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Abstract In this paper, we consider the Newton type methods for solving the nonsmooth equations
with finitely many maximum functions. A new ∂∗-differential is used in the given Newton-type
methods. The Newton-type methods also include a new parameterized combination. The superlinear
convergence of the given methods is presented. Finally, the numerical experiments highlight the
efficiency of the given methods.
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1 Introduction

In this paper, we consider the nonsmooth equations with finitely many maximum functions

max
j∈J1

f1j(x) = 0,

... (1.1)

max
j∈Jn

fnj(x) = 0,

where fij : Rn → R for j ∈ Ji, i = 1, · · · , n are assumed to be continuous differentiable, and Ji, i = 1, · · · , n
are finite index sets. Therefore, we know that (1.1) is a system of semismooth equations. As in [1],
throughout the whole paper, we denote

fi(x) = max
j∈Ji

fij(x), x ∈ Rn, i = 1, · · · , n,

F (x) = (f1(x), · · · , fn(x))T , x ∈ Rn,

Ji(x) = {j ∈ Ji|fij(x) = fi(x)}, x ∈ Rn, i = 1, · · · , n.

And (1.1) can be transformed into the nonsmooth equations

F (x) = 0. (1.2)

Obviously, F is locally Lipschitzian and semismooth on Rn, see [1]. Many optimization problems and
mathematical programming problems can be briefly rewritten as the form (1.2), e.g., LC1 optimization
problems([2-5]), nonlinear complementarity problems([6]) and variational inequality problems([7]).

Nonsmooth equation (1.2) was considered concurrently in [2] and [8]. One of the fundamental versions
of the generalized Newton method was proposed by Qi and Sun in [2] as

xk+1 = xk − V −1
k F (xk),

where Vk is an element of Clarke generalized Jacobian [2], an element of B-differential [3] and an element
of b-differential [9] of F at xk. And in [5], Chen and Qi presented the parameterized modification of
generalized Jacobian Newton-like method

xk+1 = xk − αk(Vk + λkI)−1F (xk),
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where Vk ∈ ∂BF (xk), I is the n × n identity matrix, αk and λk are chosen to ensure convergence and
Vk + λkI is invertible.

Recently, some research works have been conducted for solving (1.1). Specifically, Gao in [10] considered
the Newton method for solving the problem (1.1), which is widely used in the optimal control, the
variational inequality and complementarity problems, equilibrium problems, engineering mechanics
[8,11,12] and Karush-Kuhn-Tucker systems of nonlinear programming problems. Śmietański in [6]
constructed the difference approximated Jacobian for a finite maximum function. A new smoothing
nonlinear conjugate gradient method and a modified Levenberg-Marquardt method were also proposed
for solving the nonsmooth equations (1.1) in [13] and [14]. Moreover, Śmietański considered the midpoint
generalized Newton method in [15], in which a new approximation xk+1 is

xk+1 = xk − (V kxz)−1F (xk), k = 0, 1, · · · ,

where V kxz is an element of some subdifferential of F at 1
2 (xk + zk) and zk = xk − (V kx )−1F (xk), V kx ∈

∂BF (x).
Based on the above research work, we present two new Newton-type methods with ∂∗-differential for

(1.1). The ∂∗-differential for (1.1) is defined as

∂∗F (x) = {(∇f1j1 , · · · ,∇fnjn
)T |j1 ∈ J1(x), · · · , jn ∈ Jn(x)}, x ∈ Rn. (1.3)

And the ∂∗F (x) is a non-empty bounded set for each x such that

∂∗F (x) ⊂ ∂f1(x)× · · · × ∂fn(x),

where ∂fi(x) is the Clarke generalized gradient of fi at x.
The remainder of the paper is organized as follows. In Section 2, we recall some proverbial results of

generalized Jacobian, semismoothness and some propositions. In Section 3, we present a parameterized
combinations Newton method for solving (1.1) and give the superlinear convergence of it. A modified
parameterized combinations Newton method is also given to solve (1.1) and the local superlinear
convergence is also proved. In Section 4, we report some numerical results of the two new Newton-type
methods. In Section 5, we give some discussions to conclude this paper.

2 Preliminaries

If F (x) : Rn → Rn is a locally Lipschitz function, and the limit

lim
V ∈ ∂F (x+ th′)
h′ → h, t→ 0+

V h′

exists for any h ∈ Rn, then we say that F is semismooth at x. As we all know, piecewise smooth functions
and the maximum of a finite number of smooth functions are semismooth, which are introduced in
[2,10,15,16].

