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Abstract. In this work, we intend to present existence results for solutions of generalized operator vector quasi-

variational inequalities involving multi-valued mapping in topological vector spaces both under compact and non-

compact assumptions by employing 1-person game theorems. The results of this paper generalize and unify the

corresponding results of several authors and can be considered as a significant extension of the previously known

results.
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1. Introduction

Variational inequalities, which include many important problems in nonlinear analysis and optimization such

as the Nash equilibrium problem, complementarity problems, vector optimization problems, fixed point problems,

saddle point problems and game theory, recently have been studied as an effective and powerful tool for studying

many real world problems which arise in economics, finance, image reconstruction, ecology, transportation, and

network; see [1-7] and the references therein.

In this work, we present existence results for solutions of generalized operator vector quasi-variational inequali-

ties involving multi-valued mapping in topological vector spaces both under compact and noncompact assumptions

by employing 1-person game theorems. The results of this paper generalize and unify many recent results.
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2. Preliminaries

Since its birth in the mid 1960’s the area of variational inequality theory has experienced a phenomenal growth.

It is now considered a field in its own right. In 1980, Giannessi [7] introduced the vector variational inequality (In

short, VVI ) in a finite dimesional Euclidean space, many authors have intensively studied (VVI) and its various

extensions in abstact spaces; see, for example, [2,9,10] and the references therein

In 2002, Domokos and Kolumban [6] introduced and studied a class of operator variational inequalities (In short

OVVI). These operator variational inequalities include not only scalar and vector variational inequalities as special

cases, see for example [2] but also have sufficent evidence for their importance to study, see [6]. They designed

(OVVI) to provide a suitable unified approach to several kinds of variational inequalities and vector variational

inequality problems in banach spaces, and sucessively described these problems in a wider context of (OVVI).

Inspired by their work, in recent papers [12,13], Kum and Kim developed the scheme of (OVVI) from single

valued into general multi- valued settings.

Motivated and inspired by the work of Domokos and Kolumban [6] Kum and Kim [12,13]. In this paper,

we prove existence results for solutions of generalized operator vector quasi-variational inequalities involving

multivalued mapping in topological vector spaces both under compact and noncompact assumptions by employing

1- person game theorems.

We begin with taking a brief look at the standard definition of continuities of multi-valued mappings.Let X and

Y be nonempty topological spaces and T : X → 2Y be a multi-valued mappings. A multi-valued map T : X → 2Y

is said to upper semi continuous if for each x ∈ X and each open set V in Y with T (x) ⊂ V, there there exists an

open neighborhood U of x in X such that T (y)⊂V for each y ∈U ; and a multi-valued map is said to be lower semi

continuous if for each x ∈ X and each open set V in Y with T (x)∩V = Φ, there exists an open neighborhood U of

x in X such thatT (y)∩V 6= Φ for each y ∈U and T is said to be continuous if it is both lower semi continuous and

upper semi continuous It is also known that T : X → 2Y is lower semi continuous if and only if for each closed

set V in Y, the set {x ∈ X : T (x)⊂V} is closed in X . we define partial ordering �Cx on Y by y�Cx z if and only if

z− y ∈C(x). We shall write y≺Cx z if and only if z− y ∈ intC(x) in the case intC(x) 6= Φ.

Let E be a Hausdorff topological vector space, X a nonempty convex subset of E,F is another Hausdorff

topological vector space. A nonempty subset P of E is called convex cone if λP⊆ P, for all λ > 0 and P+P = P.

From now on, unless otherwise specified, we work under the following settings:

Let L(E,F) be the space of all continuous linear operators from E to F, and X
′

a nonempty convex subset

of L(E,F), X a nonempty convex subset of E. Let T : X
′ → 2E be a multi-valued map. Let C : X

′ → 2F be a

multi-valued map such that for each f ∈ X
′
, C( f ) is convex cone in F with 0 /∈C( f ).
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Then Generalized Vector Variational Inequalities with Operator Solution ( In short, GOVVI ) is defined as

follows:

Find f0 ∈ X
′

such that∀ f ∈ X
′
,∃x ∈ T ( f0)

with 〈 f − f0,x〉+H( f0,g) /∈ −intFC( f0).

