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Abstract In this paper, we investigated a numeric integration based on Magnus series expansion
namely Magnus Series Expansion Method (NMG) for nonlinear Human T-Cell Lymphotropic Virus
I (HTLV-I) infection of CD4+ T-cells model. Fourth order Magnus series expansion method (NMG4)
and explicit Runge-Kutta (RK45) are used to obtain numerical solutions of HTLV-I infection of
CD4+ T-cells model. The results obtained by NMG4 and RK45 are compared.
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1 Introduction

Dynamics of Human T-Cell Lymphotropic Virus I (HTLV-I) infection of CD4+ T-cells model examined
in [1-7] is,

dT

dt
= λ− µTT − kTAT (1)

dTL
dt

= kTAT − (µL + α)TL (2)

dTA
dt

= αTL − (µA + ρ)TA (3)

dTM
dt

= ρTA + βTM (1− TM/Tmax)− µMTM (4)

with the initial conditions,

T (0) = P1, TL(0) = P2, TA(0) = P3, TM (0) = P4, (5)

where T (t), TL(t), TA(t), TM (t) denote the concentration of healthy CD4+ T-cells at time t, the concen-
tration of latently infected CD4+ T-cells, the concentration of actively infected CD4+ T-cells and the
concentration of leukemic cells at time t respectively. The parameters λ, µT and k denote the natural date
rate of CD4+ T-cells, the rate at which uninfected cells are contacted by actively infected cells, the rate
of infection of T-cells with virus from actively infected cells respectively. µL, µA, µM are blanket death
terms for latently infected, actively infected and leukemic cells respectively. α and ρ denote the rates at
which latently infected and actively infected cells become actively infected and leukemic respectively. The
rate β determines the the speed at which the saturation level for leukemia cells is reached. Tmax is the
maximal value that adult T-cell leukemia can reach [7].

The purpose of this paper is to obtain numerical solution of the system (1-4) subject to the initial
conditions (5) by using a structure preserving numerical integrator based on Magnus Expansion, namely
Magnus Expansion Method.

In 1954, Magnus [8] provided an exponential representation of the solution of a first order linear
homogeneous differential equation for a linear operator that was named Magnus Expansion after him.
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Since 1960’s the Magnus expansion has been successfully applied in various areas of physics and chemistry
(see [9] for a list of references). Iserles and Norsett (1997) [10,11] presented a practical recursive algorithm
that generated the terms of Magnus expansion. Blanes et al. (1998) [12] considered the approximate
solutions of matrix linear differential equations by matrix exponentials and the convergence issue of
Magnus and Fer expansions. They obtained the upper bounds for the convergence radius in terms of
the norm of the defining matrix of the system. Moan and Niesen (2008) [13] considered the question:
When does the series converge? The main result they obtained, established a necessary condition for
convergence.

2 Magnus Expansion Method

The linear differential equation on a matrix Lie-group is an equation of the form

Y ′ = A(t)Y, t ≥ 0, Y (0) = Y0 ∈ G, (6)

where A : G −→ R is the matrix function, G is the Lie group, g is the Lie algebra of the corresponding
Lie-group G. Magnus expressed the solution of equation (6) as the exponential of a certain function [8],

Y (t) = eΩ(t), (7)

and obtained an infinite recursive series for Ω as follows,

Ω0 ≡ 0, (8)

Ωn+1 =
∫ t

0
dexp−1

Ωn
A(ξ)dξ =

∞∑
k=0

Bk
k!

∫ t

0
adkΩn

A(ξ)dξ, n = 0, 1, 3, . . . (9)

where Bk are the Bernoulli numbers. Substituting the equation (8) into the equation (9) one can get the
Ωi for i = 0, 1, 2, 3, . . ., respectively

Ω1 =
∫ t

0
A(t1)dt1

Ω2 =
∫ t

0
A(t1)dt1 −

1
2

∫ t

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2 + . . .

