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Abstract The present paper is devoted to the improvement of the existing fourth-and eighth-order
derivative free methods without memory proposed by Cordero et al. (2013). To achieve this goal two
parameters are introduced which are calculated with the help of Newton’s interpolatory polynomial.
It is shown that the R-order convergence of the proposed methods has been increased from 4 to 7 and
8 to 14, respectively without any extra evaluation.Two non-smooth examples are demonstrated to
confirm theoretical results. Numerically the modified methods are examined along with comparison
to recent existing with memory methods.
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1 Introduction

The main motive in constructing iterative algorithms for solving nonlinear equations is to achieve as
high as possible convergence rate with a fixed number of function evaluations per iteration. In this work
we study the multipoint methods with memory, a work which is very rarely discussed in the literature
in spite of high computational efficiency of this kind of root-finding methods. Most of these methods
are improvement of multipoint methods without memory with optimal order of convergence. Using
Newton’s interpolation with divided difference, deadly fast convergence of new methods with memory is
attained without adding more function evaluations. As a result, these multipoint methods hold a very
high computational efficiency. Let pk represent the m+ 1 quantities xk, t1(xk), t2(xk), ..., tm(xk), k ≥ 1
and define an iterative process by

xk+1 = F (pk; pk−1, pk−2, ..., pk−m).

Following Traub’s terminology [10], F is called a multipoint iteration function with memory. Probably
Traub initiated the idea of with memory method in his book [10]. For this he considered Steffensen type
method

xk+1 = xk −
γf(xk)2

f(xk + γf(xk))− f(xk) , (1)

where γ is arbitrary parameter. This method has quadratic convergence. To compare iterative methods
theoretically, Owtrowski [1] introduced the idea of efficiency index given by r1/θf , where r is the order
of convergence and θf number of function evaluations per iteration. In other words we can say that an
iterative method with higher efficiency index is more efficient. To accelerate the convergence order of this
method without using additional evaluation γ is recursively calculated by self-accelerating method. Let
γ0 be the given initial parameter and consider

φk = f(xk + γkf(xk))− f(xk)
γkf(xk) , k = 0, 1, 2, ...,

xk+1 = xk −
f(xk)
φk

.

(2)

Journal of Advances in Applied Mathematics, Vol. 1, No. 4, October 2016 203

Copyright © 2016 Isaac Scientific Publishing JAAM



where

γk = − 1
φk−1

, k = 1, 2, .... (3)

Traub derived that order of convergence of this method is 2.414. And thus the order of convergence of
(2) with memory is more than that of Steffensen method, which also needs two function evaluations per
iteration. Motivated by this currently researchers are trying to increase the efficiency of the existing
optimal order without memory methods by using single or double parameters. In the literature with
memory methods with two parameters are very rare.

In the present paper we present an improvement of the existing optimal fourth-and eighth-order
derivative free method constructed by introducing two self accelerating parameters. These parameters
are calculated with the help of Newton’s interpolatory polynomial. In section 2, derivative free two-
and three-points methods with memory with improved order of convergence from 4 to 7 and 8 to 14,
respectively without extra evaluations are presented. Two non-smooth equations have been considered to
give the comparisons of absolute errors and computational efficiencies are given in section 3 to illustrate
convergence behavior. Finally, we give the concluding remark.

2 Development and Construction of With Memory Method

In the convergence analysis of the new method, we employ the notation used in Traub’s book [10]: if mk

and nk are null sequences and mk/nk → C, where C is a non-zero constant, we shall write mk = O(nk)
or mk ∼ Cnk . We also use the concept of R-order of convergence introduced by Ortega and Rheinboldt
[11]. Let xk be a sequence of approximations generated by an iterative method (IM). If this sequence
converges to a zero ξ of function f with the R-order OR((IM), ξ) ≥ r, we will write

ek+1 ∼ Ak,rerk,

where Ak,r tends to the asymptotic error constant Ar of the iterative method (IM) when k →∞.
Very recently Cordero et al. [2] presented derivative-free optimal fourth- and eighth-order iterative

methods as follows:
For given x0, consider

zn = xn + f(xn), n = 0, 1, 2, ...,

yn = xn −
f(xn)
f [xn, zn] ,

xn+1 = yn −
f(yn)f [xn, zn]
f [xn, yn]f [yn, zn] (4)

and

zn = xn + f(xn), n = 0, 1, 2, ...,

yn = xn −
f(xn)
f [xn, zn] ,

un = yn −
f(yn)f [xn, zn]
f [xn, yn]f [yn, zn] ,

xn+1 = un −
f(un)

b2 − b1b4
, (5)

where

b4 = f [yn, un, xn]− f [yn, un, zn]
f [yn, zn]− f [yn, xn] ,

b3 = f [yn, un, zn] + b4f [yn, zn],
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b2 = f [yn, un]− b3(yn − un) + f(yn)b4,

b1 = f(un).