Proposition 2.1. Let x ∈ Rn. Suppose that for any h ∈ Rn

lim
V ∈∂F (x+th),t↓0

V h

exists. Then
F ′(x;h) = lim

V ∈∂F (x+th),t↓0
V h.

Proposition 2.2. F is semismooth at x. ⇐⇒

V h− F ′(x;h) = o(‖h‖). (2.1)
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From [2], for any h→ 0,
F (x+ h)− F (x)− F ′(x;h) = o(‖h‖), (2.2)

then we say F is semismooth at x.
As [1], we give the following proposition.

Proposition 2.3. Suppose that F is defined by (1.2). Then, for any x, x∗ ∈ Rn, V ∈ ∂F (x), we get

F (x)− F (x∗)− V (x− x∗) = o(‖x− x∗‖).

Proof. By (2.1) and (2.2), we can obtain

V h− F ′(x∗;h) = o(‖h‖),∀V ∈ ∂F (x∗ + h), (2.3)

F (x∗ + h)− F (x∗)− F ′(x∗;h) = o(‖h‖). (2.4)
Let h = x− x∗, then we obtain the proposition.

3 The Newton-type Methods and Their Superlinear Convergence

In this section, we present the new parameterized Newton methods for solving (1.1). Now we give the
framework of the parameterized combinations Newton method.
Method 3.1(Parameterized Combinations Newton Method)
Step 0. Let 0 ≤ ε ≤ 1, α, λ ∈ (0, 1), λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, x0 ∈ Rn. Let k := 0.
Step 1. If ‖F (xk)‖ ≤ ε, then STOP.
Step 2. Find a point yk ∈ Rn such that

yk = xk − α(V kx + λI)−1F (xk),

where V kx ∈ ∂∗F (xk).
Step 3. Set

xk+1 = xk − (V kxy)−1F (xk), k = 0, 1, · · · , (3.1)

where V kxy ∈ ∂∗F (λ1x
k + λ2y

k). Let k := k + 1, go to Step 1.

Remark 3.1. If λ1 = λ2 = 1
2 , the method we presented is equal to the case in [15].

Below we prove the convergence results of Method 3.1 with the ∂∗-differential. First of all, we need
some helpful lemmas.

Lemma 3.2. Suppose that F (x) and ∂∗F (x) are defined by (1.2) and (1.3) respectively, and for any V ,
V ∈ ∂∗F (x) is nonsingular. Then there exist C > 0, γ > 0, ε > 0 and N(x, ε) is a neighbor of x, such that

‖V −1‖ ≤ C,∀V ∈ ∂∗F (x), x ∈ N(x, ε), (3.2)
‖V ‖ ≤ γ,∀V ∈ ∂∗F (x), x ∈ N(x, ε).

Lemma 3.3. Suppose that x∗ is the solution of (1.1). Then for any constants α, λ, λ2 ∈ (0, 1), the
function G(x) = x − (V x)−1F (x), where V x ∈ ∂∗F (x − αλ2(Vx + λI)−1F (x)) and Vx ∈ ∂∗F (x), is
well-defined in a neighborhood of x∗.

Proof. By Lemma 3.1, there exists a scalar C > 0 and a neighborhood N of x∗ such that Vx is nonsingular
and ‖V −1

x ‖ ≤ C for any x ∈ N(x, ε) and Vx ∈ ∂∗F (x). Firstly, let ε ∈ (0, 1
2C ), we know that there exists

a Vx∗ ∈ ∂∗F (x∗) such that for any x ∈ S(x∗, δ1) and Vx ∈ ∂∗F (x),

‖Vx − Vx∗‖ < ε. (3.3)

Then, we consider y = x− αλ2(Vx + λI)−1F (x), where x ∈ N(x, ε), Vx ∈ ∂∗F (x) and α, λ, λ2 ∈ (0, 1).
By the Corollary 3.2 in [3], it can be guaranteed that y ∈ S(x∗, δ1), where S(x∗, δ1) is an open ball in Rn
with center x∗ and radius δ1. Since Vy ∈ ∂∗F (y), then (3.3) holds, i.e.