Ω3 =
∫ t

0
A(t1)dt1 −

1
2

∫ t

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2

+ 1
12

∫ t

0
[
∫ t3

0
A(t1)dt1, [

∫ t3

0
A(t1)dt1, A(t3)]]dt3

+1
4

∫ t

0
[
∫ t3

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2, A(t3)]dt3 + . . .

(10)

The Magnus series expansion is,

Ω(t) =
∞∑
k=0

Hk(t), (11)

where each Hk includes exactly k + 1 integrals and k commutators [14].
Thus,

H1 =
∫ t

0
A(t1)dt1

H2 = −1
2

∫ t

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2
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H3 = 1
12

∫ t

0
[
∫ t3

0
A(t1)dt1, [

∫ t3

0
A(t1)dt1, A(t3)]]dt3

+1
4

∫ t

0
[
∫ t3

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2, A(t3)]dt3

H4 = − 1
24

∫ t

0
[
∫ t4

0
A(t1)dt1, [

∫ t4

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2, A(t4)]]dt4

− 1
24

∫ t

0
[
∫ t4

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2, [

∫ t4

0
A(t1)dt1, A(t4)]]dt4

− 1
24

∫ t

0
[
∫ t4

0
[
∫ t3

0
A(t1)dt1, [

∫ t3

0
A(t1)dt1, A(t3)]]dt3, A(t4)]dt4

−1
8

∫ t

0
[
∫ t4

0
[
∫ t3

0
[
∫ t2

0
A(t1)dt1, A(t2)]dt2, A(t3)]dt3, A(t4)]dt4.

By using multivariate Gaussian quadrature, Casas & Iserles [15] presented algorithms for third and
fourth order Magnus Expansion Method (NMG3 and NMG4) for nonlinear Lie type differential equations
as follows, Third order Magnus Expansion Method for nonlinear equations (NMG3)

u1 = 0
k1 = hA(0, Y0)

u2 = 1
2k1

k2 = hA(h2 , e
u2Y0)

u3 = 1
4(k1 + k2)

k3 = hA(h2 , e
u3Y0)

u4 = k2

k4 = hA(h, eu4Y0)

v3 = 1
6(k1 + 4k3 + k4)− 1

3 [u3, k3]− 1
12 [u4, k4]

Y1(t) = ev3Y0. (12)

Fourth order Magnus Expansion Method for nonlinear equations (NMG4)

u1 = 0
k1 = hA(tn, Yn)
Q1 = k1

u2 = 1
2Q1

k2 = hA(tn + h

2 , e
u2Y0)

Q2 = k2 − k1

u3 = 1
2Q1 + 1

4Q2

k3 = hA(tn + h

2 , e
u3Y0)

Q3 = k3 − k2

u4 = Q1 +Q2
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k4 = hA(tn + h, eu4Y0)
Q4 = k4 − 2k2 + k1

u5 = 1
2Q1 + 1

4Q2 + 1
3Q3 −

1
24Q4 −

1
48 [Q1, Q2]

k5 = hA(tn + h

2 , e
u5Y0)

Q5 = k5 − k2

u6 = Q1 +Q2 + 2
3Q5 + 1

6Q4 −
1
6 [Q1, Q2]

k6 = hA(tn + h, eu6Y0)
Q6 = k6 − 2k2 + k1

v = Q1 +Q2 + 2
3Q5 + 1

6Q6 −
1
6 [Q1, Q2 −Q3 +Q5 + 1

2Q6]

Yn+1 = evYn. (13)

3 Numerical Results

In this section, NMG4 and the fourth order explicit RungeâĂŞKutta (RK45) are applied to the Human
T-Cell Lymphotropic Virus I (HTLV-I) infection of CD4+ T-cells model by Mathematica 7. Throughout
this paper we set µT = 0.66mm3/day, µL = 0.06day, µA = 0.05day, µM = 0.005day, k = 0.5, λ = 0.6,
α = 0.004day, β = 0.0003day, ρ = 0.00004day and Tmax = 2200mm3.

