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1 Introduction

The theory of fractional differential equations has played an important role in the field of science and en-
gineering, since many physical systems can be represented more accurately through fractional derivative
formulation. The non-integer order differential equations have the ability to describe the real behavior
and memory effects of the systems and processes. We can use the fractional calculus for the mathematical
modeling of systems and processes in many fields of applications such as physics, chemistry, aerodynam-
ics, electrodynamics of complex medium, viscoelasticity, heat conduction, electricity mechanics, control
theory, and so forth. For more details about the fractional differential equations and their applications
we refer to [7,8,16,18,22,27].

The study of impulsive differential equations has more attention in recent years due to their applica-
tions. Most of the research papers deal with the existence of solutions for equations with instantaneous
impulsive conditions, see [1,2,3,9,19,20,24]. This type of impulsive problems are an appropriate model
for describing the processes which at certain moments change their state rapidly. Recently, E. Hernández
and D. O’regan [12] introduced a new class of impulsive differential equations. In the model presented
in [12], the impulses start abruptly at certain point of time and their actions continue with a finite time
interval. The non-instantaneous impulsive systems are more suitable to study the dynamics of evolution
processes in pharmacotheraphy. The existence of solutions for non-instantaneous impulsive fractional/
integer order differential equations has also been studied [4,6,10,26,29,30].

On the other hand, we came to know from the semigroup theory that many authors used the concept of
mild solutions inappropriately, see [5,15,23,25]. To make the concept of mild solutions more appropriate,
E. Hernández et. al [13] treated abstract differential equations with fractional derivatives in time t, based
on the well developed theory of resolvent operators for integral equations [28]. In [17] N Kosmatov studied
the initial value problems of fractional order with fractional impulsive conditions. From the result in [17]
and the application of fractional derivative we came to know that the fractional order non-instantaneous
impulsive systems were more powerful than those with the integer order impulsive conditions.

In this present work, we study the existence of fractional integro-differential equations with fractional
order non-instantaneous impulsive conditions of the form

cDαu(t) = Au(t) + f(t, u(t),Bu(t)), t ∈ (si, ti+1], i = 0, 1, · · · , N (1)
cDβu(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, · · · , N (2)

u(0) = u0 ∈ X (3)

where 0 < β < α < 1, A : D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup of bounded
linear operator (S(t))t≥0 defined on a Banach space (X, ‖.‖), 0 = t0 = s0 < t1 < s1 < · · · < sN < tN+1 =
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1 are pre-fixed numbers, the functions f : [0, 1] × X × X → X, gi : (ti, si] × X → X are continuous,
B : C([0, 1];X) → C([0, 1];X) is given by Bu(t) =

∫ t
0
B(t, s)u(s)ds and {B(t, s) : 1 ≥ t ≥ s ≥ 0} is a

set of bounded linear operator on X such that B(t, ·)u ∈ C([0, t];X) and B(·, s)u ∈ C([s, 1];X) for all
t, s ∈ [0, 1] and each u ∈ X.

We use the resolvent operator for integral equations to represents the mild solutions of the systems,
which is more appropriate, and we use the fixed point technique for condensing map to prove the existence
of results for the system (1)-(3).

2 Preliminaries

Let X and Y be Banach spaces and L(X,Y ) denote the space of all bounded linear operators with norm
‖.‖L(X,Y ). The domain of A is endowed with the graph norm ‖.‖D(A) = ‖x‖+‖Ax‖. In addition, Br(x,X)
represents the closed ball with center at x and radius r in X. The space C([0, 1];X) denotes the space
of all continuous functions with norm ‖.‖C([0,1];X) = supt∈[0,1] ‖x(t)‖X .

We introduce the space PC(X) which is formed by all the functions u : [0, 1] → X such that u(.) is
continuous at t 6= ti, u(t−i ) = u(ti) and u(t+i ) exists for all i = 1, 2, · · · , N . PC(X) is a Banach space
with respect to the norm ‖u‖PC(X) = supt∈[0,1] ‖u(t)‖. For a function u ∈ PC(X) and i ∈ {0, 1, · · · , N},
we introduce the function ũi ∈ C([ti, ti+1];X) given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti

In addition, for E ⊆ PC(X) and i ∈ {0, 1, · · · , N}, we use the notation Ẽi for the set Ẽi = {ũi : u ∈ E}.
We note the following Ascoli-Arzela type criteria.

Lemma 21. [11] A set E ⊆ PC(X) is relatively compact in PC(X) if and only if each set Ẽi is relatively
compact in C([ti, ti+1];X).

From [16], we know that Caputo fractional derivative of order α > 0 of a function u is defined as
follows:

Dαu(t) = In−αDnu(t), n = dαe,

where Iαu(t) = 1
Γ (α)

∫ t
0
(t − s)α−1u(s)ds is Riemann-Liouville fractional integral. Also, in general the

Caputo derivative is a left inverse of Iα but not a right inverse, i.e., we have Dα
t I

α
t u = u and Iαt Dα

t u(t) =
u(t)− u(0) for 0 < α < 1.

Now, we establish the equivalent integral equation of the system (1)-(3) to explore the mild solution
of the fractional non-instantaneous impulsive system (1)-(3).

