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Objectives: This study aims to evaluate and predict the thermal conductivity 
of iron oxide nanofluid at different temperatures and volume fractions by 
artificial neural network (ANN) and correlation using experimental data.

Methods: Two-layer perceptron feedforward artificial neural network and 
back propagation Levenberg-Marquardt (BP-LM) training algorithm were 
used to predict the thermal conductivity of the nanofluid. Fe3O4 nanoparticles 
were prepared by chemical co-precipitation method and thermal conductivity 
coefficient was measured using 2500TPS apparatus.

Results: Fe3O4 nanofluids with particle size of 20-25 nm were used to test 
the effectiveness of ANN. Thermal conductivity of Fe3O4 /water nanofluid at 
different temperatures  (25, 30 and 35) and volume concentrations, ranging 
from 0.05% to 5% was employed as training data for ANN. The obtained 
results showed that the thermal conductivity of Fe3O4 nanofluid increases 
linearly with volume fraction and temperature.

Conclusion: The artificial neural networks model has a reasonable agreement 
in predicting experimental data. So it can be concluded that the ANN model is 
an effective method for prediction of the thermal conductivity of nanofluids 
and has better prediction accuracy and simplicity compared with the other 
existing theoretical methods.

INTRODUCTION 
Although there are many different methods for 

heat transfer enhancement, low thermal conductivity 
of the typical fluids reduces the efficiency of the 
heat exchangers. Improving thermal properties of 
these fluids in energy transfer can increase the heat 
transfer. Mixing small solid particles into the fluids 

such as water, ethylene glycol, and oil is an innovative 
method for improving the thermal conductivity 
of these fluids. Different metallic and nonmetallic 
powders and polymeric particles can be added to 
the fluids to form a suspension. According to the 
obtained results, the thermal conductivity of the 
fluids containing suspended particles is higher than 



16

R. Aghayari et al. / Comparison of the Experimental and Predicted Data for Thermal Conductivity

Nanomed Res J 1(1): 15-22, Summer 2016

that of the typical fluids. Liu et al. have investigated 
the effects of the load resulting from particles 
concentration, size and flow rate on the pressure 
loss of this slurry and its heat transfer behavior. 
In recent researches, micro- and millimeter scales 
have been used. These coarse particles can cause 
severe problems such as abrasion and blockade 
of the channel. Therefore, addition of the large 
dispersed particles does not increase the heat 
transfer considerably and it is not economical 
[1]. Nanoparticles can improve properties and 
enhance the heat transfer of the fluids. Particles 
with the diameter below 100nm show different 
properties from the common solid particles. 
Compared to the micron particles, nano-powders 
have larger surface area and higher potential for 
enhancing heat transfer. Many researchers have 
tried to produce a high effective heat transfer 
potential fluid by dispersing nanoparticles in it. 
Results obtained from the early experiments like 
the study of Eastman et al. showed a 60% increase 
in the thermal conductivity of 5 % (v) nanofluids 
containing water and CuO nanoparticles [2]. 
Dispersion of nanoparticles into the cooling or 
heating fluid can cause a significant increase in the 
heat transfer. This increase can be attributed to the 
following possible reasons:
•	Dispersed nanoparticles increase the surface area 

and thermal capacity of the fluid.
•	Dispersed nanoparticles improve the effective or 

apparent thermal conductivity of the fluid.
•	Contacts between particles, fluid, and surface of 

the passing flow increase the interactions.
•	Turbulence of the fluid and mixture increase. 
•	Dispersion of nanoparticles levels the diagonal 

temperature gradient of the fluid. 
When it comes to the stability of the suspension, 

it has been shown that sedimentation of particles 
can be prevented by utilizing proper dispersants. 
Studies regarding the thermal conductivity of 
nanofluids have showed that high enhancements 
of thermal conductivity can be achieved by 
using nanofluids. It is possible to obtain thermal 
conductivity enhancements larger than 20% at 
a particle volume fraction smaller than 5% [3]. 
Such enhancement values exceed the predictions 
of theoretical models developed for suspensions 
with larger particles. This is considered as an 
indication of the presence of additional thermal 
transport enhancement mechanisms of nanofluids. 
There are many experimental and theoretical 
studies in the literature regarding the thermal 