‖Vy − Vx∗‖ < ε.
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So, let δ = min{ε, δ1}, using the Banach perturbation lemma in [17], we obtain that Vx is nonsingular
and

‖(V x)−1‖ = ‖(Vy)−1‖ = ‖[Vx∗ + (Vy − Vx∗)]−1‖

≤ ‖(Vx∗)−1‖
1− ‖(Vx∗)−1‖‖Vy − Vx∗‖

≤ C

1− Cε ≤ 2C

for x ∈ S(x∗, δ). Then, we get it.

Theorem 3.4. Suppose that x∗ is a solution of (1.1) and ‖Vx∗‖ ≤ γ for all Vx∗ ∈ ∂∗F (x∗) and all Vx∗
are nonsingular. Then there exists a neighborhood of x∗ such that the sequnence {xk} generated by Method
3.1 with ∂∗-differential converges superlinearly to x∗ for any initial point x0 belonging to this neighborhood.
Besides that, if F (xk) 6= 0 for all k, then the norm of F decreases superlinearly in a neighborhood of x∗,
i.e.

lim
k→∞

‖F (xk+1)‖
‖F (xk)‖ = 0. (3.4)

Proof. By Lemma 3.1 and Lemma 3.2, for the first step k = 0, the iterative formula (3.1) is well-defined
in a neighborhood of x∗. And based on Lemma 3.2, we know that if y = x− αλ2(Vx + λI)−1F (x), then
we have y ∈ S(x∗, δ) and

‖xk+1 − x∗‖ = ‖xk − (V kxy)−1F (xk)− x∗‖
= ‖(V kxy)−1‖‖F (xk)− F (x∗)− V kxy(xk − x∗)‖
= o(‖xk − x∗‖),

where V kxy ∈ ∂∗F (λ1x
k + λ2y

k), λ1 + λ2 = 1 and λ1, λ2 ∈ [0, 1]. Then the sequence {xk}(k ∈ N) is
superlinearly convergent to x∗.

In the following we give the proof of (3.4). By Lemma 3.1, there exist C > 0 and ε > 0 such that V is
nonsingular and ‖V −1‖ ≤ C for any x ∈ S(x∗, ε) and V ∈ ∂∗F (x). By Proposition 2.3, for any α ∈ (0, 1),
there is a δ2 ∈ (0, ε) such that if x ∈ S(x∗, δ2), we can see that

‖F (x)− V (x− x∗)‖ ≤ α‖x− x∗‖. (3.5)

And if xk ∈ S(x∗, δ), we have

‖xk+1 − x∗‖ ≤ α‖xk − x∗‖ (3.6)

for δ ∈ (0, δ2). Since {xk} converges to x∗, there exists a kδ ∈ N such that ‖xk − x∗‖ ≤ δ for all k ≥ kδ.
By (3.6), we have ‖xk+1 − x∗‖ ≤ δ ≤ δ2. Furthermore, by (3.3), we have

‖V k+1
xy ‖ = ‖V k+1

xy − Vx∗ + Vx∗‖ ≤ ε+ ‖Vx∗‖ ≤ ε+ γ.

By (3.5) and (3.6), we know that

‖F (xk+1)‖ ≤ ‖V k+1
xy (xk+1 − x∗)‖+ α‖xk+1 − x∗‖

≤ (ε+ γ + α)‖xk+1 − x∗‖
≤ α(ε+ γ + α)‖xk − x∗‖.

By (3.1),(3.2) and (3.6), we obtain that

‖xk − x∗‖ ≤ ‖xk+1 − xk‖+ ‖xk+1 − x∗‖
≤ ‖(V kxy)−1F (xk)‖+ α‖xk − x∗‖
≤ C‖F (xk)‖+ α‖xk − x∗‖.
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Then

‖xk − x∗‖ ≤ C

1− α‖F (xk)‖.

Then we get

‖F (xk+1)‖ ≤ α(ε+ γ + α)‖xk − x∗‖

≤ Cα(ε+ γ + α)
1− α ‖F (xk)‖.

Since F (xk) 6= 0 for all k and α may be arbitrarily small as k → ∞, we get (3.4). Hence, we get this
theorem.

Based on Method 3.1, in the following of this section, we establish a new iterator formula for solving
(1.1). Given the kth approximation xk, the modification of the parameterized combinations Newton
method obtains xk+1 by means of

xk+1 = xk − βk(V kxy + µkI)−1F (xk), k = 0, 1, · · · , (3.7)

where V kxy ∈ ∂∗F (λ1x
k + λ2y

k), λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1] is an element of some subdifferential of F at
λ1x

k + λ2y
k and yk = xk − αk(V kx + λkI)−1F (xk), where V kx ∈ ∂∗F (xk).

