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Abstract:

The paper analyses the stability of a rectangular plate which is
elastically buckled along longitudinal edges and pressed by equally
distributed forces. A general case is analyzed — different stiffness
elastic clamping and then special simpler cases are considered.

Energy method is used in order to determine critical stress. Deflection
function is introduced in a convenient way so that it reflects the actual state
of the plate deformation in the best manner. In this way, critical stress is
determined in analytic form suitable for analysis.

With help of the equation it is easy to conclude how certain parameters
influence the value of critical stress. The paper indicates how the obtained
solution could be utilized for determining local buckling critical stress in
considerably more complex systems — pressed thin-walled beams of an
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1. INTRODUCTION

In studying so-called local buckling of thin-
walled prismatic beams pressed by axial force
evenly distributed on the surface of cross section,
the problem of determining critical stress arises,
both in the whole beam as well as in individual
rectangular plates that constitute the beam. The
beam plates are connected along the connection
lines, so while studying the stability of individual
plates, the influence of other adjacent plates
cannot be disregarded. Adjacent plates of beams
loaded in this way have a role of elastic clamps by
loading the examined plate with bending moments
equally distributed along the connection lines.
These moments are proportional to the plate
curvature [1, 2, 3] on those edges, and coefficients
of proportionality C — stiffness of elastic clamping —
depend on adjacent plates with which the
examined plate is connected. Case like this occurs
in analyzing the stability of any plate of the thin-

walled beam of rectangular cross section contour,
as well as in examining the rib stability of thin-
walled beams with cross section in the form of U
and Z profile with unequal legs.

THE ANALYSIS OF THE PLATE ELASTICALLY
CLAMPED ALONG THE EDGES

The examination of the buckling problem of
these beams comes down to the buckling analysis
of the elastically supported rectangular plate which
length is equal to the length of the beam, and b
width is equal to the length of the profile contour
line (Fig. 1). The plate is elastically clamped along
the longitudinal edges.

Stiffness of elastic clamping of longitudinal
edges is different (there is no system symmetry, in
the general case) and constant along the plate
edges. Along the transverse (loaded) edges, the
plate is simply supported.
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Fig. 1. Plate supporting and elastic clamping position

The law on plate deflection in longitudinal
direction, because of the way of support, could be
mzx

represented by sinusoid function f (x) =sin

The law on plate deflection in transverse
direction is determined by application of the
superposition System of simple support, whereby
the deflection could be represented by sinusoid
function, and deflection of two “elastic” moments:

f (y)=sin%y— Nl(zbzy—by2 + y3)— N, (by2 —y3) (1)

The deflection of the buckled plate could be
represented by the following form:

mrzXx

w=Af (x) f (y)=Asin
(2)
-[sin”—y— N, (2b2y—by2 + y3)— N, (byz - y3 )}
b

where:
e A —constant (deflection amplitude);
transverse

e X, y — longitudinal and

coordinate;

e m — the number of longitudinal semi-
waves of the deformed plate (me N );

e N; i N, — constants which are determined
from boundary conditions.

Plate bending moments on plate edges have to
be equal to the moments of elastic clamping:

2 2 3
oy o),y ooy ),

o’w  o*w o*w
_D{?"rﬂa?] :—Cz{axzayj .
y=b y=b

where:

(3)
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IREC

— plate bending stiffness;

e E—elasticity module;

e 1 —Poisson’s coefficient.

It follows from these conditions (3) that constants
N; and N have the following values:

m'm’C, (6a3D+bm17(1C2)

N, = ,
" 36*(124° D +4a*bDm*7C, + 4a*bDm 2°C, + BPm* 1 C,C, )
\ 4
2 mzerC'2 (6£IZD+!JI’HZJ'T3C‘) ( )
* " 36% (124" D +4a°bDm*nC, +4a°6Dm* 5 C, +b'm'7'C,C, )
that is:
m’r’ C—'l(6+ mzfrzc_‘z)
N, = = — S—
36 (12+4m*z°C, +4m’xC, +m'n* G, )
mzfr’Cz(6+m:;rza) (5)
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whereC; =b2ﬁ and C» =bz&— are reduced (non-
a‘D a‘D

dimensional) stiffness of elastic clamping. With

joint  supports C,=C,=0 , C;=C,=0 and

N; =N, =0, while clamping C;=C, =0 ,

Ci=Cr=w and N;=N, =i3. In general case
3b

/2 T
0<Ny<—— i 0<Ny<—.
3p3 3p3

The system’s potential energy is:

