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DETERMINATION OF CRITICAL 

ROTATIONAL SPEED OF CIRCULAR SAWS 

FROM NATURAL FREQUENCIES OF 

ANNULAR PLATE WITH ANALOGOUS 

DIMENSIONS 

 
Abstract: It is suitable to reduce thickness of circular saw 

when trying to enhance usability of wood raw material, but 

reducing thickness also causes reduction of permissible 

rotational speed which reduces sawing speed. If one increase 

circular saw rotational speed over permissible one the quality 

of machined surfaces will reduce because of enhanced 

vibrations. Permissible rotational speed can be calculated 

from critical rotational speed which can be defined from 

natural frequencies of the saw. In this article critical 

rotational speeds of standard clamped saws (with flat disk 

surface and without slots) are calculated by using finite 

element method and classical theory of thin plates on annular 

plates. Mode shapes and natural frequencies of annular plates 

are determined by using Bessel functions and by using 

polynomial functions. Obtained results suggest that standard 

clamped circular saws without slots and with relatively small 

teeth can be determined from classical theory of thin plates for 

annular plates with accuracy depending on clamping ratio. 

Keywords: circular saw, theory of thin plates, annular 

plates, critical rotational speed 

 

 

1. Introduction1
 

 

Circular saw manufacturers tends to reduce 

thickness of saws and to enhance their 

rotational speeds with the aim of increasing 

the usability of wood raw material or other 

types of materials (Ucun, 2012; Fragassa et 

al., 2016; Fragassa et al., 2016). But, circular 

saw blade thickness has to satisfy needed 

lateral stiffness (Stakhiev, 2000) for 

appropriate sawing workload and 

appropriate working circular speed which 
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won't cause high thermal load (AnĎelić et 

al., 2016) and decreasing of lateral stiffness. 

Also, reducing of circular saw thickness can 

cause occurrence of high vibrations which 

appears if working circular speed is higher 

than permissible circular speed which 

decreases quality of processing (ie. increases 

roughness and decreases accuracy of 

workpiece dimensions), enhance noise and 

decrease tool durability. Also, non-linear 

vibrations can be self-excited at circular 

saws (Raman and Mote, 1999) or bandsaws 

(Žigulić et al., 2015). If increased vibrations 

happen the solution is to decrease the speed 

of sawing and the workpiece feed speed 

(Angelo and Mote, 1988) which leads to 

mailto:askoblar@riteh.hr
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lower efficiency. Specified reasons limit 

thinning of circular saw and it is needed to 

find an optimum. 

Permissible rotational speed is determined 

from critical rotational speed which is the 

maximum rotational speed when circular 

saw rotate with standardized stability 

(Orlowski et al., 2007; Stakhiev, 2000). So 

one of the important issues for circular saw 

manufacturers is to correctly determine 

critical rotational speed. Critical rotational 

speed is determined from circular saw 

natural frequencies which can be determined 

from experiments (Mote, 1965; Pahlitzs and 

Rowinski, 1966; Stakhiev, 2000; Stakhiev, 

1998; Orlowski et al., 2007; Kaczmarek et 

al., 2015) from finite element method (FEM) 

analysis (Gogu, 1988; Holoyen, 1987; 

Leopold and Munz, 1992; Michna and 

Svoren, 2007) and from analytical solution 

for annular plates based on classical theory 

of thin plates (Kirchoff, 1882) where 

Southwell (Southwell, 1922) uses Bessel 

functions and Lee (Lee, 1994) polynomial 

functions to define mode shapes and natural 

frequencies. Orlowski and Sandak (Orlowski 

and Sandak, 2005) emphasize that 

permissible (max.) rotational speed of 

circular saw defined by the manufacturers 

can occasionally be higher than calculated/or 

experimentally determined critical rotational 

speed. Also, Stakhiev (Stakhiev, 2004) 

explicitly adduce an example where 

calculated permissible rotational speed is 

exceeded for 28% meaning that such circular 

saws may become unstable and 

consequences may not only include low 

quality of surface finish, but also workers 

injuries etc. 