If we introduce two different parameters in zn and yn involved in the above methods then the modified
methods are given by along with its error expressions as follows:
Modified method I. For suitably given x0,

zn = xn + εf(xn), n = 0, 1, 2, ...,

yn = xn −
f(xn)

f [xn, zn] + δf(zn) ,

xn+1 = yn −
f(yn)f [xn, zn]
f [xn, yn]f [yn, zn] , (6)

and its error expression is given by

en+1 = (1 + εc1)2(δc1 + c2)(2c2
2 + c1(δc2 − c3))

c3
1

e4
n +O(e5

n). (7)

Modified method II. For suitably given x0,

zn = xn + αf(xn), n = 0, 1, 2, ...,

yn = xn −
f(xn)

f [xn, zn] + βf(zn) ,

un = yn −
f(yn)f [xn, zn]
f [xn, yn]f [yn, zn] ,

xn+1 = un −
f(un)

b2 − b1b4
, (8)

and its error expression is given by

en+1 = (1 + αc1)4(βc1 + c2)2(2c2
2 + c1(βc2 − c3))(2c4

2 + c1c
2
2(βc2 − c3)− c2

1c
2
3 + c2

1c2c4)
c7

1c2
e8
n,

+O(e9
n), (9)

where b1, b2, b3, b4 are as previously defined and ci = f(i)(ξ)
i! . Since the above error equations contain the

parameters, which can be approximated in such a way that increases the local convergence order. For this
purpose, first we put ε = εk, δ = δk and α = αk, β = βk and then approximations of these parameters are
given by

εk = − 1
c1
≈ − 1

c̃1
= − 1

N ′3(xk) ,

δk = −c2

c1
≈ −c2

c1
= − N

′′
4 (wk)

2N ′4(wk) . (10)

and

αk = − 1
c1
≈ − 1

c̃1
= − 1

Ñ ′4(xk)
,

βk = −c2

c1
≈ −

︷︸︸︷
c2︷︸︸︷
c1

= − Ñ
′′
5 (wk)

2Ñ ′5(wk)
. (11)

where
N3(t) = N3(t;xk, yk−1, xk−1, zk−1), N4(t) = N4(t;xk, wk, yk−1, xk−1, zk−1) and
Ñ4(t) = Ñ4(t;xk, uk−1, yk−1, xk−1, zk−1), Ñ5(t) = Ñ5(t;xk, wk, uk−1, yk−1, xk−1, zk−1)
are the Newton’s interpolatory polynomial of degree three, four and five respectively. Before going to
prove the main result, we state the following two lemmas which can be obtained by using the error of
Newton’s interpolation, in the same manner as in [3].
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Lemma 1. If εk = − 1
N ′

3(xk) and δk = − N ′
4(wk)

2N ′
4(wk) , then the estimates

(i) 1 + εkc1 ∼
c4

c1
ek−1,yek−1,zek−1,

(ii) δkc1 + c2 ∼ −c5ek−1,yek−1,zek−1.

Lemma 2. If αk = − 1
Ñ ′

4(xk) and βk = − Ñ ′
5(wk)

2Ñ ′
5(wk) , then the estimates

(i) 1 + αkc1 ∼ −
c5

c1
ek−1,uek−1,yek−1,zek−1,

(ii) βkc1 + c2 ∼ c6ek−1,uek−1,yek−1,zek−1.

The theoretical proof of the order of convergence of the proposed methods is given by the following
theorem:

Theorem 1. If an initial approximation x0 is sufficiently close to a simple zero ξ of f(x) and the parameters
εk, δk and αk, βk in the iterative scheme (6) and (8) are recursively calculated by the forms given in (10)
and (11), respectively. Then the R-order of convergence of with memory schemes (6) and (8) is at least
seven and fourteen, respectively.
Proof. First, we assume that the R-order of convergence of the sequence xk, zk, yk, uk is at least m, m1,
m2 and m3, respectively. Hence

ek+1 ∼ Ak,memk ∼ Ak,m(Ak−1,me
m
k−1)m ∼ Ak,mAmk−1,me

m2

k−1. (12)

and

ek,z ∼ Ak,m1e
m1
k ∼ Ak,m1(Ak−1,me

m
k−1)m1 ∼ Ak,m1A

m1
k−1,me

mm1
k−1 . (13)

Similarly

ek,y ∼ Ak,m2A
m2
k−1,me

mm2
k−1 , (14)

ek,u ∼ Ak,m3A
m3
k−1,me

mm3
k−1 . (15)

Now we will prove the results in two parts. First for method (6) and then for (8).
Modified method I. For method (6), it can be derived that

ek,z ∼ (1 + εkc1)ek, (16)

ek,y ∼ L1(1 + εkc1)(δkc1 + c2)e2
k, where L1 = 1

c1
, (17)

ek+1 ∼ L2(1 + εkc1)2(δkc1 + c2)e4
k, where L2 = c2(2c2

2 + c1(δkc2 − c3))
c3

1
.