Apply fractional integral on both sides of (1)-(3), we get for t ∈ (0, t1],

u(t) = u0 +
1

Γ (α)

∫ t

0

(t− s)α−1(Au(s) + f(s, u(s),Bu(t)))ds, (4)

for t ∈ (t1, s1],

u(t) = u0 +
1

Γ (β)

∫ t

t1

(t− s)β−1gi(t, u(t))ds

+
1

Γ (α)

∫ t1

0

(t1 − s)α−1(Au(s) + f(s, u(s),Bu(t)))ds,

for t ∈ (s1, t2],

u(t) = u0 +
1

Γ (β)

∫ s1

t1

(s1 − s)β−1gi(t, u(t))ds

+
1

Γ (α)

∫ t1

0

(t1 − s)α−1(Au(s) + f(s, u(s),Bu(t)))ds

+
1

Γ (α)

∫ t

s1

(t− s)α−1(Au(s) + f(s, u(s),Bu(t)))ds,
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Repeating this procedure up to i = N , we get

u(t) = u0 +
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1(Au(s) + f(s, u(s),Bu(t)))ds

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1gi(s, u(s))ds (5)

+
1

Γ (β)

∫ t

ti

(t− s)β−1gi(s, u(s))ds, t ∈ (ti, si], i = 1, · · · , N

and

u(t) = u0 +
1

Γ (β)

N∑
i=1

∫ si

ti

(si − s)β−1gi(t, u(t))ds

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1(Au(s) + f(s, u(s),Bu(t)))ds (6)

+
1

Γ (α)

∫ t

si

(t− s)α−1(Au(s) + f(s, u(s),Bu(t)))ds, t ∈ (si, ti+1], i = 1, · · · , N

Now, we consider that the following Volterra integral equation,

u(t) =
1

Γ (α)

∫ t

0

(t− s)α−1Au(s) + f(t), t ∈ [0, a] (7)

has an associated resolvent operator (S(t))t≥0 on X and f ∈ C([0, a];X).

Definition 22. [28, Definition 1.3] A family (S(t))t≥0 ⊂ B(X) of bounded linear operators in X is called
resolvent for (7)(or solution operator for (7)), if the following conditions are satisfied

(S1) S(t) is strongly continuous on R+ and S(0) = I,
(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;
(S3) The resolvent equation holds

S(t)x = x+

∫ t

0

(t− s)α−1

Γ (α)
AS(s)xds, for all x ∈ D(A), t ≥ 0.

In this paper, we always assume that (S(t))t≥0 is analytic [28, Chap. 2] and there is φA ∈ L1
loc(R+)

such that ‖S′(t)x‖ ≤ φA(t)‖x‖D(A) a.e. on R+ for each x ∈ D(A).

Definition 23. [28, Definition 1.1] A function u ∈ C([0, a];X) is called a mild solution of (7) on [0, a] if
1

Γ (α)

∫ t
0
(t− s)α−1u(s)ds ∈ C([0, a];D(A)) and

u(t) =
A

Γ (α)

∫ t

0

(t− s)α−1u(s)ds+ f(t) on [0, a]. (8)

Lemma 24. [28, Section 1.2] Suppose (7) admits a resolvent S(t) and let f ∈ C([0, a];X). Then

(i) if u ∈ C([0, a];X) is a mild solution of (7), then
∫ t
0
S(t − s)f(s)ds is continuously differentiable on

[0, a] and

u(t) =
d

dt

∫ t

0

S(t− s)f(s)ds, t ∈ [0, a];

in particular, mild solution of (7) are unique,
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(ii) if f ∈ C([0, a];D(A)) and S(t) is differentiable resolvent then

u(t) = f(t) +

∫ t

0

S′(t− s)f(s)ds, t ∈ [0, a],

is a mild solution of (7).

In the following section, we prove the existence of results for (1)-(3) by using fixed point theorem via
condensing map.

3 Existence Results

In this section, we prove the existence of mild solution of the system (1)-(3). We have already shown that
the fractional differential equations (1)-(3) are equivalent to the fractional integral equations (4)-(6).

First, we introduce the concept of mild solution for (1)-(3) using the preliminary results on integral
equation, Definition 23

Definition 31. A function u ∈ PC([0, 1];X) is said to be a mild solution of (1)-(3) on [0, 1],

(i) if 1
Γ (α)

∫ t
0
(t− s)α−1u(s)ds ∈ D(A) for all t ∈ [0, t1] and

u(t) = u0 +
A

Γ (α)

∫ t

0

(t− s)α−1u(s)ds

+
1

Γ (α)

∫ t

0

(t− s)α−1f(s, u(s),Bu(s))ds, t ∈ [0, t1],

(ii) if 1
Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − s)α−1u(s)ds ∈ D(A) for all t ∈ (ti, si], and

u(t) = u0 +
A

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1u(s)ds

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1gi(s, u(s))ds

+
1

Γ (β)

∫ t

ti

(t− s)β−1gi(s, u(s))ds, t ∈ (ti, si], i = 1, · · · , N

(iii) if 1
Γ (α)

(∑N
i=0

∫ ti+1

si
(ti+1 − s)α−1u(s)ds+

∫ t
si

(t− s)α−1u(s)ds
)
∈ D(A) for all t ∈ (si, ti+1], and

u(t) = u0 +
1

Γ (β)