conductivity of nanofluids. In thermal conductivity 
measurements of nanofluids, the transient hot-
wire technique is the most commonly used 
method. A modified transient hot-wire method 
is required in the measurements, since nanofluids 
conduct electricity. The modification is made by 
insulating the wire. Some other methods such as 
steady-state parallel-plate technique, temperature 
oscillation technique, microhot strip method, 
and optical beam deflection technique have also 
been utilized by some researchers [4-9]. Maddah 
et al. [10] have investigated the thermal and 
electrical conductivity and viscosity of Al2O3 and 
Ag nanoparticles dispersed in the water at various 
volume concentrations, ranging from 0.25% to 5% 
at a temperature of 15°C. They have found a higher 
increase in the electrical conductivity and viscosity 
of nanofluids than their thermal conductivity 
compared to the base fluid. Artificial neural networks 
are used for predicting the thermal conductivity 
of nanofluids. Recently, many researchers have 
conducted various investigations in this regard and 
their results are acceptable. Hemmat Esfe et al. [11] 
have presented an experimental investigation on 
the thermal conductivity of ZnO–EG nanofluid. 
They have utilized ZnO nanoparticles with the size 
of 18nm dispersed in the different volume fractions 
of ethylene glycol and different temperatures 
ranging from 24 to 50. In their study, they have 
used a multi-layer perceptron feedforward neural 
network for modeling the thermal conductivity 
of ZnO–EG nanofluid. Out of 40 data obtained 
from experiments, 28 data were selected for 
network training, while the remaining 12 data 
were used for network test and validation. Their 
results have shown that the outputs of the artificial 
neural network have a good agreement with the 
experimental results.

Tajik Jamal-Abadi and Zamzamian [12] have 
studied, optimized and reported the effects of 
various parameters such as the ratio of the thermal 
conductivity of nanoparticles to that of a base fluid, 
volume fraction, nanoparticle size, and temperature 
on the effective thermal conductivity of nanofluids 
using nonlinear optimization methods and artificial 
neural network. The results for nonlinear optimization 
methods showed that thermal conductivity of 
nanofluid enhanced by 32 percent. For the modeling 
of the thermal conductivity of nanofluid, the feed-
forward back-propagation ANN is employed. Results 
showed the maximum enhancement of 42 percent 
for thermal conductivity and also, this method 
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is more acceptable since excellent agreement 
between the predictions and the experimental data 
is obtained with a MAE (mean absolute error) of 
0.30%. In the present study, the obtained results 
from measurements of thermal conductivity of 
Fe3O4 in different temperatures and concentrations 
were evaluated and compared with data obtained 
from artificial neural networks. Temperature and 
concentration were used as inputs and thermal 
conductivity is used as target for ANNs. In addition, 
the predicted data by ANNs were compared 
to experimental data. Finally, error difference 
between predicted and experimental data were also 
investigated. 

MATERIALS AND METHODS
Fe3O4 Nanoparticles

Fe3O4 nanoparticles used in this study were 
20-25nm in size. First, Fe3O4 nanoparticles were 
prepared by chemical co-precipitation method.  
Then, Fe3O4 nanoparticles were weighted for each 
volume concentration and then, added into the 
water (base fluid). After that, the mixture was 
stirred for 60 min using a mechanical stirrer. Next, 
the suspension was put inside an ultrasonic vibrator 
for 4h. By utilizing the stirrer and ultrasonic 
vibrator, the sample was homogeneously stirred in 
the way that no sedimentation and agglomeration 
was observed with the naked eyes for a long period. 
Fig. 1 shows SEM image of the nanoparticles used 
in this study. Fe3O4 nanoparticles have higher 
surface area. Moreover, they have a high capability 
in increasing the heat transfer and producing stable 
suspension.

