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Abstract:

Numerical continuous finite element computations of a fluid flow modelling
based on ensemble technique are presented herein. This ensemble
algorithm is based on time relaxation. At each time step, it requires the
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storage of a single coefficient matrix with multiple right-hands sides which

corresponds to each ensemble member. Finite element convergence results
for the time relaxation ensemble algorithm are presented and tested in a
numerical experiment. This numerical experiment supports the theoretical

KEYWORDS

fluid dynamics, partial
differential equations, finite
element, simulation

finite element results. The time relaxation efficiency was shown in the

second cavity benchmark problem.
1. INTRODUCTION

Numerous fluid flow applications require
efficient  calculations of  ensembles  for
incompressible flow, see [1-2]. The quantification
of uncertainties in forcing terms, initial and
boundary conditions, constitutive laws, geometry
of the domain and model parameters, see [3-8],
involves ensembles. In general, ensemble
forecasting uses a sample of randomly generated
initial conditions based on some observations
available. This is applied in numerical weather
prediction, see [9], and in sensitivity analysis of
forecast fields to initial conditions, see [10].

We start by considering the J solutions of
Navier-Stokes equations (NSE) described by the

following. Given initial condition u?, and body

force fj solve for velocity u;, and pressure p;, for

1< j<Jsatisfying

ou; )
E-Hlj -Vu, —vAu, +Vp, =f,(x,t) in Q, (1.1)

Veu,=0 in Q, (1.2)
u;=0 on 0Q, (1.3)

u;(x,0)=u(x) in Q. (1.4)

where Q represents the domain of the
problem of interest and 6Q its boundary. When
solving (1.1)-(1.4) by linearly implicit methods, the
linear solve step is often the most computationally
expensive step with respect to the needed
memory and turnaround time. If a brute-force
approach is used for (1.1)-(1.4) by running
Jsimulations consecutively, it would increase the
turnaround time by a factor of J. In [1], a method
for computing the ensemble in one run was
proposed for low Re number flows by Layton and
Jiang. Motivated by that study, in [11] a study of an
ensemble method for higher Re flows was
presented. This method was obtained by adapting
the time relaxation model of NSE to the ensemble

calculation of (uj,p/.)'s. Now we present the time

relaxation model that was first introduced by Stolz,
Adams and Kleiser [12-14]. Thereafter, it was
extensively studied in [15-18]. This time relaxation
model is obtained by adding a linear time
regularization term, yu" to NSE, yielding

%+uVu—vAu+Vp+xu*=f(X,t) in Q, (1.5)

V.u=0 in Q, (1.6)
u=0 on 00, (1.7)

u(x.0)=u’(x) in Q,  (1.8)
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where u is velocity, p is pressure, f is the body

force, u® is the initial condition and u’ is a
generalized fluctuation. Here, the units for

1
[X]_ time

and time averages [19, 20] of the velocity field

. Overall, one can apply any local spatial

foru . Within the theory of the ensemble algorithm
u” can be computed directly as
u; =u;-u,
where for g j=1..J we define the ensemble

mean as

After suppressing the spatial discretization, the
time relaxation ensemble calculation method is
described as:

Algorithm 1.1. Find (uj”,pj”.”) , with J initial

velocities u} and forcing termsf, and parameter
J
1 P
=0| — |>0, satisfying
* (Atj ’

n+l n

u" o — —
4y -vul +(u7 —u")~Vu7 +Vp
At J J J J

_vAuT1 +)((u1'."‘l —u" ) =f; (t"”) , (1.9)

Vult=0 (1.10)

The above Algorithm 1.1 can be rewritten in a
more compact form as

1 J—
(E+){Juj’.'” +u"-Vul" + V" —vAuT" = RHS},

i =

V-ult =0,
In this form, it requires that only a single
coefficient matrix is stored along with J right-

hand sides. The natural choice of X:o[ij for the
At

Algorithm 1.1 is consistent with and supported by
the stability result, see Lemma 3.1. The proposed
time relaxation model is easily implementable in
existing NSE codes. The proposed algorithm
significantly reduces the required storage,
especially for large number of ensembles J .

This paper is organized in few sections. Section
2 contains the preliminaries and the finite element
discretization of the Algorithm 1.1. In sections 3,
the finite element stability and the convergence of
the method are stated. Next, Section 4 contains
numerical experiments and a conclusion is given in
the last section 5.