Then we give the framework of the new modified method.
Method 3.2(Modified Newton Method)
Step 0. Let 0 ≤ ε ≤ 1, α, β, λ, µ, λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1, x0 ∈ Rn. Let k := 0.
Step 1. If ‖F (xk)‖ ≤ ε, then STOP.
Step 2. Compute

yk = xk − α(V kx + λI)−1F (xk),
where V kx ∈ ∂∗F (xk).
Step 3. By (3.7), we obtain xk+1. Let k := k + 1, go to Step 1.

Remark 3.2. In Method 3.2, we replace the parameters βk and µk which are defined by (3.7) by
β ∈ (0, 1], µ ∈ [0, 1], respectively.

The following theorem is the important result in this section and it also shows the local superlinearly
convergence of the Method 3.2.

Theorem 3.5. Suppose that x∗ is a solution of (1.1), and all Vx∗ ∈ ∂∗F (x∗) are nonsingular. Let ε, βk,
and µk satisfy 0 < β1 < βk < 1, ε < γ, 0 < C(ε(2 + β1) + γ(1− β1)) < 1 and

|µk| ≤ µ′ <
1− C(ε(2 + β1) + γ(1− β1))

2C .

Then there exists a scalar δ > 0 such that for any x0 ∈ S(x∗, δ), the sequence {xk} defined by Method 3.2
is well-defined and converges linearly to x∗. Furthermore, if βk → 1 and µk → 0 as k →∞, then {xk}
converges superlinearly to x∗.

Proof. By (2.3) and (2.4), there exists a constant δ > 0 such that for any x ∈ S(x∗, δ), Vx ∈ ∂∗F (x) and
h = x− x∗, we have

‖Vx(x− x∗)− F ′(x∗;x− x∗)‖ ≤ ε‖x− x∗‖,
‖F (x)− F (x∗)− F ′(x∗;x− x∗)‖ ≤ ε‖x− x∗‖.

By this formula together with (3.3), we obtain that

‖Vx + µI − Vx∗‖ ≤ ε+ |µ| < 1
C

when |µ| < µ′. This implies that Vx + µI is nonsingular and

‖(Vx + µI)−1‖ ≤ C

1− C(ε+ |µ|) .
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Therefore (3.7) is well-defined for x∗ ∈ S(x∗, δ). Furthermore, by (3.3) and ‖V kxy‖ ≤ ε+ ‖Vx∗‖ ≤ ε+ γ,
we have

‖xk+1 − x∗‖ ≤ ‖(V kxy + µkI)−1‖(βk‖F (xk)− F (x∗)− F ′(x∗;xk − x∗)‖
+ βk‖V kxy(xk − x∗)− F ′(x∗;xk − x∗)‖+ ((1− βk)‖V kxy‖+ |µk|)‖xk − x∗‖)

≤ C

1− C(ε+ |µk|)
(2βk + (1− βk)(ε+ γ) + |µk|)‖xk − x∗‖

≤ ρ‖xk − x∗‖,

where 0 < ρ = C
1−C(ε+µ′) (2β1ε+ (1− β1)(ε+ γ) + µ′) < 1. Hence {xk} defined by (3.7) converges linearly

to x∗.
By

‖F (x)− F (x∗)− F ′(x∗;x− x∗)‖ = o‖x− x∗‖,

‖Vx(x− x∗)− F ′(x∗;x− x∗)‖ = o‖x− x∗‖,

and let βk → 1, µk → 0 as k →∞, we get

‖xk+1 − x∗‖ = o(‖xk − x∗‖).

Hence {xk} defined by (3.7) converges superlinearly to x∗, if βk → 1, µk → 0 as k →∞.