N∑
i=1

∫ si

ti

(si − s)β−1gi(s, u(s))ds

+
A

Γ (α)

(
N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1u(s)ds+

∫ t

si

(t− s)α−1u(s)ds

)

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+
1

Γ (α)

∫ t

si

(t− s)α−1f(s, u(s),Bu(s))ds, t ∈ (si, ti+1], i = 1, · · · , N,
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Suppose that (4)-(6) admits a differential resolvent operator (S(t))t≥0 and if f ∈ C([0, 1];D(A)), then
from Lemma 24, we have the mild solutions of (1)-(3) as

u(t) = u0 +
1

Γ (α)

∫ t

0

(t− s)α−1f(s, u(s),Bu(s))ds

+

∫ t

0

S′(t− s)( 1

Γ (α)

∫ s

0

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ)ds, for t ∈ [0, t1],

u(t) = u0 +
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1gi(s, u(s))ds+
1

Γ (β)

∫ t

ti

(t− s)β−1gi(s, u(s))ds

+

∫ t

ti

S′(t− s)

(
u0 +

1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − τ)β−1gi(τ, u(τ))dτ

+
1

Γ (β)

∫ s

ti

(s− τ)β−1gi(τ, u(τ))dτ

)
ds, for t ∈ (ti, si],

and

u(t) = u0 +
1

Γ (β)

N∑
i=1

∫ si

ti

(si − s)β−1gi(s, u(s))ds

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+
1

Γ (α)

∫ t

si

(t− s)α−1f(s, u(s),Bu(s))ds

+

∫ t

si

S′(t− s)

(
u0 +

1

Γ (β)

N∑
i=1

∫ si

ti

(si − τ)β−1gi(τ, u(τ))dτ

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+
1

Γ (α)

∫ s

si

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ

)
ds, for t ∈ (si, ti+1],

for each i = 1, · · · , N .
For the existence of our main result, we assume the following hypotheses:

(H1) The function f : [0, 1]×X×X → D(A) is continuous and there exists a function mf ∈ C([0, 1];R+)
and a non-decreasing function W : [0,∞)→ (0,∞) such that ‖f(t, u, v)‖D(A) ≤ mf (t)W (‖u‖+ ‖v‖),
for all t ∈ [0, 1], u, v ∈ X.

(H2) The function gi : (ti, si]×X → D(A) is continuous and there exists Lgi ∈ C((ti, si];R+) such that
‖gi(t, u)− gi(t, v)‖D(A) ≤ Lgi(t)‖u− v‖, for all t ∈ (ti, si], u, v ∈ X.

Remark 32. In this work, ic denotes the inclusion map from D(A) into X and we assume that K =

supt∈[0,1]
∫ t
0
‖B(t, s)‖L(X)ds is finite.

Lemma 33. [14] Assume S(t) is compact for all t > 0. Then S′(t) is compact for all t > 0 and the
inclusion map ic : D(A)→ X is compact.
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Theorem 34. Assume that the hypotheses (H1) and (H2) are satisfied, x0 ∈ D(A) and S(t) is compact
for all t > 0. If (

tα1
αΓ (α)

‖mf‖ lim sup
r→∞

1

r
W ((1 +K)r)

)(
1 + ‖φA‖L1([0,t1];R+)

)
≤ 1

(
1 + ‖φA‖L1((ti,si];R+)

)(∑N
i=0(ti+1 − si)α

αΓ (α)
‖mf‖ lim sup

r→∞

1

r
W ((1 +K)r)

+

(∑N
i=0(si − ti)β

βΓ (β)
+

(si)
β

βΓ (β)

)
Lgir

)
≤ 1

(
1 + ‖φA‖L1((si,ti+1];R+)

)(∑N
i=0(si − ti)β

βΓ (β)
Lgir

+

(
N∑
i=0

(ti+1 − si)α

αΓ (α)
+

tαi+1

αΓ (α)

)
‖mf‖ lim sup

r→∞

1

r
W ((1 +K)r)

)
≤ 1

then there exists at least one mild solution of the problem (1)-(3).

Proof. Choose r > 0,(
‖u0‖+

tα1
αΓ (α)

‖mf‖W ((1 +K)s)

)(
1 + ‖φA‖L1([0,t1];R+)

)
≤ s

(
1 + ‖φA‖L1((ti,si];R+)

)(
‖u0‖+

∑N
i=0(ti+1 − si)α

αΓ (α)
‖mf‖W ((1 +K)s)

+

(∑N
i=0(si − ti)β

βΓ (β)
+

(si)
β

βΓ (β)

)
(Lgis+ ‖gi(·, 0)‖)

)
≤ s

(
1 + ‖φA‖L1((si,ti+1];R+)

)(
‖u0‖+

∑N
i=0(si − ti)β

βΓ (β)
(Lgis+ ‖gi(·, 0)‖)

+

(
N∑
i=0

(ti+1 − si)α

αΓ (α)
+

tαi+1

αΓ (α)

)
‖mf‖W ((1 +K)s)

)
≤ s

for all s ≥ r.
Transform the problem (1)-(3) into fixed point problem and consider the operator Γ : Br(0, PC([0, 1];X))→

PC([0, 1];X) defined by

Γu(t) =



u0 + 1
Γ (α)

∫ t
0
(t− s)α−1f(s, u(s),Bu(s))ds

+
∫ t
0
S′(t− s)(u0 + 1

Γ (α)

