Health Sci 2015; 2(6):1450-1459

Alavi et al [5]	2002	Clearing		52	35,0%	65,0%
Sert et al [19]	2004	Clearing		200	6,5%	93,5%
Filho et al [20]	2009	Microscope	and	140	7.15%	92.85
		radiographic				%
Degerness et al [21]	2010	sectionning		90	20%	79 ,8%
Zheng et al ^[9]	2010	Conebeam		624	47.59	51.92
Domark J D ^[13]	2013	Conebeam		13	0%	100%
Al-Fouzanet al [22]	2013	Clearing		308	48.7%	51.3%
Faramarzi et al ^[23]	2015	Conebeam		156	30.77%	69.23
						%
Alrahabi et al [11]	2015	Conebeam		100	29.6%	70.6%
Personal study	2015	sectionning		85	67%	33%

- Canals configurations:

In this study, the most prevalent configuration on the mesio buccal root was type I (67%). type II represented 21.1% and Type IV 9.4%.

Consulted studies showed significant diversified results about canals configurations: from 0% ^[23] to 66.7% ^[24] for type I, from 5.5% ^[6] to 71.3% ^[24] for

type II, from $0\%^{[23]}$ to $11.8\%^{[11]}$ for type III, from $8.9\%^{[24]}$ to $59.87\%^{[25]}$ for type IV. Types V and VI presented the fewer percentages with respectively from 0% to 6.6% and from 0% to 0.66% (table 6).

The differences in results may be explained by the heterogeneity of the studied population or related to the variety of the teeth number per sample.

Table 6: canal configurations in the mesio-buccal root.

		Canal Configuration (Vertucci) (%)						
Study	Year	1	II	III	IV	V	VI	
Eder et al ^[25]	2006	5.92	31.58	0	59.87	0.66	0.66	
Weng et al [24]	2009	66.7	8.9	8.9	8.9	6.6	0	
Neelakantan et al ^[6]	2010	51.8	5.5	0	38.6	0	0	
Faramarzi et al ^[23]	2015	0	71.3	0	28.7	0	0	
Alrahabiet al [11]	2015	29.4	47	11.8	11.8	0	0	
Personal study	2015	67	21.1	0	9.4	1.2	1.2	

• Disto buccal root:

- Number of canals:

In the present study, all disto buccal root had one canal (100%) which is in agreement with many others sudies: Vertucci [11, 14,16, 26] (Table 6).

Othor authors identified second canals in this root but with lower percentage, those varied from 1.6% for Caliskan et al [27] to 9.5% for Sert et al [19] (table 7).

The difference of results can be explained by population heterogeneity.

Table 7: Canal number in the disto buccal root

Authors	Year	Technique	Sample	1 canal	2 canals
Pineda et al [28]	1972	Radio. In	262	96,4%	3,6%
		vitro			
Vertucci ^[16]	1984	Clearing	100	100%	0%
Pecora et al [14]	1992	Clearing	120	100%	0%
Caliskanet al [27]	1995	Clearing	100	98,4%	1,6%
Zaatar et al [26]	1997	Radio. RTC	133	100%	0%
Cleghorn BM [3]	2000	Clearing	83	97,5%	2,5%
Alavi et al [5]	2002	Clearing	52	98,1%	1,9%
Sert et al [19]	2004	Clearing	200	90,5%	9,5%
Zheng et al [7]	2010	Conebeam	624	98.88%	1.12%
Alrahabi et al [11]	2015	Conebeam	100	100%	0%
Personal study	2015	sectionning	85	100%	0%

- Canals configurations:

In this root, we found type I of vertucci on 100% of cases.

Our results are in correlation with those of Alrahabi ^[11] who reported that typel was observed in all distobuccal roots. However, Neelakantan et al ^[6] and Weng et al ^[24] found type I configuration on respectively 90.4 % and 88.9% of distobuccal roots.

For Médioni et al ^[29], when the disto buccal root had 2 canals (0 à 3.6% of cases), it was frequently type IV and for Neelakantan et al ^[6], type II was more prevalent.

Table 8: Canals number in the Palatal root

Palatal root:

- Number of canals:

The present study showed that palatal root had mainly one canal (97.6%); we found only 2.3% of cases with 2 canals. Our results indicate similar incidences to those reported on the Literature with a percentage of 2 canals from 0% [3; 28] to 7% [27] (table8).