4 Numerical Results

In this part, we give some numerical results to illustrate the efficiency of the two given Newton-type
methods. The Example 4.1 is based on the Example 4.1 in [14]. We compared Method 3.1 with fsolve
which is taken from the Matlab optimization tool box. And for fsolve we choose "Algorithm to Levenberg-
Marquardt" and "Function tolerance to 1e-15". The numerical results are given in Table 4.1. The
Example 4.3 and Example 4.4 are two semismooth equations from [15]. We compare the Method 3.1
and Method 3.2 with the midpoint Newton method [15], respectively, and give some numerical examples
to illustrate the efficiency of the methods presented in our paper. The following notations are used:
M1 is the Method 3.1; M2 is the Method 3.2; M3 is the midpoint Newton method introduced by
Śmietański in [15]; x0 is the initial point; N is the number of iterations; xk is the final value after the
iterative process. The symbol − denotes the test has failed. And the parameters used in this section are
α = 0.5, β = 0.85, λ = 0.5, µ = 0.125, λ1 = 0.6, λ2 = 0.4 for all tests.

Example 4.1.
max{f11(x1, x2), f12(x1, x2)} = 0,

max{f21(x1, x2), f22(x1, x2)} = 0,

where f11 = x2
1 + x2

2, f12 = x2
1, f21 = 1

2 (x1 + 2x2)2, f22 = 2(x1 + 2x2)2. From (1.1), we know

F (x) = (f1(x), f2(x))T ,

where f1(x) = x2
1 + x2

2, f2(x) = 2(x1 + 2x2)2, x ∈ R2. We know that F (x) has one solution (0, 0)T . Then
we compare M1 with fsolve in the final solution. The computational results are summarized in Table 4.1.

Table 4.1
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M1 fsolve
x0 xk xk

1 (−1,−1)T (−3.324e− 011, 9.249e− 011)T (0, 0)T
2 (−2,−2)T (−6.073e− 011, 4.743e− 011)T (0, 0)T
3 (−6,−3)T (−4.994e− 011, 6.755e− 011)T (0, 0)T
4 (−5,−5)T (−4.624e− 011, 4.129e− 011)T (0, 0)T
5 (1, 0)T (7.735e− 011, 1.134e− 011)T (0, 0)T
6 (1, 1)T (3.773e− 011, 6.606e− 011)T (0, 0)T
7 (2, 3)T (1.995e− 011, 5.596e− 011)T (0, 0)T
8 (10, 10)T (3.253e− 011, 6.019e− 011)T (0, 0)T
9 (−2, 3)T (−6.99e− 012, 6.995e− 011)T (0, 0)T
10 (−1, 1)T (−3.871e− 011, 3.585e− 011)T (0, 0)T

Example 4.2. Consider the nonsmooth equations with finitely many maximum functions given as (1.1).
Similar as previously mentioned, we can obtain that

F (x) = (f1(x), f2(x), · · · , f9(x))T ,

where fi(x) = x2
i + x2

i+1, i = 1, · · · , 8, f9(x) = x2
9. Obviously, this function has a unique solution x =

(0, 0, 0, 0, 0, 0, 0, 0, 0)T . Then we compare M1 with M3 and fsolve,respectively. The numerical results are
shown in Table 4.2 and Table 4.3.

Table 4.2

M1 M3
x0 N N

1 (1, 0, 1, 1, 1, 1, 1, 1, 1)T 36 ×
2 (1, 1, 0, 1, 1, 0, 1, 1, 1)T 36 ×
3 (1, 0, 1, 0, 1, 0, 1, 0, 1)T 35 ×
4 (1, 1, 1, 1, 1, 1, 1, 1, 1)T 36 51
5 (1, 2, 3, 4, 5, 6, 7, 8, 9)T 39 54

Table 4.3

M1 fsolve
x0 xk(e− 11) xk(e− 15)

1 (1; 0; 1; 1; 1; 1; 1; 1; 1) (1.9; 0.3; 2.1; 2.1; 2.1; 2.1; 2.1; 2.2; 1.9) (0; 0; 0; 0; 0; 0; 0; 0; 0)
2 (1; 1; 0; 1; 1; 0; 1; 1; 1) (2.2; 1.9; 0.2; 2.2; 1.9; 0.4; 2.1; 2.2; 1.9) (0; 0; 0; 0; 0; 0; 0; 0; 0)
3 (1; 0; 1; 0; 1; 0; 1; 0; 1) (3.8; 0.9; 3.8; 0.9; 3.8; 0.9; 3.8; 0.9; 3.9) (0; 0; 0; 0; 0; 0; 0; 0; 0)
4 (1; 1; 1; 1; 1; 1; 1; 1; 1) (2.1; 2.1; 2.1; 2.1; 2.1; 2.1; 2.1; 2.1; 1.9) (0; 0; 0; 0; 0; 0; 0; 0; 0)
5 (1; 2; 3; 4; 5; 6; 7; 8; 9) (0.3; 0.7; 0.9; 1.4; 1.7; 2.2; 2.5; 3.1; 3.0) (0; 0; 0; 0; 0; 0; 0; 0; 0)