∫ s
0

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ)ds, t ∈ [0, t1]

u0 + 1
Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+ 1
Γ (β)

∑N
i=0

∫ si
ti

(si − s)β−1gi(s, u(s))ds+ 1
Γ (β)

∫ t
ti

(t− s)β−1gi(s, u(s))ds

+
∫ t
ti
S′(t− s)

(
u0 + 1

Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+ 1
Γ (β)

∑N
i=0

∫ si
ti

(si − τ)β−1gi(τ, u(τ))dτ

+ 1
Γ (β)

∫ s
ti

(s− τ)β−1gi(τ, u(τ))dτ
)
ds, t ∈ (ti, si],

u0 + 1
Γ (β)

∑N
i=1

∫ si
ti

(si − s)β−1gi(s, u(s))ds

+ 1
Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+ 1
Γ (α)

∫ t
si

(t− s)α−1f(s, u(s),Bu(s))ds

+
∫ t
si
S′(t− s)

(
u0 + 1

Γ (β)

∑N
i=1

∫ si
ti

(si − τ)β−1gi(τ, u(τ))dτ

+ 1
Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+ 1
Γ (α)

∫ s
si

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ
)
ds, t ∈ (si, ti+1]
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for each i = 1, · · · , N .
From the assumption on f and gi, we see that∫ t

0

‖S′(t− s)(u0 +
1

Γ (α)

∫ s

0

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ)ds‖

≤
∫ t

0

φA(t− s)‖u0‖D(A)ds+
1

Γ (α)

∫ t

0

φA(t− s)
∫ s

0

(s− τ)α−1‖f(τ, u(τ),Bu(τ))‖D(A)dτds

≤ (‖u0‖D(A) +
tα1

αΓ (α)
‖f(τ, u(τ),Bu(τ))‖D(A))‖φA‖L1([0,t1];R+)

which implies that s→
∫ t
0
S′(t− s)(u0 + 1

Γ (α)

∫ s
0

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ)ds is integrable on [0, t1].
Consider for the interval (si, ti+1], i = 1, · · · , N ,∫ t

si

‖S′(t− s)

(
u0 +

1

Γ (β)

N∑
i=1

∫ si

ti

(si − τ)β−1gi(τ, u(τ))dτ

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+
1

Γ (α)

∫ s

si

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ

)
‖ds

≤ ‖u0‖D‖φA‖+
1

Γ (β)

∫ t

si

φA(t− s)
N∑
i=1

∫ si

ti

(si − τ)β−1‖gi(τ, u(τ))‖Ddτds

+
1

Γ (α)

∫ t

si

φA(t− s)
N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1‖f(τ, u(τ),Bu(τ))‖Ddτds

+
1

Γ (α)

∫ t

si

φA(t− s)
∫ s

si

(s− τ)α−1‖f(τ, u(τ),Bu(τ))‖Ddτds

≤

(
‖u0‖D +

1

βΓ (β)

N∑
i=1

(si − ti)β‖gi(τ, u(τ))‖D

+
1

αΓ (α)
(

N∑
i=0

(ti+1 − si)α + tαi+1)‖f(τ, u(τ),Bu(τ))‖D

)
‖φA‖L1([si,ti+1];R+),

then the function s→
∫ t
si
S′(t− s)

(
u0 + 1

Γ (β)

∑N
i=1

∫ si
ti

(si − τ)β−1gi(τ, u(τ))dτ

+ 1
Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ + 1

Γ (α)

∫ s
si

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ
)
ds is integrable.

Finally, consider for the interval (ti, si], i = 1, · · · , N∫ t

ti

‖S′(t− s)

(
u0 +

1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − τ)β−1gi(τ, u(τ))dτ +
1

Γ (β)

∫ s

ti

(s− τ)β−1gi(τ, u(τ))dτ

)
‖ds

≤ ‖u0‖D‖φA‖+
1

Γ (α)

∫ t

ti

φA(t− s)
N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1‖f(τ, u(τ),Bu(τ))‖Ddτds

+
1

Γ (β)

∫ t

ti

φA(t− s)
N∑
i=0

∫ si

ti

(si − τ)β−1‖gi(τ, u(τ))‖Ddτds

+
1

Γ (β)

∫ t

ti

φA(t− s)
∫ s

ti

(s− τ)β−1‖gi(τ, u(τ))‖Ddτds
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≤

(
‖u0‖D +

1

αΓ (α)

N∑
i=0

(ti+1 − si)α‖f(τ, u(τ),Bu(τ))‖D

+
1

βΓ (β)
(
N∑
i=0

(si − ti)β + sβi ‖gi(τ, u(τ))‖D

)
‖φA‖L1((ti,si];R+)

From this result, we see that s→
∫ t
ti
S′(t− s)

(
u0 + 1

Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+ 1
Γ (β)

∑N
i=0

∫ si
ti

(si − τ)β−1gi(τ, u(τ))dτ + 1
Γ (β)

∫ s
ti

(s− τ)β−1gi(τ, u(τ))dτ
)
ds is integrable on [si, t] for

all t ∈ (ti, si]. This implies that Γ is well defined.
Our aim to prove that Γ is a condensing map from Br(0, PC(X)) into Br(0, PC(X)). First we show

that Γ has values in Br(0, PC(X)).
Let u ∈ Br(0, PC(X)). For i ≥ 1 and t ∈ (si, ti+1], we get