dT

dt
= λ− µTT − kTAT (14)

dTL
dt

= kTAT − (µL + α)TL (15)

dTA
dt

= αTL − (µA + ρ)TA (16)

dTM
dt

= ρTA + βTM (1− TM/Tmax)− µMTM (17)

with the initial conditions,

T (0) = 1000, TL(0) = 250, TA(0) = 1.5, TM (0) = 0, (18)

By using the following transformation [16],

T = p, TL = q, TA = r, TM = s, (19)

the equation system (14-17) yields the Lie-type matrix equation,
p
q
r
s
1


′

=


−µT − kr 0 0 0 λ

kr −µL − α 0 0 0
0 α −µA − ρ 0 0
0 0 ρ β(1− s

Tmax
)− µA 0

0 0 0 0 0



p
q
r
s
1

 , (20)

where prime denotes derivative with respect to time t.

If we call


p
q
r
s
1

 as Y and


−µT − kr 0 0 0 λ

kr −µL − α 0 0 0
0 α −µA − ρ 0 0
0 0 ρ β(1− s

Tmax
)− µA 0

0 0 0 0 0

 as A, then equation

system (14-17) takes the form,
Y ′ = AY. (21)

Journal of Advances in Applied Mathematics, Vol. 1, No. 2, April 2016 101

Copyright © 2016 Isaac Scientific Publishing JAAM



By using the algorithm (13) and conducting the iteration for the time interval (0,1000) with the step
size 1

10 , the following results are obtained. Table 1-4. compare the NMG4 and RK45 solutions for the
time interval (0,20) with the step size 1

10 for the equation system (14-17). The obtained results for
T (t), TL(t), TA(t) and TM (t) are given in Fig. 1-13.

Table 1. NMG4 and RK45 solutions of T (t) for the time interval (0,20) with the step size 1
10 for the equation

system (14-17).

t NMG4 solution RK45 solution Absolute Difference
0 1000 1000 0
2 7.13582 7.13582 4.12047×10−6

4 0.096573 0.096573 6.62869 ×10−6

6 0.0723808 0.0723808 6.33054 ×10−7

8 0.0610988 0.0610988 5.42661 ×10−7

10 0.0549001 0.0549001 4.25295 ×10−7

12 0.0513063 0.0513063 3.03046 ×10−7

14 0.049261 0.049261 1.8866 ×10−7

16 0.048239 0.048239 8.85135 ×10−8

18 0.047952 0.047952 4.96236 ×10−9

20 0.0482307 0.0482307 5.93419 ×10−8

Table 2. NMG4 and RK45 solutions of TL(t) for the time interval (0,20) with the step size 1
10 for the equation

system (14-17).

t NMG4 solution RK45 solution Absolute Difference
0 250 250 0
2 796.75 796.75 7.44233 ×10−5

4 707.304 707.304 6.10276 ×10−5

6 623.37 623.37 5.38087 ×10−5

8 549.53 549.53 4.73637 ×10−5

10 484.566 484.566 4.16416 ×10−5

12 427.411 427.411 3.6581 ×10−5

14 377.125 377.125 3.21183 ×10−5

16 332.882 332.882 2.81897 ×10−5

18 293.955 293.955 2.47478 ×10−5

20 259.704 259.703 2.17017 ×10−5

Table 3. NMG4 and RK45 solutions of TA(t) for the time interval (0,20) with the step size 1
10 for the equation

system (14-17).

t NMG4 solution RK45 solution Absolute Difference
0 1.5 1.5
2 6.39744 6.39744 1.79348 ×10−7