When T is single valued and H ≡ 0, (GOVVI) reduces to (OVVI) due to Domokos and Kolumban [6]. As pointed

out in [6], the notion (GOVVI) is motivated by the fact that the solutions are sought in the space of continuous

linear operators. We also introduce the quasi version of (GOVVI) called the Generalized Vector Quasi-variational

Inequalities with Operator Solution (In short, GOQVVI). Let A : X
′ → 2X

′
be a multi-valued mapping. We define

(GOQVVI) as follows:

Find f0 ∈ X
′

such that f0 ∈ clX A( f0) and

∀ f ∈ X
′
, ∃x ∈ T ( f0) with 〈 f − f0,x〉+H( f0,g) /∈ −intFC( f0).

Now we need the following definitions.

The Graph of a multi-valued map T : X
′ ⊂ L(E,F)→ 2F denoted by G(T ) is

G(T ) = {( f ,x) ∈ X
′ ×F : f ∈ X

′
, x ∈ T ( f )}.

The inverse T−1 of T is the multi-valued map from R(T ), the range of T , to X
′

defined by

f ∈ T−1(x) iff x ∈ T ( f ).

T is called upper semi continuous on X
′
if for each f ∈X

′
and any open set V in F containing T ( f )⊆V for all g∈

U.

The following one person game theorems will be used to establish the main results of this paper.

Theorem 2.1. Let Γ = (X ,A,P) be a 1- person game such that

(i) X is nonempty compact convex subset of a Hausdorff topological vector space,

(ii) A,clE(A) : X → 2X be a multi-valued mappings such that for each f ∈ X ,A( f ) is nonempty convex set in

X , for each g ∈ X , A−1(g) is open set in Xand clEA is upper semi continuous,

(iii) P : X→ 2X be a multi-valued mappings such that for each f ∈ X , f /∈ coP( f ) and for each g ∈ X ,P−1(g)

is open set X .

Then there exist f ∗ ∈ X such that f ∗ ∈ clX A( f ∗) and A( f ∗)∩P( f ∗) = Φ.

Theorem 2.2 Let Γ = (X ,A,P) be a 1- person game such that

(i) X is nonempty compact convex subset of a Hausdorff topological vector space,and X
′

be a nonempty

compact subset of X ,

(ii) A : X → 2X
′

and clEA : X → 2X be a multi-valued mappings such that for each f ∈ X ,A( f ) is nonempty

convex set, for each g ∈ X
′
, A−1(g) is open set in Xand clEA is upper semi continuous,
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(iii) P : X→ 2X
′

be a multi-valued mappings such that for each f ∈X , f /∈ coP( f ) and for each g∈X
′
,P−1(g)

is open set X .

Then there exist f ∗ ∈ X such that f ∗ ∈ clX A( f ∗) and A( f ∗)∩P( f ∗) = Φ.

Remark 2.3 Theorem 2.1 is a special case of [4, Theorem 2] and Theorem 2.2 is a special case of [5, of Theorem

2].

3. Existence results in compact setting

In this section we establish some existence results under the compact assumptions. We need the following.

Lemma 3.1 [3] Let X and Y be be topological vector space and let L(X ,Y ) be equipped with the uniform conver-

gence topology δ . then the bilinear form 〈., .〉 : L(X ,Y )×X → Y is continuous on (L(X ,Y ),δ )×X .

Now we are ready to establish the main results of this paper on the existence of a solution of (GOQVVI).

Theorem 3.1. Let X is nonempty compact convex subset of a Hausdorrf topological vector space E,and F be an

ordered be an Hausdorff topological vector space.Let H : X×X → F be vector valued bifunction and T : X → 2F

and A : X → 2L(E,F) be a multi-valued mappings. Assume that

(i) for each f ∈ X ,H( f , f ) = 0,

(ii) H is continuous in the first argument and C( f )− convex in the second argument,

(iii) the mapping W : X → 2X
′

defined by W ( f ) = F \ (−intFC( f )) for each f ∈ K, has a closed graph in

X×F,

(iv) for each f ∈ X ,C( f ) is closed , convex and pointed cone in F such that intFC( f ) is nonempty,

(v) for each f ∈ X ,A( f ) is nonempty convex and for each g ∈ X ,A−1 is open in X .Also clX A : X → 2X is

upper semi continuous.

Then there exist f ∗ ∈ X such that for all g ∈ A( f ∗),∃x ∈ T ( f ∗) such that

f ∗ ∈ clX A( f ∗) and〈g− f ∗,x〉+H( f ∗,g) /∈ −intFC( f ∗).

Proof. Define a multi-valued mapping P : X → 2X as

P( f ) = {g ∈ X : 〈T ( f ),g− f 〉+H( f ,g)⊆−intFC( f )} for all f ∈ X .