(18)

Using the results of lemma (2.1) in the equations (16), (17) and (18), we have

ek,z ∼
c4

c1
(Ak−1,m2)(Ak−1,m1)(Ak−1,m)em2+m1+m+1

k−1 , (19)

ek,y ∼ −
c4c5

c1
L1(A2

k−1,m2
)(A2

k−1,m1
)(A2

k−1m)e2m2+2m1+2m+2
k−1 , (20)
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and

ek+1 ∼ −
c2

4c5

c2
1
L2(A3

k−1,m2
)(A3

k−1,m1
)(A4

k−1,m)e3m2+3m1+4m+3
k−1 .

(21)

Now comparing the equal powers of ek−1 in (13)-(19); (14)- (20) and (12)- (21), we get the following
nonlinear system

mm1 −m2 −m1 −m− 1 = 0,
mm2 − 2m2 − 2m1 − 2m− 2 = 0,
m2 − 3m2 − 3m1 − 4m− 3 = 0.

After solving these equations, we get m = 7, m2 = 4, m1 = 2. It confirms the convergence of method (6).
This shows the first part.
Modified method II. For method (8), it can be derived that

ek,z ∼ (1 + αkc1)ek, (22)

ek,y ∼ L1(1 + αkc1)(βkc1 + c2)e2
k, where L1 = 1

c1
, (23)

ek,u ∼ O1(1 + αkc1)2(βkc1 + c2)e4
k, (24)

where O1 = c2(2c2
2+c1(βkc2−c3))

c3
1

and

ek+1 ∼ O2(1 + αkc1)4(βkc1 + c2)2e8
k, (25)

where O2 = (2c2
2+c1(βkc2−c3))(2c4

2+c1c
2
1(βkc2−c3)+c2

1(−c2
3+c2c4))

c7
1c2

. Now using the results of lemma (2.2) in the
equations (22), (23), (24) and (25), we have

ek,z ∼ −
c5

c1
(Ak−1,m3)(Ak−1,m2)(Ak−1,m1)(Ak−1,m)em3+m2+m1+m+1

k−1 ,

(26)

ek,y ∼ −
c5c6

c1
L1(A2

k−1,m3
)(A2

k−1,m2
)(A2

k−1,m1
)(A2

k−1m)e2m3+2m2+2m1+2m+2
k−1 ,

(27)

ek,u ∼
(
c2

5c6

c2
1

)
O1(A3

k−1,m3
)(A3

k−1,m2
)(A3

k−1,m1
)(A4

k−1,m)e3m3+3m2+3m1+4m+3
k−1 .

(28)

and

ek+1 ∼
(
c4

5c
2
6

c4
1

)
O2(A6

k−1,m3
)(A6

k−1,m2
)(A6

k−1,m1
)(A8

k−1,m)e6m3+6m2+6m1+8m+6
k−1 .

(29)

Comparing the equal powers of ek−1 in (13)-(26); (14)- (27); (16)- (28) and (12)- (29), we get the following
nonlinear system

mm1 −m3 −m2 −m1 −m− 1 = 0,
mm2 − 2m3 − 2m2 − 2m1 − 2m− 2 = 0,
mm3 − 3m3 − 3m2 − 3m1 − 4m− 3 = 0,
m2 − 6m3 − 6m2 − 6m1 − 8m− 6 = 0.
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After solving these equations we get m = 14, m3 = 7, m2 = 4, m1 = 2. And thus proof is completed.

Note 1.: The efficiency index of the proposed method (6) along with (10) is 71/3 = 1.9129 which
is more than 41/3 = 1.5874 of method (4).
Note 2.: The efficiency index of the proposed method (8) along with (11) is 141/4 = 1.9343 which is more
than 81/4 = 1.6818 of method (5).