Measuring  thethermal conductivity coefficient of the 
Fe3O4  nanofluid

Thermal conductivity coefficient was measured 

using 2500 TPS apparatus (Hot Disk Co., 
Gothenburg, Sweden; see Fig. 2) The apparatus 
performed on the basis of TPS method in which 
a planar sensor and mathematical model are 
used to describe thermal conductivity coefficient. 
These two parameters together with electronic 
equipment made the apparatus able to measure 
the heat transfer of material. The sensor consists 
of a thin twisted tape between two kepton plastic 
layers subjected to the considered material. Kepton 
layers acted as an electric insulator and increased 
the mechanical strength of the sensor. Additionally, 
during the measurement process, a fluid flow such 
as air or water entered into the twisted tape and 
increased the temperature. Heat generated between 
the sample in the apparatus and two sides of the 
sensor varied depending on the thermal properties 
of the studied material. The properties of the 
tested material were determined according to the 
recorded temperatures against the reaction time. 
The ultrasonically dispersed and homogenized 
Fe3O4 nanofluid was prepared to inject into the 
metal box and put into the water bath to reach 
the considered temperature. Once the nanofluid 
became stable, the measurement was done by 
Hot Disk requiring the temperature dependent 
parameters. The thermal conductivity of the Fe3O4 
nanofluid (0.05%-5 % (v/v)) was measured.

Artificial neural networks (ANNs) are simple 
statistical models inspired by biological neural 
network, which perform functions in parallel. 
After regulating or training the neural network, it 
generates a desired response by receiving one or 
more special inputs. In supervised neural networks, 
there is a match between input and target values 
and finally, the output values and target function 
match, too. Neural networks are used to solve 

Fig. 1: SEM image of the Fe3O4 nanoparticlesFig. 1: SEM image of the Fe3O4  nanoparticles Fig. 2: Thermo-physical analyzersFig. 2: Thermo-physical analyzers

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Biological_neural_network
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different complex functions. ANNs are applied to 
predict the output values of different processes. So, 
the proper selection of input data can generate the 
desired output value. Initially, the desired data and 
target values are given to the software for prediction 
of the output values of neural network. Multi-layer 
perceptron (MLP) feedforward neural network 
usually has one or more hidden layers, in which 
prediction depends on the selection of suitable 
numbers of neurons for each layer. Neurons in 
each layer are connected to other neurons by mass 
coefficients. Outputs of neurons are calculated by 
an activation functions used to determine the sum 
of initial weights and orientation of each neuron. 
In general, the following steps are followed in an 
artificial neural network:
1. Generation of the training data for the network.
2. Evaluation of the different structures for selecting 

the optimal structure. 
3. Testing the neural network using the unused data 

in network training.
Oriented neurons are connected to the neurons 

of next layers to form a fixed direction. The most 
exact and proper predictions are obtained by tangent 
function for hidden layer and by pure linear function 
for output layer. Fig. 3 represents a neural network 
with two hidden layers consisting of 10 neurons and 
one output layer. In training algorithms, training data 
points are inputs and network repeatedly updates 
the weights and orientations until there is a good 
agreement between predicted and desired values. 
In this work, different temperatures and volume 
fractions of nanoparticles are used as input data 
and the thermal conductivity coefficients of Fe3O4 