Authors	Year	Technique	Sample	1 canal	2 canals
Pineda et al ^[28]	1972	Radio. In vitro	262	100%	0%
Vertucci ^[16]	1984	Clearing	100	100%	0%
Pecora et al [14]	1992	Clearing	120	100%	0%
Caliskan et al [27]	1995	Clearing	100	93%	7%
Zaatar et al ^[26]	1997	Radio. RTC	133	100%	0%

Touzi S.et al, Int J Dent Health Sci 2015; 2(6):1450-1459

Cleghorn BM ^[3]	2000	Clearing	83	98,8%	1,2%
Alavi et al [5]	2002	Clearing	52	100%	0%
Sert et al [19]	2004	Clearing	200	94,5%	5,5%
Zheng et al ^[7]	2010	Conebeam	624	98.24%	1.76%
Alrahabi et al [11]	2015	Conebeam	100	100%	0%
Personal study	2015	sectionning	85	97,6%	2,3%

The differences in results may be explained by the heterogeneity of the techniques used or related to the variety of the teeth number per sample.

- Canals configurations:

In the presentstudy, this rootwas type I on 97.6% and type II on 2.3% of sample which is in agreement with the study of Médioni et al [29] (99% Type I, 1% Type II).

Alrahabi M ^[11] found that thecanal configuration for palatal roots was Vertucci's class I in all cases (100%), however Neelakantan et al ^[6] reported only 88.1%.

Canal configuration of this root can be complex; Wong [30] reported one rarely case in which the palatal root had one

REFERENCES:

- 1. Georgia NE, Taxiarchis KG, Nikolaos KP. Evaluation of the Root and Canal Morphology of Maxillary Permanent Molars and the Incidence of the Second Mesiobuccal Root Canal in Greek Population Using Cone-beam Computed Tomography ,Open Dent J 2015; 9: 267–72.
- 2. Altunsoy M, et al. Root canal morphology analysis of maxillary permanent first and second molars

orifice, but presented trifurcation in the thirdapical with 3 separated foramina.

Maggiore et al [31] reported one case with trifurcation in the third apicalof palatal canal. These reports were based on preoperative and postoperative radiographic examination of the teeth.

CONCLUSION

The present study showed that most of maxillary first molars were 3 rooted (96.9 %) and 3.4% were 2 rooted. In the mesio buccal root, the most prevalent configuration was type I (67%), type II represented 21.1% and Type IV 9.4%.In thedisto buccal root, we found vertucci type I on 100% of cases. Palatal root had mainly one canal (97.6%); we found only 2.3% of cases with 2 canals.

in a Southeastern Turkish population using cone-beam computed tomography, Journal of Dental Sciences 2014;20: 1-7.

- 3. Cleghorn BM, Christie WH, Dong CC.Root and root canal morphology of the human permanent maxillary first molar: A literature review. JEndod 2006; 32: 813-21.
- Ng YL, Aung TH, Alavi A, GulabivalaK.Root and canal morphology of Burmese maxillary molars. IntEndod J 2001; 34: 620– 30.

- 5. Alavi AM, Opasanon A, Ng YL, Gulabivala K .Root and canal morphology of Thaimaxillary molars. IntEndod J 2002; 35: 478–85.
- 6. Neelakantan.P,Subbarao.C, BDS, Ahuja.R, Subbarao.C.V, and Gutmann.J.L. Cone-Beam Computed Tomography Study of Root and Canal Morphology of Maxillary First and Second Molars in an Indian Population, Journal of Endodontic 2010; 36: 1622-7.
- 7. Zheng.Q H, Wang.Y, Zhou.X D, Wang.Q, Zheng.G N, and DingmingHuang.D N.A Cone-Beam Computed Tomography Study of Maxillary First Permanent Molar Root and Canal Morphology in a Chinese Population, Journal Of Endodontics 2010; 36: 1480- 4.
- 8. Sert.S, Sahinkesen.G,Topcu.F T .Eroglu .S E and OktayE.A.Root canal configurations of third molar teeth. A comparisonwith first and second molars in the Turkish population, AustEndod J 2011; 37: 109–17.
- Kim.Y, , Lee.S J and Woo.J .Morphology of Maxillary First and Second Molars Analyzed by Cone-Beam Computed Tomography in a KoreanPopulation: Variations in the Number of Rootsand Canals and the Incidence of Fusion, Journal of Endodontics 2012; 38: 1063-8.
- 10. Gu.Y ,Wang.W , Ni.L.Four-rooted permanent maxillary first and second molars in a northwestern Chinese population, Archives Of Oral biology 2015; 60: 811–7.
- 11. Alrahabi M, Zafar MS. Evaluation of root canal morphology of maxillary molars using cone beam computed tomography, Pak J Med Sci 2015; 31: 426-30.
- 12. Sempira.HN, Hartwell.GR. Frequency of second mesiobuccal canals in