The purpose of this article is to analyze 

accuracy of classical theory of thin plates 

used on annular plates with analogous 

dimensions to circular saws while changing 

the clamping ratio. As an example from 

practice an standard clamped saw is chosen 

for which an FEM model is made from the 

producers data and for which an critical 

rotational speed is determined. Then critical 

rotational speed is calculated for annular 

plate with analogous dimensions to circular 

saw by the use of FEM model and by the use 

of theory for classical thin plates (mode 

shapes are determined with Bessel functions 

and by polynomial functions) and obtained 

results are analyzed.  

 

2. Calculation of circular saw 

critical rotational speed 
 

Stakhiev defines three types of rotational 

speeds when circular saw is stable (Stakhiev, 

2000): 

 universal rotational speed nu=(0.31-

0.43)
min
crn , 

 optimal rotational speed no=(0.59-

0.696) 
min
crn , and 

 permissible rotational speed 

np=0.85
min
crn , where 

min
crn  is the 

minimal critical rotational speed. 

For circular saws there is an theory which 

states that resonance vibrations of circulars 

saws appears as an result of interference 

between two wave components, wave which 

is travelling forward and wave which is 

traveling backward. Based on the stated 

theory an equations for frequencies of 

backward and forward wave (Schajer, 1986) 

are 

  60
f s N

nN
f f  ,                                       (1) 

  60
f s N

nN
f f  ,                                       (2) 

 

where N is saws circular speed, rpm, n is 

number of nodal diameters and fs is the 

natural frequency of rotating saw, Hz, which 

can be calculated with expression 

 

   

2
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                             (3)

 

 

where f(N=0) is the natural frequency of 

non-rotating saw (N=0), Hz, and  is an 

centrifugal force coefficient. 
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Centrifugal force coefficient  can be 

determined from empirical equation 

(Šteuček, 1971): 

 

2
1 3 1

4 4

p p

p p

m m
n n

m m


 
 

                         (4)

 

where mp is the coefficient of Poisson 

process which can be calculated from 

Poisson ratio (mp=1/). 

Circular saw will start to vibrate in a 

resonance when the value of backward wave 

frequency become zero, Figure 1 (Schajer, 

1986). 

 
Figure 1. Campbell's diagram: vibration frequency of circular saw blade in function of 

rotational speed, an example of theory about forward and backward travelling wave (Schajer, 

1986) 

 

For natural frequency that correspond to the 

chosen number of nodal diameters n (Figure 

2) the value of critical circular speed ncr, 

rpm, can be determined from this equation 

(Kaczmarek et al., 2015; Stakhiev, 1998). 

 

 0

2

60
N

cr

f
n

n 




                                        

(5)

 

Critical rotational speed should be calculated 

for all reference modes and one should 

choose the lowest value for final critical 

speed (Figure 3). One can notice on Figure 3 

that the lowest values of critical rotational 

speeds are connected with mode shapes with 

nodal diameters n=2, 3 and 4 which 

correspond to recommendations in practice. 
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Figure 2. Referent mode shapes (m,n) calculated with FEM: a) (0,2), b) (0,3) and c) (0,4) 
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Figure 3. Campbell's diagram: dependence of critical rotational speed to the number of nodal 

diameters, (Schajer, 1986) 

 

3. Application of the classic theory 

of thin plates on annular plates 
 

Natural frequencies and mode shapes of 

annular plate with analogous dimensions to 

chosen circular saw (thickness h, inner 

clamping diameter a, outer diameter which 

equals distance from saw center to the top of 

the teeth) and equal material will be 

determined by the use of classical theory of 

thin plates. Potential and kinetic energy of 

circular saw based on the classic theory of 

thin plates (Meirovitch, 1967), is determined 

with expressions 

   
22 2 22
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where bending stiffness of the blade, D, is 

defined by expression 

 

3

212 1

Eh
D





                                          (8)

 

 

where E is Young's modul and  is density. 