From Table 4.1 and Table 4.3, we know that Method 3.1 is similar to fsolve on the numerical accuracy.
And from Table 4.2, we find that M1 needs less number of iterations than M3 in solving the same problem.
Now, we give the following numerical examples to illustrate that Method 3.1 and Method 3.2 also adapt to
semismooth equations with the Clarke generalized Jacobian, B-differential and b-differential.

Example 4.3. ([18])

F (x) =
(
|x1|+ (x2 − 1)2 − 1
(x1 − 1)2 + |x2| − 1

)
= 0.

The above problem is the system of semismooth equations and it has two solutions

x∗ = (0, 0)T , x∗∗ = (1, 1)T .

The numerical results are shown in Table 4.4 and Table 4.5.
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Table 4.4

M3 M1
x0 N xk N xk

(0, 1)T - - 14 (1.0000, 1.0000)T
(0.5, 0.5)T - - 15 (1.0000, 1.0000)T
(0.5, 2)T 33 (1.0000, 1.0000)T 14 (1.0000, 1.0000)T
(1, 0)T - - 14 (1.0000, 1.0000)T
(2, 3)T 39 (1.0000, 1.0000)T 24 (1.0000, 1.0000)T

(10, 10)T 38 (1.0000, 1.0000)T 17 (1.0000, 1.0000)T
(0,−1)T 33 (−1.086e− 011,−0.93e− 011)T 18 (−5.532e− 012,−5.533e− 012)T
(0,−10)T 39 (−5.143e− 011,−1.748e− 011)T 20 (1.0000, 1.0000)T
(5,−6)T 37 (1.0000, 1.0000)T 18 (1.0000, 1.0000)T
(−1, 0)T 33 (−9.334e− 011,−1.086e− 011)T 18 (−5.533e− 012,−5.532e− 012)T
(−10, 0)T 39 (−1.748e− 011,−5.143e− 011)T 20 (1.0000, 1.0000)T
(−1,−1)T 34 (−5.132e− 011,−5.132e− 011)T 18 (−1.094e− 011,−1.094e− 011)T

(−1.5,−1.5)T 35 (−3.847e− 011,−3.847e− 011)T 18 (−1.981e− 011,−1.981e− 011)T
(−5,−5)T 37 (−3.656e− 011,−3.656e− 011)T 20 (−9.158e− 012,−9.158e− 012)T

(−10,−10)T 38 (−4.373e− 011,−4.373e− 011)T 21 (−8.935e− 012,−8.935e− 012)T

Table 4.5

M3 M2
x0 N xk N xk

(0, 1)T - - 35 (1.0000, 1.0000)T
(0.5, 0.5)T - - 34 (1.0000, 1.0000)T
(0.5, 2)T 33 (1.0000, 1.0000)T 35 (1.0000, 1.0000)T
(1, 0)T - - 35 (1.0000, 1.0000)T
(2, 3)T 39 (1.0000, 1.0000)T 37 (1.0000, 1.0000)T

(10, 10)T 38 (1.0000, 1.0000)T 40 (1.0000, 1.0000)T
(0,−1)T 33 (−1.086e− 011,−0.93e− 011)T 27 (4.799e− 011, 2.966e− 011)T
(0,−10)T 39 (−5.143e− 011,−1.748e− 011)T 40 (1.0000, 1.0000)T
(5,−6)T 37 (1.0000, 1.0000)T 39 (1.0000, 1.0000)T
(−1, 0)T 33 (−9.334e− 011,−1.086e− 011)T 27 (−2.966e− 011, 4.799e− 011)T
(−10, 0)T 39 (−1.748e− 011,−5.143e− 011)T 40 (1.0000, 1.0000)T
(−1,−1)T 34 (−5.132e− 011,−5.132e− 011)T 18 (−4.628e− 012,−4.628e− 012)T

(−1.5,−1.5)T 35 (−3.847e− 011,−3.847e− 011)T 18 (−9.293e− 012,−9.293e− 012)T
(−5,−5)T 37 (−3.656e− 011,−3.656e− 011)T 20 (−5.944e− 012,−5.944e− 012)T

(−10,−10)T 38 (−4.373e− 011,−4.373e− 011)T 21 (−7.788e− 012,−7.788e− 012)T

Example 4.4. ([19])
f1(x) = (x2 − x1)ln[(x2 − x1)2 + 1] + x2 − x1,

f2(x) =
{−exp(−x1 − x2) + 1, if x2 ≥ 0;

1−exp(−x1)
1−x2

, if x2 ≤ 0.

where the function F : R2 → R2 with component functions. And it has a unique solution x∗ = (0, 0)T .
And the results are shown in Table 4.6 and Table 4.7.