2. PRELIMINARIES

We denote by QcR?, d=2,3an open, simply
connected domain with piecewise smooth
boundary. Herein, we assume no-slip boundary
conditions. The *(Q)norm and inner product will
be denoted by || and (.,), respectively. Then, the
appropriate velocity and pressure spaces are
defined as usual by
X::(Hj(Q))d, and Q:=L;(Q), respectively.

The standard notation for the seminorm on
H*(Q) is ||k The dual space X" =H'(Q) is
equipped with the usual dual norm

11, = sup Y4,
ol

veX

The space of divergence free functions is given
by
V::{veX:(V-v, q)=0, quQ}.

We assume that conforming finite element
spaces X, cX, Q, cQ satisfy the wusual inf-sup
stability condition [7]. The space of weakly
divergence free functions is denoted by

v, ::{vh eX,:(V-v,, q,)=0, theQ,,}.

The skew-symmetrized trilinear form is defined
in the usual way

b*(u,v,w):%(UVV,W)—%(uVW,v). (2.1)

Definition 2.1. For any norm space Y , the
fluctuation in j-th ensemble memberg;, and the

norm ||g||y are  defined as g :=gj—§
J

and ||g||§ =%Z“g1“i , respectively. Further, we
Jj=1

. With this notation

set |||g|||mk = max

1<j<) ngL’”(O,T;Hk(Q))

e, <lel enc ', = 2ol <2,

We next introduce the weak finite element
formulation of our model based on continuous
finite element methodology and notation
introduced above.

Algorithm  2.2.  Find  (u};,p}')€(X,,Q,),
n=0,1..,N -1 with Jinitial velocities uj’ and forcing

terms f eH'(£2), a time step At,, >0, and
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C
parameter X””:AX for some ¢, =0(1)20,

n+l

satisfying

At::ﬂ ( 7771 _“/h/Vh) (“h/ 7;1/";1)"'

b*(u uh, vh) pf,’f,V vy +V(Vu”711,Vvh)+ (2.2)
)(M( m uh,vh) < "“ > v, €X,,

(v-urit,q,)=0, va,<aq, (23)
3. FINITE ELEMENT STUDY

In this section, we present the stability and
convergence results. They are obtained under a
time step condition defined below

4At 2 d/am(()) J< LY =1
A Y AL A

n+l

+||V Uinll,

jh

d2
(3.1)
where d=2,3 is the space dimension. This
time step condition is satisfied provided the
fluctuations are small enough at each time step.
Moreover, if the space of weakly divergence free
functions is conforming, i.e., V, €V, then (3.1)

reduces to a weaker condition
4At

n+l

=1 d. (3.2)

12
H n
since ||V-uj,h o=

Proposition 3.1. If for each time step n > 1, the

condition (3.1) holds and y *_ then the

n+l

numerical solutions to Algorithm 2.2 satisfy

2 v N-1
+32Atn+1 +C z (
n=0

nHl T

n+1 n+1

h

X _
N N
"u,, " +C, uy,

— —2
i - |

1 N-1
<=3 AL ()

V 'n=0

Remark 3.2. This bound shows that the norm of
the numerical finite element velocity solution will
not change much under the change in data, i.e.
body force, initial conditions and model
parameters.

Proof. The proof is derived with all details in
[21].

Next, we present the convergence results. Let
(X,,Q,)=(P..,P.), k=1, be the Taylor-Hood finite

element pair.

+

(3.3)

2 ol —|f
71+||uh " +C, ||u,

Theorem 3.3. Letting e} :=u’ —u7,, the solutions

of the discrete Algorithm 2.2 satisfy the following
error estimate under some regularity assumptions

N 2 N-1 2 N-1
”e " +VZ At le 1+sz

<C(v, T)[hz" +At2 +C z ] (3.4)

Proof. The proof is derived with all details in
[11].
Remark 3.4. The error estimate yields usual
exponential dependence on the final time T, which
arises from the application of Gronwall's
inequality. This bound shows that the numerical
finite element velocity solution will converge to
the true Navier-Stokes velocity solution as we
refine the mesh, i.e. as we let h—>0. If k =1, i.e.
we are using P, P, finite element spaces, and C, =0

12
n+l N+l
e

n+l

we obtain second order of convergence in space
and time. This is tested in the numerical
experiment section.

4. NUMERICAL COMPUTATIONS

We test our numerical algorithm for
convergence first using the Green-Taylor problem
and then we applied it for the benchmark cavity
problem.