Dab o’w 82w2 *wolw [ o*w :
E"ziif[axz*ayz] 2(”){@%2@] 0
a 2 a 2
M M3 i
eI e
The operation of external forces:
b 2
1 St ow
Ay :_0k5”[_j dxdy . (7)
2 ool X

Equaling the system’s potential energy (6) and
the operation of external forces (7) the equation
for critical stress is obtained:

D72
o =2 (8)
" b2

Where k is the buckling coefficient:
2 2
kzmz(gj +L(3j P+Q, (9)
a m2 b

and if we don’t use reduced (non-dimensional)
stiffness of elastic clamping:

2 2
k=m? b +LE R+S, (10)
a m2 b

and P, Q, Rand S are non-dimensional
coefficients:
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105
e [16(47z4 +1057 —1260)+42C, (7* +202° —280)+7C; (* +157° —240)]

[4(3+C,)+G (4+G,)]
2C,[ 5040(7* = 6)+C, (647" +29407° ~30240)+21C; (7" +207° - 280) ]
{C_*, [4(%2 -—6)+(72 (7* —8):|+4[37r2 +C, (71'2 —6)]}
16[ 9457 +630C, (7~ 6)+C; (4n* +1057° ~1260) |

P=

(11)

14{126’1 [120(# - 6)+12C, (77 -60)+5C; (37° - 28)]} 4
== C:[16(47* +1057° ~1260)+42C, (7" +207° ~280) + 7C; (7* +157° ~240) |
+C;[48(77° - 60)+60C, (37° ~28)+5C; (57° —48) |+ 12)
2C, [ 5040(7 = 6)+C, (647* +29407° ~30240)+21C; (7" +207° ~280)]
+48[ 457 +30G, (#* —6)(7° - 60)+ C; (7a° —60)]_
16 9457 +630C, (* ~6)+C; (47 +1057° ~1260) |’

105
bC; [1502 (47* +1057 =1260) +42bDC, (7* +207* ~280) + 76°C; (7" +157° —240)]

[4D(3D+bC,)+bC, (4D+bC,) ] (13)
2bDC, [ 5040b* (7 =6) +bDC, (647* +29407° ~30240) +215°C; (7* +207° -280) |
{bC,[4D(7* ~6)+bC, (7 -8) |+ 4D[3D7” +bC, (x* ~6) ||
16D°[945D° 2 +630bDC, (7 ~6) +b°C; (47" +1057° ~1260) |

R=

14{1 2bDC, [ 12007 (7* —6)+12bDC, (7n° - 60) + 55°C; (37° —28)]} +
b [1602 (47* +1057° —1260) +42bDC, (* + 207" - 280)+76°C; (* +157° —240)]

+b°C[ 48D7 (77 —60)+60bDC, (37° ~ 28) +5b°C3 (57° - 48) | + (14)
2bDC, | 5040D° (7° —6)+bDC, (647* +29407° ~30240) + 216°C; (7* +207° - 280) |

+48D* [451)2::2 +30bDC, (z* -6)(77° —60) +b°C; (72 —60)]
16D?| 945D°x* +630bDC, (7 =6)+b°C; (47* +1057° ~1260) |

Because of the complexity of the mathematical 2. RESULTS
problem for determining the symbolic solution of
critical stress and coefficients k, P, Q, R and S,
software package Matematica® was used [4].

The buckling coefficients for certain extreme
cases of supporting are known in the literature and
match with the obtained values [5, 6, 7]. The
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values between those boundary values are

represented on diagrams in Figures 2-6.
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Fig. 2. Buckling coefficient for
clamping stiffness C; =0
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Fig. 3. Buckling coefficient for
clamping stiffness C; =1
k
10
8
C,=x
6 C=10
—~—————C,=5C!
C.=0
P U oS e 5 oS C=0
9
a
0 2 4 6 8 b

Fig. 4. Buckling coefficient for
clamping stiffness C; =5
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Fig. 5. Buckling coefficient for

clamping stiffness C_l =10
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Fig. 6. Buckling coefficient for
clamping stiffness C; =0

3. CONCLUSION

The type of support along the transverse
(shorter) edges has significance only with relatively
short plates. If a plate is long, and such are almost
all plates constituting thin-walled beam, the type
of support of these edges only influences the
deformation of the plate parts around those edges.

In the middle part of the plate, the influence of
support is lost, i.e. all previous results for critical
stress obtained for joint support along the loaded
plate edges are also valid for other types of
supports (elastic and rigid support).
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