‖Γu(t)‖ ≤ ‖u0‖+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1(‖gi(s, u(s))− gi(s, 0)‖+ ‖gi(s, 0)‖)ds

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1‖f(s, u(s),Bu(s))‖ds

+
1

Γ (α)

∫ t

si

(t− s)α−1‖f(s, u(s),Bu(s))‖ds+

∫ t

si

‖S(t− s)‖ (‖u0‖

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − τ)β−1(‖gi(τ, u(τ))− gi(τ, 0)‖+ ‖gi(τ, 0)‖)dτ)

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1‖f(τ, u(τ),Bu(τ))‖dτ

+
1

Γ (α)

∫ s

si

(s− τ)α−1‖f(τ, u(τ),Bu(τ))‖dτ
)
ds

≤ ‖u0‖+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1(‖Lgi‖‖u‖+ ‖gi(·, 0)‖)ds

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1mf (s)W (‖u‖+ ‖Bu‖)ds

+
1

Γ (α)

∫ t

si

(t− s)α−1mf (s)W (‖u‖+ ‖Bu‖)ds

+

∫ t

si

φA(t− s)

(
‖u0‖+

1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1(‖Lgi‖‖u‖+ ‖gi(·, 0)‖)dτ

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1mf (τ)W (‖u‖+ ‖Bu‖)dτ

+
1

Γ (α)

∫ s

si

(s− τ)α−1mf (τ)W (‖u‖+ ‖Bu‖)dτ
)

≤
(
1 + ‖φA‖L1((si,ti+1];R+)

)(
‖u0‖+

∑N
i=0(si − ti)β

βΓ (β)
(Lgir + ‖gi(·, 0)‖)

+

(
N∑
i=0

(ti+1 − si)α

αΓ (α)
+

tαi+1

αΓ (α)

)
‖mf‖W ((1 +K)r)

)
≤ r
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which implies that ‖Γu‖C((si,ti+1];X) ≤ r for every i ≥ 1.
Next, for i ≥ 1 and t ∈ (ti, si], we get

‖Γu(t)‖ ≤ ‖u0‖+
1

αΓ (α)

N∑
i=0

(ti+1 − si)α‖f(s, u(s),Bu(s))‖

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1(‖gi(s, u(s))− gi(s, 0)‖+ ‖gi(s, 0)‖)ds

+
1

Γ (β)

∫ t

ti

(t− s)β−1(‖gi(s, u(s))− gi(s, 0)‖+ ‖gi(s, 0)‖)ds

+

∫ t

ti

φA(t− s)

(
‖u0‖+

1

αΓ (α)

N∑
i=0

(ti+1 − si)α‖f(τ, u(τ),Bu(τ))‖

+
1

Γ (β)

N∑
i=0

∫ si

ti

(si − τ)β−1(‖gi(τ, u(τ))− gi(τ, 0)‖+ ‖gi(τ, 0)‖)dτ

+
1

Γ (β)

∫ s

ti

(s− τ)β−1(‖gi(τ, u(τ))− gi(τ, 0)‖+ ‖gi(τ, 0)‖)dτ
)
ds

≤
(
1 + ‖φA‖L1((ti,si];R+)

)(
‖u0‖+

∑N
i=0(ti+1 − si)α

αΓ (α)
‖mf‖W (‖u‖+ ‖Bu‖)

+

(∑N
i=0(si − ti)β

βΓ (β)
+

(t− ti)β

βΓ (β)

)
(Lgi‖u‖+ ‖gi(·, 0)‖)

)

≤
(
1 + ‖φA‖L1((ti,si];R+)

)(
‖u0‖+

∑N
i=0(ti+1 − si)α

αΓ (α)
‖mf‖W ((1 +K)r)

+

(∑N
i=0(si − ti)β

βΓ (β)
+

(si)
β

βΓ (β)

)
(Lgir + ‖gi(·, 0)‖)

)
≤ r

which implies that ‖Γu‖C((ti,si];R+) ≤ r.
In the similar way, we can proceed for t ∈ [0, t1],

‖Γu‖C((0,t1];R+) ≤
(
‖u0‖+

tα1
αΓ (α)

‖mf‖W ((1 +K)r)

)(
1 + ‖φA‖L1((0,t1];R+)

)
≤ r

From the above three inequalities, we infer that ‖Γu(t)‖PC(X) ≤ r and Γ has values in Br(0, PC(X)).
To carry out the remaining proof, we introduce the decomposition map Γ = Γ1 + Γ2 + Γ3, where

Γi : PC(X)→ PC(X), i = 1, 2, 3 are given by

‖Γ1‖ =



u0 +
∫ t
0
S′(t− s)u0ds, t ∈ [0, t1]

u0 + 1
Γ (β)

∑N
i=0

∫ si
ti

(si − s)β−1gi(s, u(s))ds

+
∫ t
si
S′(t− s)

(
u0 + 1

Γ (β)

∑N
i=0

∫ si
ti

(si − τ)β−1gi(τ, u(τ))dτ
)
ds, t ∈ (si, ti+1]

u0 + 1
Γ (β)

∑N
i=0

∫ si
ti

(si − s)β−1gi(s, u(s))ds+ 1
Γ (β)