4.1. Green-Taylor vortex solutions

Herein, we confirm the predicted convergence
rates for generalized Green-Taylor
solutions, see [22]. The true solution of this
problem is given by

(sin(Sy)+cos(3x)cos(4y))sin(—25vt)
- (3/45in(3x)sin(4y)+cos(5x))sin(—25vt) ’

vortex

Vp=-u-Vu, and
_ —25v(sin(5y)+ cos(3x)cos(4y))(cos(—25vt)—
- 25v(3/45in(3x)sin(4y}+ cos(Sx)sin)(cos(—ZSvt) -

—sin(—25vt))]

—5in(—25vt)) '

The square shaped domain Q=(0,5) We also
have the following parameters: viscosity
v =001, final time T=1 and C, =0 The numerical

solutions were computed with (P,,R) Taylor-Hood

finite element pair (i.e. second order polynomial
approximations for velocity and first order
polynomial approximations for pressure) on
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successively refined meshes with corresponding
values of time step 4t. The exact velocity solution
of this numerical experiment is presented in Figure
4.1 attime T=1.

Initial conditions and the body forces for the
ensemble members. For simplicity we take the
number of ensemble members J=2. We generate
initial conditions and source terms for the
ensemble members as follows. Let e£=1e-5,

¢, =sin(200x), and ¢, = cos(300y). Set
u’ :u(x,0)+g(¢l,¢2)T,u2 :u(X,O)—g(¢1,¢2 )T,

{3 el
A
1)

£ f+£v(

o

It can be verified that u, :uJ_rg(d)1

2

J/ pi:—u-Vu' and

. — u, +u
the mean ensemble velocity u equals u:%'

When C, =0 and At, =At, Vn, error estimate (3.4)

predicts second order convergence of the
velocities. In all the runs performed, we start with

Atn:%and half the time step if the stability

condition failed. Only when h=0.44, the time step
had to be refined 3 times.

Fig. 4.1. Exact velocity solutionat T=1

Table 4.1. Error table for generalized Green-Taylor problem

h | |ui- uin|| | rate

| |uz- uap|| | rate

[ u-u, [ rate

0.44 | 1.27913e-1 | 3.37

1.27837e-1 | 3.36

1.27836e-1 | 3.29

0.22 | 1.23822e-2 | 241

1.24348e-2 | 2.41

1.21608e-2 | 2.38

0.11 | 2.33631e-3 | 2.11

2.33686e-3 | 2.11

2.33205e-3 | 2.11

0.06 | 5.4255e-4 1.93

5.42808e-4 | 1.92

5.38684e-4 | 2.01

0.03 | 1.42443e-4 -

1.43048e-4 -

1.34003e-4 -

The results of the errors with the
corresponding rate for the velocity are presented
in Table 4.1.

The simulated velocity solution of this
numerical experiment with h=088 and h=044
(from left to right) and the number of ensemble
members J=2 is presented in Figure 4.2 at time
T=1.

4.2. Lid driven cavity
The second problem we tested our algorithm

with is lid driven cavity problem with viscosity
v=1/1000 on a square [10,10] domain. The

simulation is done on two different mesh sizes,
h=1/10 and h=1/20, with y=1/At, and yx=0.
Time step At started with 0.01 and stability was
not violated. Simulations are shown in Figures 4.3
and 4.4 at time T=5, where we can see that for
h=1/20 and y =1/At, the second recirculation is
captured on the left corner while with =0
simulation has only one circulation on the right
corner. See [24] for more comparison for lid driven
cavity problem where a DNS method s
implemented with h=1/31 in order to capture
both recirculation. When h=1/10 the results are
better with y =1/At, than without .
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Fig. 4.2. Ensembled velocity solution at T =1 for h=0.88 and h=0.44 from left to right.

Vector Streamlines Vector Streamlines
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03 04 05 06 07

X
Fig. 4.3. Ensembled velocity solution with y =1/At, at T=5(h=1/10 and h=1/20 from left to right, respectively).
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Fig. 4.4. Ensembled velocity solution with y =0 at T=5, (h=1/10 and h=1/20 from left to right, respectively).
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5. CONCLUSIONS

Herein we presented a fluid model based on
ensemble technique applied for the time
relaxation regularization of NSE. This regularization
acts to suppress the velocity fluctuations in a fluid
flow by the means of ensemble methodology.
Herein, we confirmed the theoretical rates of
convergence of the true velocity solution towards
the numerical finite element solution in the Green-
Taylor numerical problem. In the second
experiment, we showed the efficiency of the
ensemble method and time relaxation on the
cavity benchmark experiment.
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