We show that f /∈ coP( f ), for each f ∈ X . Suppose that f ∈ coP( f ) for some f ∈ X . Then there exists f0 ∈

X such that f0 ∈ coP( f0). This implies that f0 can be expressed as

f0 = ∑
i∈I

λigi, with λi ≥ 0, ∑
i∈I

λi = 1,
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where {gi : i ∈ N} be a finite subset of X , I ⊂ N be arbitrary nonempty subset and N denotes the set of natural

numbers. This follows that

〈T ( f0),gi− f0〉+H( f0,gi)⊆−intFC( f0)} for all i = 1,2, · · ·n.

Therefore for each x ∈ T ( f0), we have

∑
i∈I

λi[〈gi− f0,x〉+H( f0,gi)] ∈ −intFC( f0).(1)

0 = 〈 f0− f0,x〉+H( f0. f0)�∑
i∈I

λi[〈gi− f0,x〉+H( f0,gi)].

Hence, we have

∑
i∈I

λi[〈gi− f0,x〉+H( f0,gi)] ∈C( f0).(2)

From equation (3.1) and (3.2) we have

∑
i∈I

λi[〈gi− f0,x〉+H( f0,gi)] ∈ {−inFC( f0)}∩C( f0) = Φ,

which is a contradiction. Now we show that for each g ∈ X the set

[P−1(g)]c = { f ∈ X : g ∈ P( f )}

= { f ∈ X : 〈T ( f ),g− f 〉+H( f ,g)⊆−intFC( f )}

is open in X , which is equivalent to showing that the set

[P−1(g)]c = X \P−1(g)

= { f ∈ X : 〈T ( f ),g− f 〉+H( f ,g)*−intFC( f )}

= { f ∈ X : ∃x ∈ T ( f ) such that 〈g− f ,x〉+H( f ,g) /∈ −intFC( f )}

is closed in X . For this purpose, let { fλ}Λ∈Λ be a net [P−1(g)]c converging to h ∈ X . Then for each λ there is a

xλ ∈ T ( fλ ) such that

〈g− fλ ,xλ 〉+H( fλ ,g) ∈W ( fλ ).

Since T ( f ) is compact, without loss of generality we may assume that xλ converges to some x ∈ T ( f ). By (ii) H

is continuous in the first argument and by Lemma 3.1 we have for each g ∈ X and for all x ∈ T ( f ), f 7→ 〈g− f ,x〉

is continuous. Since W is closed graph in X×F by assumption (iii) we have

〈g−h,x〉+H(h,g) ∈W (h),

that is, 〈g−h,x〉+H(h,g) /∈−intFC(h). Hence h ∈ [P−1(g)]c. From assumption (v), it follows that all the hypoth-

esis of Theorem 2.1 are satisfied. Hence there exists f ∗ ∈ X such that

f ∗ ∈ clX A( f ∗) and A( f ∗)
⋂

P( f ∗) = Φ.
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which implies that there exists f ∗ ∈ X such that for all g ∈ A( f ∗) there is x ∈ T ( f ∗) such that

f ∗ ∈ clX A( f ∗) and〈g− f ∗,x〉+H( f ∗,g) /∈ −intFC( f ∗).

The proof is complete.

Corollary 3.2. Let X is nonempty compact convex subset of a Hausdorrf topological vector space E,and F be an

ordered be an Hausdorrf topological vector space. T : X→ 2L(E,F) be a multivalued mapping with compact values

and Let G : X → F be continuous convex vector valued valued function. Let C : X → 2F and A : X → 2X be a

multi-valued mappings. Assume that conditions (i)-(v) of Theorem 3.1 holds. Then there exists f ∗ ∈ X such that

for all g ∈ A( f ∗) there is t∗ ∈ T ( f ∗) such that

f ∗ ∈ clX A( f ∗) and〈t∗,g− f ∗〉+G(g)−G( f ∗,g) /∈ −intFC( f ∗).

Proof. If we set H( f ,g) = G(g)−G( f ), then we see that all the assumptions of Theorem 3.1 holds and hence the

conclusion follows from Theorem 3.1.

4. Existence results in noncompact setting

For the noncompact case we need the concept of the escaping sequence introduced in Border [1].

Definition 4.1. Let E be a topological vector space and X a subset of E such that X =
∞⋃

n=1

Xn, where {Xn}∞
n=1 is an

increasing sequence of nonempty compact sets in the sense that Xn ⊆ Xn+1 for all n ∈N. A sequence { fn}∞
n=1 in K

is said to be escaping sequence from X (relative to {Xn}∞
n=1 ) if for each n there is an M such that k ≥M, fk /∈ Xn.