∫ t
ti

(t− s)β−1gi(s, u(s))ds

+
∫ t
si
S′(t− s)

(
u0 + 1

Γ (β)

∑N
i=0

∫ si
ti

(si − τ)β−1gi(τ, u(τ))dτ

+ 1
Γ (β)

∫ s
ti

(s− τ)β−1gi(τ, u(τ))dτ
)
ds, t ∈ (ti, si],
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‖Γ2‖ =


1

Γ (α)

∫ t
0
(t− s)α−1f(s, u(s),Bu(s))ds, t ∈ [0, t1],

1
Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − s)α−1f(s, u(s),Bu(s))ds

+ 1
Γ (α)

∫ t
si

(t− s)α−1f(s, u(s),Bu(s))ds, t ∈ (si, ti+1]
1

Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − s)α−1f(s, u(s),Bu(s))ds, t ∈ (ti, si],

‖Γ3‖ =



∫ t
0
S′(t− s) 1

Γ (α)

∫ s
0

(s− τ)α−1f(τ, u(τ),Bu(τ))dτds, t ∈ [0, t1],∫ t
si
S′(t− s)

(
1

Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτ

+ 1
Γ (α)

∫ s
si

(s− τ)α−1f(τ, u(τ),Bu(τ))dτ
)
, t ∈ (si, ti+1]∫ t

ti
S′(t− s) 1

Γ (α)

∑N
i=0

∫ ti+1

si
(ti+1 − τ)α−1f(τ, u(τ),Bu(τ))dτds, t ∈ (ti, si],

for all i = 1, · · · , N.
Now we divide the remainder of the proof into the following steps:
Step 1: The map Γ1 is a contraction on Br(0, PC(X)).
For u, v ∈ Br(0, PC(X)), i ∈ {1, · · · , N} and t ∈ (si, ti+1], we get

‖Γ1u(t)− Γ1v(t)‖ ≤ 1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1‖gi(s, u(s))− gi(s, v(s))‖ds

+

∫ t

si

φA(t− s)

(
1

Γ (β)

N∑
i=0

∫ si

ti

(si − τ)β−1‖gi(τ, u(τ))− gi(τ, v(τ))‖dτ

)

≤ 1

βΓ (β)

N∑
i=0

(si − ti)β‖Lgi‖(1 + ‖φA‖L1((si,ti+1];R+))‖u− v‖PC(X)

Similarly for t ∈ (ti, si],

‖Γ1u(t)− Γ1v(t)‖ ≤ 1

Γ (β)

N∑
i=0

∫ si

ti

(si − s)β−1‖gi(s, u(s))− gi(s, v(s))‖ds

+
1

Γ (β)

∫ t

ti

(t− s)β−1‖gi(s, u(s))− gi(s, v(s))‖ds

+

∫ t

si

φA(t− s)

(
1

Γ (β)

N∑
i=0

∫ si

ti

(si − τ)β−1‖gi(τ, u(τ))− gi(τ, v(τ))‖dτ

+
1

Γ (β)

∫ s

ti

(s− τ)β−1‖gi(τ, u(τ))− gi(τ, v(τ))‖dτ
)
ds

≤

(∑N
i=0(si − ti)β

βΓ (β)
+

sβi
βΓ (β)

)
‖Lgi‖(1 + ‖φA‖L1((ti,si];R+))‖u− v‖PC(X)

which implies that ‖Γ1u(t)− Γ1v(t)‖ ≤ Ω‖u− v‖PC(X), where

Ω = max

{
1

βΓ (β)

N∑
i=0

(si − ti)β‖Lgi‖(1 + ‖φA‖L1((si,ti+1];R+))),(∑N
i=0(si − ti)β

βΓ (β)
+

sβi
βΓ (β)

)
‖Lgi‖(1 + ‖φA‖L1((ti,si];R+))

}
< 1.

Hence, Γ1 is a contraction on Br(0, PC([0, 1];X)).
Step 2: The map Γ2 is completely continuous
From the properties of the function f(.), it is easy to see that Γ2 is continuous.
Next, we show that Γ2 is a compact operator on Br(0, PC([0, 1];X)).
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Consider, for u ∈ Br(0, PC(X)) and t ∈ (si, ti+1],

‖Γ2u(t+ h)− Γ2u(t)‖ ≤ 1

Γ (α)

∫ t

si

(
(t− s)α−1 − (t+ h− s)α−1

)
‖f(s, u(s),Bu(s))‖ds

+
1

Γ (α)

∫ t+h

t

(t+ h− s)α−1‖f(s, u(s),Bu(s))‖ds

≤ 1

αΓ (α)
((t− si)α − (t+ h− si)α)‖f(s, u(s),Bu(s))‖

+
1

αΓ (α)
hα‖f(s, u(s),Bu(s))‖

≤ 2

αΓ (α)
hα‖f(s, u(s),Bu(s))‖,

In the same way we can get for t ∈ (ti, si],

‖Γ2u(t+ h)− Γ2u(t)‖ = 0

and for t ∈ [0, t1],

‖Γ2u(t+ h)− Γ2u(t)‖ ≤ 2

αΓ (α)
hα‖f(s, u(s),Bu(s))‖

which implies that ˜Γ2Br(0, PC(X)) is equicontinuous subset of C([ti, ti+1];X).
Next, we show that the set {Γ2u(s) : u ∈ Br(0, PC([0, 1];X)), s ∈ [0, 1]} is relatively compact in X.
Let si < ε < t ≤ ti+1. From the mean value theorem for the Bochner integral (see [21, Lemma 2.1.3]),

for u ∈ Br(0, PC(X)), we see that

Γ2u(t) =
1

Γ (α)