4 11.5167 11.5167 6.37668 ×10−7

6 15.4728 15.4728 1.00891 ×10−7

8 18.453 18.453 1.29307 ×10−6

10 20.6224 20.6224 1.50456 ×10−6

12 22.1215 22.1215 1.65579 ×10−6

14 23.0698 23.0698 1.75723 ×10−6

16 23.5689 23.5689 1.81803 ×10−6

18 23.7046 23.7046 1.84408 ×10−6

20 23.5496 23.5496 1.84767 ×10−6
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Table 4. NMG4 and RK45 solutions of TM (t) for the time interval (0,20) with the step size 1
10 for the equation

system (14-17).

t NMG4 solution RK45 solution Absolute Difference
0 0 0 0
2 0.000290763 0.000290763 5.77703 ×10−11

4 0.00100986 0.00100986 2.48410 ×10−11

6 0.00208226 0.00208226 4.16242 ×10−11

8 0.00341953 0.00341953 1.33443 ×10−10

10 0.00494826 0.00494826 2.44045 ×10−10

12 0.00660783 0.00660783 3.67955 ×10−10

14 0.00834854 0.00834854 5.00714 ×10−10

16 0.01013 0.01013 6.38569 ×10−10

18 0.0119194 0.0119194 7.79346 ×10−10

20 0.0136909 0.0136909 9.17819 ×10−10

0 5 10 15 20

0.05

0.10

0.15

0.20

t

THtL

Figure 1. NMG4 solutions of T (t) for the time in-
terval (0,20) with the step size 1

10 for the equation
system (14-17)
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Figure 2. NMG4 solutions of TL(t) for the time in-
terval (0,20) with the step size 1

10 for the equation
system (14-17)
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Figure 3. NMG4 solutions of TA(t) for the time in-
terval (0,20) with the step size 1

10 for the equation
system (14-17)
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Figure 4. NMG4 solutions of TM (t) for the time in-
terval (0,20) with the step size 1

10 for the equation
system (14-17)
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Figure 5. NMG4 solutions of T (t) for the time in-
terval (0,100) with the step size 1

10 for the equation
system (14-17)
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Figure 6. NMG4 solutions of TL(t) for the time in-
terval (0,100) with the step size 1

10 for the equation
system (14-17)
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Figure 7. NMG4 solutions of TA(t) for the time in-
terval (0,100) with the step size 1

10 for the equation
system (14-17)
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Figure 8. NMG4 solutions of TM (t) for the time in-
terval (0,100) with the step size 1

10 for the equation
system (14-17)
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Figure 9. NMG4 solutions of TA(t) for the time in-
terval (0,1000) with the step size 1

10 for the equation
system (14-17)
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Figure 10. NMG4 solutions of TM (t) for the time
interval (0,1000) with the step size 1

10 for the equation
system (14-17)

104 Journal of Advances in Applied Mathematics, Vol. 1, No. 2, April 2016 

JAAM Copyright © 2016 Isaac Scientific Publishing



0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

t

THtL

Figure 11. NMG4 solutions of T (t) for the time in-
terval (0,1000) with the step size 1

10 for the equation
system (14-17)
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Figure 12. NMG4 solutions of TL(t) for the time
interval (0,1000) with the step size 1

10 for the equation
system (14-17)
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Figure 13. NMG4 solutions of T (t), TL(t), TA(t) and TM (t) for the time interval (0,1000) with the step size 1
10

for the equation system (14-17)

4 Conclusion

In this study, a reliable, efficient and structure preserving [17] numerical algorithm based on the Magnus
series expansion is applied to solve the nonlinear differential equation system (14-17) which occurs in
Human T-Cell Lymphotropic Virus I (HTLV-I) infection of CD4+ T-cells model. The obtained results by
NMG4 and the fourth order explicit RungeâĂŞKutta (RK45) are compared in Table 1-4. The obtained
results are shown in Fig. 1-13. The numerical solutions of the NMG4 are in excellent agreement with
respect to the RK45 solutions. As a result Magnus Expansion Method is an efficient and accurate tool for
Human T-Cell Lymphotropic Virus I (HTLV-I) infection of CD4+ T-cells model.
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