Differential equation that describes the 

vibrations of circular/annular plates can be 

derived using Hamilton’s principle. 

Essentially Hamilton’s principle is variation 

of Lagrangian over time and the Lagrangian 

function is difference of kinetic and potential 

energy. The potential energy consists of 

work done by internal forces and work done 

by external forces. If there are no external 

forces acting on a system then the potential 

energy is equivalent to work done by internal 

forces. Kinetic energy (Baddour and Zu, 

2001) is the most influential part in 

developing differential equation in case of 

stationary or rotating annular plate and 

potential energy is the same for both cases if 

there are no forces acting on a system.  

By applying Hamiltonian principle on to 

equations (6) and (7) one can calculate 

equation of annular plate free vibrations 

w(r,,t) 

 
2
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(9) 

 

Boundary conditions of mounted circular 

saw are clamped on inner diameter (r=a), 

which is defined in this way 

 

0w  ,                                                      (10) 

0
w

r




                                                      (11)

 

 

and free outer diameter which is defined in 

this way 
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where Mr is flexural moment and Qr is 

transversal force. By using the method of 

separation of variables on equation (9) the 

solution takes the following form: 
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where mode shape m,n will be defined with 

Bessel functions and with polynomial 

functions. 

 

3.1. Mode shapes expressed with Bessel 

functions 

 

Mode shape expressed with Bessel functions 

must satisfy boundary conditions (10-13) 

and they are defined with (Southwell, 1922; 

Meirovitch, 1967) 
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              (15) 

 

where coefficients , , , ,, ,C  and m n m n m n m nA B D  

follows from specific mode shape, 

 and n nJ Y  are the Bessel functions of first 

kind and the second kind, respectively, while 

 and n nI K are modified Bessel functions of 

first and second kind and dimensionless 

frequency parameter 
mn  is defined as 

2

4 mn
mn

h

D

 
  .                                      (16) 

 

All coefficients are determined from the 

boundary conditions by applying the energy 

principle (Meirovitch, 1967). Natural 

frequency can be determined from 

dimensionless frequency parameter using 

following expression 
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3.2. Mode shapes expressed with 

polynomial function 

 

Mode shapes expressed with polynomial 

functions must satisfy boundary conditions 

and is defined as (Lee, 1994): 

     
 

,

2

, cos

P m
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mn mn s

s
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  (18)

 

 

Total potential and kinetic energy of the 

system are obtained by entering modal 

functions which includes boundary 

conditions in to equations (6) and (7) (Bert, 

1987) and by applying energy principle one 

obtains an sum of algebraic equations which 

can be written in matrix form (Meirovitch, 

1967; Bert, 1987; Kim et al., 1990) 
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where ij  is defined as 
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(20) 
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Dimensionless frequency parameter mn  is 

than calculated from the fact that quadratic 

matrix determinant must be zero to find an 

solution. Then, natural frequency can be 

determined from dimensionless frequency 

parameter using expression (17). 

 

4. Examples 
 

Saw teeth dimensions are taken from the 

literature (Nishio and Marni, 1996) and are 

shown on the Figure 4. Dimensions of the 

circular saw blade disk are taken for the 

circular saw Bosch 2609256883 (Precision 

Circular Saw Blade with 48 Carbide Teeth, 

300 mm Diameter, 30 mm Bore, 3.2 mm 

Cutting Width) without slots and are shown 

on Figure 5.  

 

 
Figure 4. Teeth geometry of circular saw blade (dimensions are in mm) 
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Figure 5. Geometry of circular saw blade 

(dimensions are in mm), 110 mm is the 

clamping collar outer diameter  

 

 

 

 

4.1. Example 1 

 

The purpose of the Example 1 is to define 

and compare natural frequencies of standard 

circular saw without slots and annular plate 

with analogous dimensions by the use of 

FEM. Input data for annular plate (figure 6) 

are listed in the Table 1. 