∫ t−ε

si

f(s, u(s),Bu(s))

(t− s)α−1
ds+

1

Γ (α)

∫ t

t−ε

f(s, u(s),Bu(s))

(t− s)α−1
ds

+
1

Γ (α)

N∑
i=0

∫ ti+1

si

f(s, u(s),Bu(s))

(t− s)α−1
ds

∈ B r1ε
α

αΓ (α)

(0, X) +Bd1(0, X)

+
(t− ε− si)

Γ (α)
co({(t− s)α−1f(s, u(s),Bu(s)) : s ∈ [si, t− ε]})

where d1 =
r1

∑N
i=0(ti+1−si)α
αΓ (α) . Since the map ic is compact and f ∈ C([0, 1];D), from the above inclusion

we obtain that

{Γ2u(t) : u ∈ Br(0, PC(X)), s ∈ [ε, ti+1]} ⊂ B r1ε
α

αΓ (α)

(0, X) +Bd1(0, X) +Kε,

where r1 = ‖mf‖C((si,ti+1];R+)W ((1 +K)r) and Kε is a compact subset of X. Moreover, by using

{Γ2u(t) : u ∈ Br(0, PC(X)), s ∈ [si, ε]} ⊂ B r1ε
α

αΓ (α)

(0, X) +Bd1(0, X),

we find that

{Γ2u(t) : u ∈ Br(0, PC(X)), s ∈ (si, ti+1]}
⊂ B r1ε

α

αΓ (α)

(0, X) +Bd1(0, X) ∪B r1ε
α

αΓ (α)

(0, X) +Bd1(0, X) +Kε

which gives relatively compact in X. Since Bd1(0, X) is relatively compact and
Diam(B r1ε

α

αΓ (α)

(0, X))→ 0 as ε→ 0.
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From the above procedure we can show that Γ2 is relatively compact for the remaining intervals (0, t1]
and (ti, si].

These results can be used to conclude that Γ2 is completely continuous.
Step 3: The set {Γ3u(t) : u ∈ Br(0, PC([0, 1];X))} is relatively compact in X for all t ∈ [0, 1].
Let si < ε < t ≤ ti+1 and r2 = ‖mf‖C([si,ti+1];R+)W ((1+K)r)‖φA‖L1((t−ε,t];R+). The set U = {Γ2u(t) :

u ∈ Br(0, PC(X))} is relatively compact in X, which is according to Step 2. If u ∈ Br(0, PC([0, 1];X)),
from the mean value theorem for the Bochner integral we get

Γ3u(t) =

∫ t−ε

si

S′(t− s)Γ2u(s)ds+

∫ t

t−ε
S′(t− s)Γ2u(s)ds

⊂ (t− ε− si)co({S′(s)x : s ∈ [ε, t], x ∈ Ū}) +Bd2(0, X)

where d2 =
r2(ε

α+
∑N
i=0(ti+1−si)α)
αΓ (α) and hence, {Γ3u(t) : u ∈ Br(0, PC([0, 1];X))} ⊂ Kε + Bd2(0, X) is

relatively compact in X, since Kε is compact and Diam(Bd2(0, X))→ 0 as ε→ 0.
Also Γ3 is relatively compact in X for (0, t1] and for (ti, si], i = 1, · · · , N.

In the sequel we need to prove that the set of functions ˜Γ3Br(0, PC(X)) is an equicontinuous subset
of C([ti, ti+1];X).

Following from Step 2, it is obvious that ˜Γ3Br(0, PC(X)) is right equicontinuous on (ti, si) and left
equicontinous on (ti, si].

Assume that t ∈ (si, ti+1), i = 0, 1, · · · , N and S′ is continuous such that ‖S′(t) − S′(s)‖ < ε. For
u ∈ Br(0, PC([0, 1];X)) and let 0 < h < ε such that t < t+ h, we get

‖Γ3u(t+ h)− Γ3u(t)‖

≤
∫ t

si

‖S′(t+ h− s)− S′(t− s)‖

(
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1‖f(τ, u(τ),Bu(t))‖dτ

+
1

Γ (α)

∫ s

si

(s− τ)α−1‖f(τ, u(τ),Bu(t))‖dτ
)
ds

+

∫ t+h

t

‖S′(t+ h− s)‖

(
1

Γ (α)

N∑
i=0

∫ ti+1

si

(ti+1 − τ)α−1‖f(τ, u(τ),Bu(t))‖dτ

+
1

Γ (α)

∫ s

si

(s− τ)α−1‖f(τ, u(τ),Bu(t))‖dτ
)
ds

≤ εti+1

αΓ (α)

(
N∑
i=0

(ti+1 − si)α + tαi+1

)
‖mf‖W ((1 +K)r)

+
1

αΓ (α)

(
N∑
i=0

(ti+1 − si)α + tαi+1

)
‖mf‖W ((1 +K)r)‖φA‖L1([0,h];R+)

which implies that ˜Γ3Br(0, PC(X)) is right equicontinuous at t ∈ (si, ti+1). In a similar way we can
prove that ˜Γ3Br(0, PC(X)) is left equicontinuous at t ∈ (si, ti+1] and right equicontinuous at si. Thus,

˜Γ3Br(0, PC(X)) is equicontinuous on (si, ti+1].