Table 4.6
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M3 M1
x0 N xk N xk

(1, 0)T 34 (5.932e− 011, 6.46e− 012)T 20 (1.668e− 011,−1.031e− 011)T
(2, 2)T - - 25 (−4.101e− 011, 1.698e− 011)T

(−1, 1)T 34 (−6.302e− 011, 6.302e− 011)T 22 (−1.750e− 011, 7.25e− 012)T
(−0.5,−0.5)T 33 (−6.338e− 011,−6.338e− 011)T 19 (−1.923e− 011, 7.96e− 012)T

(−1,−1)T 34 (−5.493e− 011,−5.493e− 011)T 20 (−1.407e− 011, 5.83e− 012)T
(−2,−2)T 35 (−5.116e− 011,−5.116e− 011)T 20 (−3.995e− 011, 1.655e− 011)T
(−2,−3)T 35 (−5.331e− 011,−7.974e− 011)T 20 (1.031e− 011,−6.37e− 012)T
(−3,−3)T 36 (−4.458e− 011,−4.458e− 011)T 21 (−3.145e− 011, 1.303e− 011)T
(5,−6)T - - 24 (−1.305e− 011, 5.40e− 012)T

(−5,−6)T 37 (−6.517e− 011,−7.177e− 011)T 23 (−2.031e− 011, 8.41e− 012)T

Table 4.7

M3 M2
x0 N xk N xk

(1, 0)T 34 (5.932e− 011, 6.46e− 012)T 38 (−4.877e− 011,−7.892e− 011)T
(2, 2)T - - 31 (2.465e− 011, 5.952e− 011)T

(−1, 1)T 34 (−6.302e− 011, 6.302e− 011)T 31 (2.315e− 011, 5.952e− 011)T
(−0.5,−0.5)T 33 (−6.338e− 011,−6.338e− 011)T 42 (−5.065e− 011,−8.196e− 011)T

(−1,−1)T 34 (−5.493e− 011,−5.493e− 011)T 43 (−6.47e− 011,−1.047e− 010)T
(−2,−2)T 35 (−5.116e− 011,−5.116e− 011)T 45 (−5.572e− 011,−9.015e− 011)T
(−2,−3)T 35 (−5.331e− 011,−7.974e− 011)T 45 (−7.06e− 011,−1.142e− 010)T
(−3,−3)T 36 (−4.458e− 011,−4.458e− 011)T 46 (−6.41e− 011,−1.037e− 010)T
(5,−6)T - - 48 (−6.18e− 011,−1.001e− 010)T

(−5,−6)T 37 (−6.517e− 011,−7.177e− 011)T 48 (−6.68e− 011,−1.080e− 010)T

By Table 4.1 and Table 4.3, we obtain that Method 3.1 is efficient and it is similar to fsolve in the
final solution, and Method 3.2 is invalid in Example 4.1 and Example 4.2. And Table 4.2, 4.4 and 4.6
indicate that M1 is promising since M1 need less number of iterations. From Table 4.5 and 4.7, we find
that the result of M2 is similar to M3. But both M1 and M2 are promising. Especially when dealing with
the problem of nonsingular matrix, our methods are more efficient than the midpoint Newton method
given in [15].

5 Conclusion

Newton-type method is one of the most important tool for solving the nonsmooth equations with
finitely many maximum functions, which is widely used in solving many economics, engineering and
optimization problems. In this paper, we present two Newton-type methods with ∂∗-differential for
solving the nonsmooth equations with finitely many maximum functions. And we prove the superlinear
convergence of the given methods. Finally, we also show that the methods we propose are valid in
semismooth equations with ∂B-differential by the numerical experiments. As for the further work, we can
also consider the global convergence of some methods to solve the problem of the nonsmooth equations
with finitely many maximum functions.
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