 

Table 1. Geometric characteristics of 

annular plate 

Geometrical 

characteristics  

 

Outer radius b (mm) 150 

Inner clamping radius a 

(mm) 

55 

Thickness h (mm) 2,2 

 

 
Figure 6. Dimensions of annular plate 

 

In Table 3 there are natural frequency of 

circular saw blade and annular plate with 

analogous dimensions calculated by FEM. 

It can be seen from the Table 2 that 

calculated natural frequencies converge to 

the value with minimum element size 0.003 

m. Also it can be seen that the percentage 

difference between results of annular plates 

and circular saws for referent mode shapes 

(m, n) are: (0,2) 0.62%, (0,3) 3.57% i (0,4) 

7.25%. The results are in good agreement for 

the first two referent modes but for the third 

mode there is a bit bigger deviation. One can 

conclude that results would be better if 

circular saws with smaller teeth were used. 
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Table 2. Natural frequency of circular saw blade and annular plate obtained by using FEM in 

Femap NX Nastran 

Mode 

Shape 

(m,n) 

Natural 

frequency 

of circular 

saw blade 

[Hz] 

(Element 

size 0.008) 

Natural 

frequency 

of circular 

saw blade 

[Hz] 

(Element 

size 0.005) 

Natural 

frequency 

of circular 

saw blade 

[Hz] 

(Element 

size 0.003) 

Natural 

frequency 

of annular 

plate [Hz] 

(Element 

size 0.008) 

Natural 

frequency 

of annular 

plate [Hz] 

(Element 

size 0.005) 

Natural 

frequency 

of annular 

plate [Hz] 

(Element 

size 0.003) 

(0,0) 198.90 198.30 197.82 195.67 194.78 194.41 

(0,1) 200.55 199.95  199.50 196.94 195.81  195.39  

(0,2) 231.35  230.22  229.78  230.31 228.84  228.36  

(0,3) 334.77  331.81  331.08 345.02 343.37  342.90  

(0,4) 513.49  507.03  505.55  545.21 542.83  542.29 

 

 
Figure 7. Referent annular plate mode shapes (m, n) clamped at the inner radius: a) (0,2), b) 

(0,3) i c) (0,4) 
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On the figure there are referent annular plate 

mode shapes and the similarity with circular 

saws mode shapes can be seen (Figure 7). 

 

 

 

4.2. Example 2 

 

The purpose of Example 2 is to calculate 

natural frequencies with the use of classical 

theory of thin plates on annular plates and to 

compare it with the FEM results (Table 3). 

 

Table 3. Natural frequency of annular plate obtained by different methods 

Mode Shape 

(m,n) 

Frequency obtained 

using Femap NX 

Nastran for annular plate 

[Hz] (Element size 

0.003) 

Frequency obtained 

using linear vibration 

theory of annular 

plate, Bessel [Hz] 

Frequency obtained 

using linear vibration 

theory of annular 

plate, polynomial s=6 

[Hz] 

(0,0) 194.41 194 194 

(0,1) 195.39  189.9 195 

(0,2) 228.36  228.24 228.3 

(0,3) 342.9  343.29 343.4 

(0,4) 542.3  543.43 543.5 

 

It can be seen that calculated natural 

frequencies from classical theory of thin 

plates completely match FEM natural 

frequencies for annular plate. The percentage 

difference for mode shapes (m, n) are: (0,2) 

0.03%, (0,3) 0.15% and (0,4) 0.22%. 

 

4.3. Example 3 

 

The purpose of the Example 3 is to analyze 

convergence of annular plates natural 

frequencies when mode shapes are defined 

with polynomial functions (18) (Table 4). 