Next, from the above argument we can easily say that ˜Γ3Br(0, PC(X)) is equicontinuous on (0, t1].
Hence from all the above all intervals we conclude that ˜Γ3Br(0, PC(X)) is a equicontinuous subset of
C([ti, ti+1];X).

From the above steps and Lemma 21 it follows that Γ1 is contraction, Γ2 and Γ3 are completely
continuous. Thus, Γ is a condensing operator from Br(0, PC(X)) into Br(0, PC(X)) and from [21,
Theorem 4.3.2] we infer that there exists a mild solution for the problem (1)-(3).
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4 Application

To study the existence of solutions for the partial differential equations with fractional temporal deriva-
tive, we may take the space X = L2([0, π]) and let A be the operator given by Ax = x′′ with domain
D(A) = {x ∈ X : x′′ ∈ X,x(0) = x(π) = 0}. It is well-known that A is the infinitesimal generator of an
analytic semigroup (T (t))t≥0 on X.

Now, consider the following partial fractional impulsive and nonlocal equations:

cDαu(t, ζ) =
∂2

∂ζ2
u(t, ζ) + a1(t) + a2(u(t, ζ)) (9)

+

∫ t

0

a3(t− s)u(s, ζ), (t, ζ) ∈ ∪Ni=1(si, ti+1]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, a], (10)
u(0, ζ) = z(ζ) ζ ∈ [0, π], (11)

cDαu(t, ζ) = Hi(t, u(t, ζ)), ζ ∈ [0, π], t ∈ (ti, si], i = 1, · · · , N. (12)

where 0 = t0 = s0 < t1 < s1 < · · · < tN < sN < tN+1 = 1 are fixed real numbers,
α ∈ (0, 1), z ∈ X, aj ∈ C([0, 1]× R+;R+), j = 1, 2, 3, Hi ∈ C((ti, si]× R+;R+) for all i = 1, · · · , N .

The operator A has discrete spectrum with eigenvalues of the form −n2, n ∈ N, and corresponding
normalized eigenfunctions given by zn(ζ) = ( 2

π )1/2 sin(nζ). In addition, {zn : n ∈ N} is an orthonormal
basis forX, T (t)x =

∑∞
n=1 exp−n

2t < x, zn > zn for all x ∈ X and for every t > 0. From these expressions
it follows that (T (t))t≥0 is a uniformly bounded compact semigroup, so that, R(λ,A) = (λ − A)−1 is a
compact operator for all λ ∈ ρ(A).

To represent the fractional impulsive equations (9)-(12) in the abstract form (1)-(3), we consider the
functions B(t, s) : X → X, B : C([0, 1];X)→ X, f : [0, 1]×X2 → X, and hi : (ti, si]×X → X defined
by B(t, s)x = a3(t− s)x, Bu(t) =

∫ t
0
B(t, s)u(s)ds and

f(t, u,Bu)(ζ) = a1(ζ) + a2(u(t, ζ)) + Bu(t),

gi(t, u)(ζ) = Hi(t, u(t, ζ))

and B(t, s) and B(.) are bounded linear operators.
Next, from [28, Chap. 2] we know that the integral equation,

u(t) =
1

Γ (α)

∫ t

0

(t− s)α−1Au(s)ds, t ∈ [0, t1],

has an associated analytic resolvent operator (S(t))t≥0 on X which is given by

S(t) =

{
1

2πi

∫
Γr,θ

eλt(λα −A)−1λα−1dλ, t ∈ (0, t1],

I, t = 0,
(13)

Similarly, for the integral equation,

u(t) =
N∑
i=0

1

Γ (α)

∫ ti+1

si

(ti+1 − s)α−1Au(s)ds+
1

Γ (α)

∫ t

0

(t− s)α−1Au(s)ds, t ∈ (si, ti+1],

has an associated analytic resolvent operator (S(t))t≥0 on X which is given by

S(t) =
1

2πi

∫
Γr,θ

eλt(λα −A)−1λα−1

(
1 +A

N∑
i=0

∫ ti+1

si

(ti+1 − s)α−1S(s)ds

)
dλ (14)

Finally, we can easily get the resolvent operator for the integral equation

u(t) =
N∑
i=0

1

Γ (α)

∫ ti+1

si

(ti+1 − s)α−1Au(s)ds,

56 Journal of Advances in Applied Mathematics, Vol. 1, No. 1, January 2016

Copyright © 2016 Isaac Scientific Publishing JAAM



where Γr,θ denotes the contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for some
θ ∈ (π, π/2). The given resolvent operator S(t) is compact for all t > 0, since (λ−A)−1 is compact.

Now, u ∈ PC(X) is a mild solution of (9)-(12), if u(.) is a mild solution of the associated abstract
problem (1)-(3). Suppose that the functions f, gi satisfy the hypotheses (H1)-(H2), there exists a mild
solution u ∈ PC(X) of (9)-(12) in view of Theorem 34.
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