3 Application to Non-smooth Equations

In this section we are going to check the effectiveness of the new with memory methods (6) with (10)
(NMWM7) and (8) with (12) (NMWM14), comparing them with some recent established with memory
methods. Specifically, we consider the sixth-order method (JMWM6) introduced by Jovana in [3], sixth-
order method (LMWM6) introduced by Lotfi et al. in [4], seventh-order method (CMWM7) introduced
by Cordero et al. in [5], twelfth-order method I (LTMWM12I), II (LTMWM12II), III (LTMWM12III)
and IV (LTMWM12IV) introduced by Lotfi and Tavakoli in [6], twelfth-order method I (EMWM12I), II
(EMWM12II) and III (EMWM12III) introduced by Eftekhari in [7] and fourteenth-order I (LMWM14I)
and II (LMWM14II) introduced by Lotfi et al. in [8]. Nowadays, high-order methods are important
because numerical applications use high precision in their computations; for this reason numerical tests
have been carried out using variable precision arithmetic in MATHEMATICA 8 with 100 significant
digits. Tables 1 and 2 show the absolute error for the first, second and third iterations. To check the
theoretical order of convergence, we calculate the computational order of convergence (COC) using the
following formula:

COC = ln(|f(xn)/f(xn−1)|)
ln(|f(xn−1)/f(xn−2)|) .

We test the performances of new methods for the following two non-smooth functions:

1. f1(x) = 10(x4 + x), x < 0
= −10(x3 + x), x ≥ 0.

2. f2(x) = x(x+ 1), x < 0
= −2x(x− 1), x ≥ 0.

Table 1. Numerical results for f1(x).

Method |x1 − ξ| |x2 − ξ| |x3 − ξ| COC
x0 = −0.8, γ0 = 0.01, α0 = 0.01, ξ = −1

JMWM6 0.15732e+0 0.36669e-5 0.34403e-37 6.7250
LMWM6 0.16036e+0 0.25566e-3 0.15859e-19 5.5324
CMWM7 0.14660e-1 0.10220e-11 0.62905e-83 7.0025
NMWM7 0.49246e-1 0.78791e-8 0.30306e-55 6.9341

LTMWM12I 0.18233e+1 0.99985e+0 1.00000e+0 2.2130
LTMWM12II 0.86418e-1 0.52042e-9 0.00000e+0 11.824
LTMWM12III 0.12019e-1 0.36933e-6 0.00000e+0 12.343
LTMWM12IV 0.36954e+0 0.36954e+0 0.36954e+0 1.0042
EMWM12I 0.57265e-1 0.10604e-9 0.00000e+0 11.117
EMWM12II 0.14034e+2 0.47011e+1 0.11965e+1 1.0065
EMWM12III 0.57265e-1 0.10604e-9 0.00000e+0 11.117
LMWM14I 0.41895e-3 0.00000e+0 0.00000e+0 14.001
LMWM14II 0.32328e-2 0.00000e+0 0.00000e+0 13.993
NMWM14 0.41987e-2 0.00000e+0 0.00000e+0 13.998
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Table 2. Numerical results for f2(x).

Method |x1 − ξ| |x2 − ξ| |x3 − ξ| COC
x0 = 0.1, γ0 = 0.01, α0 = 0.01, ξ = 0

JMWM6 0.58358e-2 0.13033e-9 0.72402e-11 0.2118
LMWM6 0.58908e-2 0.27816e-5 0.25682e-11 1.8159
CMWM7 0.57743e-2 0.72552e-10 0.48367e-11 0.1944
NMWM7 0.58035e-2 0.50597e-10 0.24093e-11 0.2093

LTMWM12I 0.47739e-3 0.10092e-8 0.70720e-19 1.7894
LTMWM12II 0.49877e-3 0.10930e-8 0.82960e-19 1.7882
LTMWM12III 0.49306e-3 0.10704e-8 0.79560e-19 1.7886
LTMWM12IV 0.48311e-3 0.10313e-8 0.73864e-19 1.7891
EMWM12I 0.26019e-3 0.28620e-9 0.54599e-20 1.7990
EMWM12II 0.26008e-3 0.28586e-9 0.54466e-20 1.7990
EMWM12III 0.26019e-3 0.28620e-9 0.54599e-20 1.7990
LMWM14I 0.46693e-3 0.10356e-35 0.71493e-73 1.1380
LMWM14II 0.44276e-3 0.26703e-36 0.47536e-74 1.1364
NMWM14 0.29387e-2 0.15456e-8 0.14567e-87 11.966

4 Summary

In this study, convergence order of the existing fourth-and eighth-order derivative free methods has
been improved without any extra evaluation. As a result the efficiency is also increased. To justify the
theoretical convergence order two non-smooth functions are presented. The numerical results show that
proposed method is very useful to find an acceptable approximation of the exact solution of nonlinear
equations, specially when the function is non-differentiable.
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