nanofluid obtained from experiments are the target 
or output data. Different topologies and different 
numbers of neurons were used to investigate the 
performance of the multi-layer perceptron neural 
network. In the first step, termination of training 
networks was done when mean squared error 
(MSE) was calculated. From all data points, 70% 
data were used for network training, while the 
remaining 30% data were utilized for network test 
and validation. Since the number of neurons in 
hidden layer is important, a sensitivity analysis was 
conducted on this parameter. MSE and R were used 
to assess the obtained results.
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According to the obtained results, the neural 
networks have a good ability for predicting thermal 
conductivity coefficient ratio. As mentioned earlier, 
two-layer perceptron feedforward neural network 
and backpropagation Levenberg-Marquardt (BP-
LM) training algorithm were used to predict the 
thermal conductivity of the nanofluid. Volume 
fraction and temperature were utilized as inputs and 
thermal conductive coefficient was used as output 
(target) parameter. Fig. 3 represents the scheme of 
structure of the neural network. The number of 
neurons in hidden layers requires the sensitivity 
analysis. Therefore, this parameter was evaluated 
using trial and error method. In this study, hidden 
layer had 10, 15, and 20 neurons and their results 

Fig. 3: Illustration of inputs, outputs, and hidden layers by neural networkFig. 3: Illustration of inputs, outputs, and hidden layers by neural network
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were shown, individually. Using a large number of 
neurons can make the run time longer and increase 
the probability of error path in the model. 10 
neurons have abnormal error distribution. 

RESULT AND DISCUSSION
Fig. 4(a, b and c) shows the thermal conductivity 

of Fe3O4/water nanofluid at different volume 

fractions and different temperatures (25, 30 and 35 
°C). The obtained results showed that the thermal 
conductivity of nanofluids increases linearly with 
volume fraction and temperature. For example, 
thermal conductivity ratio of Fe3O4 nanofluid in 
temperatures 25, 30 and 35 °C is 0.643, 0.65693 
and 0.6834, respectively. Increased thermal 
conductivity can be attributed to the existence 
of dispersed particles. As seen in Fig. 4 (a-c), 
thermal conductivity coefficient increases with 
temperature. This would be a result of an increase 
in Brownian motion and the contacts of particles.  
The thermal conductivity of nanofluid strongly 
depends on the volume fraction. Although, there 
are semi-empirical correlations for calculating the 
apparent conductivity of two-phase mixtures, one 
of the unsolvable problems is the appearance of 
nonrealistic theories for prediction of nanofluids 
thermal conductivity. Random migration of 
nanoparticles is the main reason of increasing 
the thermal conductivity of nanofluids, because 
the volume fraction of nanoparticles is so small 
therefore, such effects are not observed in average 
volume or average weight. Fine particles have 
large surface area. Heat transfer between fluid 
and particle occurs in their interface. Thus, 
nanoparticles having large surface area increase the 
thermal conductivity. 

Fig. 5 shows the comparison between experimental 
and predicted results for thermal conductivity. The 
number of neurons in hidden layer is 10 (Fig. 5a), 
15 in (Fig. 5b) and 20 in (Fig. 5c). 10 neurons gave 
a higher MES. The maximum error value decreases 
with an increase in the number of neurons, while 
the correlation coefficient increases. Thus, it can be 
concluded that there is a good agreement between 
the predicted and experimental results. This 
regression value confirms good performance of the 
network. It is clear in the Fig. 5 that the experimental 
values agree with the model outputs.

As shown in Fig. 6, the number of the tested 
samples by the neural network is 36. According to 
this Figure, there is a good agreement between the 
thermal conductivity ratios obtained by the neural 
network and the experimental results. It is clear 
in Fig. 7 that each sample has one minimum and 
one maximum error value. According to Fig 7(a), 
the maximum and minimum error values are not 
the same. In Figs. 7(b) and (c), the maximum and 
minimum error values are for the samples 12, 33 
and 36, respectively. Therefore, it can be mentioned 
that the prediction accuracy increases with the Fig. 4: Thermal conductivity of nanofluid at volume fractions between 0.05-5 at temperatures a) 25, b) 30 and c) 35

(a)

(b)

(c)