Table 4. Convergence of natural frequency with increasing of polynomial order, Hz 

  (0, n) 

s 0 1 2 3 4 5 

2 287 287.1 307.2 391.3 563.1 817.3 

3 201 203.2 237.6 350.4 547.1 814.7 

4 194.2 195.4 229.2 344.4 544.3 814 

5 194 195.1 228.5 343.8 544.1 814 

6 194 195 228.3 343.4 543.5 813.3 

 

Maximum number of polynomial functions 

that can be used to define mode shapes, P, is 

8 (Lee, 1994). Number of polynomial 

functions needed to define mode shape is in 

direct correlation with the number of modal 

circles in mode shapes. In used referent 

mode shapes number of modal circles is 

zero, while the number of nodal diameters is 

2 to 4 which associate to possibility that 

relatively small polynomial order s can give 

good accuracy (ie. percentage differences 

between referent natural frequencies with 

polynomial order s=3 and s=6 (see Table 5) 

for referent modal shapes (m,n) are: (0,2) 

4%, (0,3) 2.04% i (0,4) 0.66% ). 



 

188                                         A. Skoblar, N. Anđelić, R. Žigulić 

 
Figure 8. Natural frequencies of mode shapes m=0, n=2,3 i 4, for annular plate calculated with 

polynomial functions (curves) and for circular saw calculated with FEM (markers) 

 

On the Figue 8 there are values of different 

natural frequencies as a function of clamping 

ratio (a/b) where one can see that s=3 has 

pretty high accuracy through the whole 

clamping ratio domain. 

 

 

4.4. Example 4 

 

The purpose of Example 4 is to analyze 

values of critical rotational speeds for 

referent mode shapes m=0, n=2,3 and 4, as a 

function of clamping ratio (a/b), Figure 9. 

 
Figure 9. Critical rotational speed for referent mode shapes m=0, n=2,3 i 4, for annular plate 

calculated with polynomial functions (curves) and for circular saw calculated with FEM 

(markers) 
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On Figure 9 there are values of critical 

rotational speed for referent mode shapes 

m=0, n=2,3 i 4, for annular plate calculated 

with polynomial functions (s=3) and for 

circular saw calculated with FEM. It can be 

seen that clamped ratio domain is devided in 

to bands where minimum critical speed 

follows from mode shape (0,2), than from 

mode shape (0,3) and at the end from mode 

shape (0,4). That kind of behavior of critical 

rotational speed is expected and that is why 

it is recommended in practice to calculate 

critical rotational speed for all referent mode 

shapes and than to choose the minimum one. 

On the Figure 9 there are also values of 

critical rotational speeds calculated with 

FEM model for circular saw. It can be seen 

that percentage difference exists and the 

value is 5.83%. The value would be smaller 

if smaller teeth were used. 

 

5. Conclusions 
 

In this article an procedure for calculation of 

critical rotational speed of standard clamped 

circular saw (with flat disk surfaces and 

without slots) is described. Critical rotational 

speeds are calculated from the values of 

natural frequencies which are calculated with 

FEM and classic theory of thin plates used 

on annular plate with analogous dimensions. 

In the classic theory of thin plates mode 

shapes are defined with Bessel functions and 

with polynomial functions. The convergence 

of the natural frequencies calculated with 

polynomial functions are analyzed and an 

optimum accuracy is chosen for calculation 

of critical rotational speed. It is seen that 

there is high percentage differences between 

natural frequencies for mode shape (0,4) 

calculated with FEM for circular saw and 

polynomial expressions for annular plate 

which is connected with relatively big teeth. 

I one chooses smaller teeth it is expected that 

natural frequencies calculated for annular 

plate would have better accuracy. Also 

critical rotational speeds are calculated from 

the annular plates with modes defined by 

polynomial functions with defined lower 

polynomial order and results are shown in 

clamped ratio domain. It can be concluded 

that for the chosen circular saw one can 

predict critical rotational speeds for 

clamping ratio domain which ends with 

minimium for nodal diameter n=3. Higher 

accuracy for higher clamping ratio domain is 

expected for standard circular saws with 

smaller teeth. 
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