Theorem 4.1. Let X is nonempty subset of a Hausdorrf topological vector space E,and X =
∞⋃

n=1

Xn, where {Xn}∞
n=1

is an increasing sequence of nonempty, compact and convex subsets of X . Let F,H, ,T,C,W and A be the same

as in Theorem 3.1 and satisfies all the conditions.In additions, suppose that for each sequence { fn}∞
n=1 in X with

fn ∈ Xn,n ∈N which is escaping from X relative to {Xn}∞
n=1, there exists m ∈N and gm ∈ Xm

⋃
A( fm) such that for

each fm ∈ clX A( fm), there is tm ∈ T ( fm) such that

〈tm,gm− fm〉+H( fm,gm) ∈ −intFC( fm). (4.1)

Then there exists f ∗ ∈ X such that for all g ∈ A( f ∗) there is t∗ ∈ T ( f ∗) such that

f ∗ ∈ clX A( f ∗) and 〈t∗,g− f ∗〉+H( f ∗,g) /∈ −intFC( f ∗).
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Proof. Since for each n ∈ N,Xn is compact and convex set in X , Theorem 3.1 implies that for all n ∈ N, there is

tn ∈ T ( fm) such that

fn ∈ clX A( fn) and 〈tn,h− fn〉+H( fn,h) /∈ −intFC( fn). (4.2)

Suppose that the sequence be { fn}∞
n=1 escaping from X relative to { fn}∞

n=1. By Assumption 4.1, there exists m ∈N

and hm ∈ Xm
⋃

A( fn) such that

〈tm,hm− fm〉+H( fm,hm) /∈ −intFC( fm),

which contradicts (4.2).Hence { fn}∞
n=1 is not an escaping sequence from X relative to {Xn}∞

n=1. Since T is multi-

valued mapping with compact values, thus using the arguments similar to those used in proving [8, Theorem 3.2]

and [9, Theorem 2], there exists r ∈ N and f ∗ ∈ Xr such that fn→ f ∗ and there is t ∈ T ( f ∗) such that

〈t,g− f 〉+H( f ∗,g) ∈W ( f ∗).

Since clX A : X→ 2X is upper semicontinuous with compact values, hence there exists f ∗ ∈A( f ∗) there is t∗ ∈T ( f ∗)

such that

f ∗ ∈ clX A( f ∗) and 〈t∗,g− f ∗〉+H( f ∗,g) /∈ −intFC( f ∗).

The proof is complete.

Theorem 4.2. Let X be a nonempty convex subset of a locally convex Hausdorff topological vector space E,and X
′

be a nonempty compact subset of X . Let F be an ordered Hausdorff topological vector space. Let H : X ×X → F

be a vector- valued bifunction, T : X → 2L(E,F) a multi-valued mapping with the compact values and C : X → 2F a

multi-valued mapping such that for each f ∈ X ,C( f ) is closed , convex and pointed cone in F with intFC( f ) 6= Φ.

Let A,clX A : X→ 2F be a multi-valued mappings such that for each f ∈X ,A( f ) is nonempty, for each g∈X ,A−1(g)

is open in X and clX A is upper semicontinuous. Suppose that conditions (i)-(iii) of Theorem 3.1.Then there exists

f ∗ ∈ X such that for all g ∈ A( f ∗) there is t∗ ∈ T ( f ∗) such that

f ∗ ∈ clX A( f ∗) and 〈t∗,g− f ∗〉+H( f ∗,g) /∈ −intFC( f ∗).

Proof. Define a multi-valued mapping P : X → 2X as

P( f ) = {g ∈ X : 〈T ( f ),g− f 〉+H( f ,g)⊆−intFC( f )} for all f ∈ X .

Then using the argument similar to those used in proving Theorem 3.1, we have f ∈ coP( f ) for each f ∈ X and

P−1 is open for each g ∈ X
′
. Thus all the conditions of Theorem 2.2 are satisfied. Hence there exists f X such that

f ∗ ∈ clX A( f ∗) and A( f ∗)∩P( f ∗) = Φ.
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Which implies that there exists f ∗ ∈ Xsuch that for all g ∈ A( f ∗) there is t∗ ∈ T ( f ∗) such that

f ∗ ∈ clX A( f ∗) and 〈t∗,g− f ∗〉+H( f ∗,g) /∈ −intFC( f ∗).

The proof is complete.
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