Fig. 4: Thermal conductivity of nanofluid at volume fractions 
between 0.05-5 at temperatures a) 25, b) 30 and c) 35 oC
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Fig. 5: a, b and c): The comparison between experimental results and predicted results obtained by neural network for thermal conductivity with
10, 15 and 20 neurons, respectively ( x (Target): experimental results and y (Output): predicted results).
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Fig. 5: a, b and c): The comparison between experimental results 
and predicted results obtained by neural network for thermal 
conductivity with 10, 15 and 20 neurons, respectively ( x (Tar-
get): experimental results and y (Output): predicted results).Fig. 6: The comparison between experimental results and predicted results obtained by neural network for thermal conductivity with 10, 15 and

20 neurons, respectively ( x : the tested samples, y: thermal conductivity ratios of nanofluid)
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Fig. 6: The comparison between experimental results and pre-
dicted results obtained by neural network for thermal conduc-
tivity with 10, 15 and 20 neurons, respectively ( x : the tested 

samples, y: thermal conductivity ratios of nanofluid)

number of neurons. The most accurate results were 
obtained by increasing the number of neurons in 
hidden layer or the number of training vectors. The 
number of inputs or their values can be increased. 

In this work, the maximum error and correlation 
coefficient values for selected 20 neurons were 
equal to 0.00098 and 0.99999, respectively.

Fig. 8 shows the thermal conductivity ratio of 
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Fig. 7: a, b,  and c: The comparison between experimental results and predicted results obtained by neural network for thermal conductivity with
10, 15 and 20 neurons, respectively ( x : the number of samples, y: the maximum and minimum error values for the tested samples)
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Fig. 7: a, b,  and c: The comparison between experimental results 
and predicted results obtained by neural network for thermal 
conductivity with 10, 15 and 20 neurons, respectively ( x : the 

number of samples, y: the maximum and minimum error values 
for the tested samples)

Fig. 8: a, b, and c: The comparison between experimental results and predicted results obtained by neural network for thermal conductivity with
10, 15 and 20 neurons, respectively (x : volume fraction of Fe3O4 nanoparticles, y: thermal conductivity ratio of the nanofluid)
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Fig.  8: a, b, and c: The comparison between experimental results 
and predicted results obtained by neural network for thermal 

conductivity with 10, 15 and 20 neurons, respectively (x : volume 
fraction of Fe3O4 nanoparticles, y: thermal conductivity ratio of 

the nanofluid)

Fe3O4 nanofluid at different volume fractions. The 
thermal conductivity of the nanofluid increases 
with the temperature and volume fraction. As 
represented in Fig. 8, the thermal conductivity of 

nanofluid was investigated at temperatures 25 and 
30 °C and volume fractions between 0.05-5. Then, 
the predicted results obtained by neural network 
for thermal conductivity were compared with the 
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experimental results. According to this figure, there 
is a good agreement between experimental and 
predicted results.  

Tajik Jamal-Abadi and Zamzamian [12] have 
modeled the thermal conductivity coefficient of 
Al2O3 nanofluid using ANN. They have studied 
nanoparticle size but ignored the maximum error 
values. In the present study, the maximum error 
values and utilization of Fe3O4 nanofluid were 
considered. The temperatures used in our study were 
different. In another work, Ariana etal. [13] have 
reported the modeling of the thermal conductivity 
coefficient of Al2O3 nanufluid using ANN. The 
number of neurons in their study was 40 but in the 
present study numbers of neurons used for training 
were 15, 10 and 20, respectively, to select the best 
number of neurons with minimum error. Hemmat 
Esfe et al. [14] have used tansig function as the 
transfer function in the training process of network 
but in the present study the effectiveness of network 
was evaluated using functions tansig, logsig and 
purelin. In addition, nanofluid used in their study 
was MgO–water/EG with the volume ratio of 60:40.

CONCLUSION
In the present study, thermal conductivity of Fe3O4 

nanofluid was investigated experimentally. Then, 
the artificial neural network was used to predict 
the thermal conductivity. Volume fraction and 
temperature were considered as network inputs and 
thermal conductivity ratio as output. The obtained 
results showed that there is a good agreement 
between the predicted and experimental results and 
the sum of MES and R values  are  desirable.
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