- maxillary molars as determined by use of an operating microscope: a clinical study, J Endod 2000; 26: 673-
- 13. Domark .J D, Hatton.JF,Benison.R P and Hildebolt.C F. An Ex Vivo Comparison of Digital Radiography, Cone Beam and Micro Computed Tomography in the Detection of the Number of Canals in the Mesiobuccal Roots of Maxillary Molars, Journal of Endodontics 2013; 39: 901–5.
- 14. Pécora JD, Woelfel JB, Sousa Neto MD. Morphologic study of the maxillary molars part I: external anatomy, Braz Dent J 1991; 2: 45-50.
- 15. Weine FS, Healey HJ, Gerstein H, Evanson L. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol 1969; 28: 419-25.
- 16. Vertucci FJ. Root canal anatomy of the human permanent teeth. OralSurg Oral Med Oral Pathol Oral RadiolEndod 1984;58: 589-99.
- 17. Kulild JC, Peters DD. Incidence and configuration of canal systems in the mesiobuccal root of maxillary first and second molars. Journal of Endodontics 1990;16:311-4.
- 18. Weine FS, Hayami S, Hata G, Toda T. Canal configuration of the mesiobuccal root of the maxillary first molar of a Japanese subpopulation, IntEndod J 1999;32:79 87.
- 19. Sertetal.Investigation of the root canal configurations of mandibular permanent teeth in the Turkish population, IntEndod J 2004; 37:494-9.
- 20. Filho.FB,Zaitter.S, Haragushiku .G S, Campos.E A, Abuabara

- .AandCorrer.G M Analysis of the Internal Anatomy of Maxillary First Molars by Using Different Methods, Journal of Endodontics 2009; 35: 337-42.
- 21. Degerness RA, Bowles WR. Dimension, anatomy and morphology of the mesiobuccal root canal system in maxillary molars, J Endod 2010; 6: 985-9.
- 22. Al-Fouzan.KS,Ounis.HF,Merdad.K and Al-Hezaimi.K.Incidence of canal systems in the mesio-buccal roots of maxillary first and second molars in Saudi Arabian population. AustEndod J 2013; 39: 98–101.
- 23. Faramarzi.F,Vossoghi.M , Shokri.A,Shams.B , Vossoghi.M , Khoshbin.E.Cone Beam Computed Tomography study of root and canal morphology of maxillary first molar in an Iranian population, Avicenna. J Dent Res 2015;9: 24-38.
- 24. Weng.X L, Yu.S B, Zhao.S L, Wang.H G, Mu.T,Tang.R Y, MD and Zhou.X D. Root canal morphology of permanent maxillary teeth in the Han Nationality in Chinese Guanzhong Area: A New Modified Root Canal Staining Technique. JOE 2009; 35: 651-6.
- 25. Eder.A ,Kantor.M,Nell .A, Moser.T,Gahleitner.A, Schedle.A and Sperr.W .Root canal system in the mesiobuccal root of the maxillary first molar: an in vitro

- comparison study of computed tomography and histology, Dentomaxillofacial Radiology 2006; 35: 175–7.
- 26. Zaatar EI, al-Kandari AM, Alhomaidah S, al-Yasin IM. Frequency of endodontic treatment in Kuwait: radiographic evaluation of 846 endodontically treated teeth. J Endod 1997; 23: 453-6.
- 27. Caliskan MK, Pehlivan Y, Sepetcioglu F, Turkun M, Tuncer SS. Root canal morphology of human permanent teeth in a Turkish population, J Endod 1995; 21:200-4.
- 28. Pineda F, Kuttler Y. Mesiodistal and buccolingualroetgenographic investigation of 7,275 root canals. OralSurg Oral Med Oral Pathol 1972;33:101-10.
- 29. Médioni E, Vené G. Anatomie endodontique fondamentale et clinique. Editions Techniques. Encycl Med Chir 23-050-A-05.
- 30. Cantatore G, Berutti E, Castellucci A. Missed anatomy: frequency and clinical impact Endodontic Topics 2009; 15: 3-31.
- 31. Maggiore F, Jou YT, Kim S. A sixcanal maxillary first molar: case report. IntEndod J 2002; 35: 486-91.

FIGURES:

Figure 1 : type I (Vertucci)

Figure 2 : type II (Vertucci)

Figure 3 : type IV (Vertucci)

Figure 4 : type V (Vertucci)

Figure 5 : type VI (Vertucci)

Figure 7 : type I (Vertucci)

Figure 6 : type I (Vertucci)

Figure 8 : type II (Vertucci)