
46

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

An Efficient Component Based Software Architecture Model Using Hybrid PSO

– CS Algorithm

Prashanth Kumar Bolisetty1* , Prasanth Yalla2
1Shinas College of Technology, Oman

2KL University, India
*Corresponding author’s Email: bprashanthkumar0779@gmail.com

Abstract: The Software architecture is generated by using the interfaces and structural components of the software
systems in an organization. Software architecture, along with the structure and behavior, also concerned with
functionality, performance, reuse, economic and technological constraints etc. In software its components are related
to one another in large variety of ways. The main intension of our research is to build the component based software
architecture with adaptive configurations using Particle Swarm Optimization and clustering techniques. Building
architecture is an inspiring progression. In this paper, we will propose Hybrid Particle Swarm Optimization (PSO) –
Cuckoo Search (CS) algorithm for developing an adaptive software architecture based on the Process control model.
Initially, the components are selected based on testcases generated. After that, adaptive architecture will be built by
using PSO - CS on the basis of clustering results. The architecture is built along with its functional requirements,
responsibility and evaluation. The functional requirements are given as graphs of functional responsibilities where
modifiability, efficiency and traceability are considered as the quality attributes. The proposed method produced
solution with increased quality and better metric values.

Keywords: Component architecture; Reliability; Computational time; hybrid Particle swarm optimization; cuckoo
search

1. Introduction

During the past decade, self-adaptation has
progressively become a fundamental concern in the
engineering of software systems. This helps to
reduce the high costs of software maintenance and
evolution and to regulate the satisfaction of
functional and extra-functional requirements under
varying conditions. Even with wide investigation of
adaptation mechanisms in the engineering of
dynamic software systems, their application to real
problems is still limited due to lack of methods for
validation and verification of complex, adaptive,
nonlinear applications [1]. A major challenge in
self-adaptive systems one has to face is to provide
guarantees about the required runtime qualities. A
self-adaptive system comprises of two parts: the
managed system that deals with the domain
functionality and the managing system that monitors
the managed system. This is adapted to achieve
particular quality objectives. The main underlying

idea behind self-adaptation is complexity
management through separation of concerns [2].

The Dynamic adaptive systems capabilities
include automotive systems, telecommunication
systems, environmental monitoring, and power grid
management systems. It is to be enabled to tolerate a
range of environmental conditions and contexts, but
the exact nature of these contexts remains vague [3].
The need for adaptability arises more at the
“wireless edge” of the Internet, where mobile
devices balance several conflicting and possibly
cross-cutting concerns, including quality of service
on wireless connections, changing security policies,
and energy consumption. An adaptation can be
termed safe if (1) it does not violate dependency
relationships and (2) if it does not interrupt
communication either within a component or
between components that would potentially yield
erroneous or unexpected results. If adaptive
software mechanisms are not grounded in
formalisms that codify invariants and other
properties that it must hold during decomposition,

47

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

the resulting systems will be prone to errant
behavior [4]. Software architecture design is of
supreme importance to the software development
life-cycle and is used to represent and communicate
the system structure and behavior to all of a
system’s stakeholders. In addition to this,
architecture can facilitate stakeholders in
understanding architecture design decisions and
design rationale, further promoting a communication
and understanding, reuse and efficient evolution [5].

Software architecture (SA) is given great
importance to the software development life-cycle
which is used to represent and communicate the
system structure and behavior to all of its
stakeholders with various concerns. Additionally,
SA facilitates stakeholders to understand design
decisions and rationale, thereby promoting reuse and
efficient evolution. One of the major issues to be
tackled in software systems development today is
systematic SA restructuring to accommodate new
requirements due to the new market opportunities,
technologies, platforms and frameworks [6]. The
ultimate goal of software engineering is to enable
automatically produce software systems based on
their requirements. At present, we pass the synthesis
of executable programs, and concentrate on the
automated derivation of architectural designs of
software systems. This is made possible because
architectural design largely means the application of
known standard solutions in a combination that
optimizes the quality properties of the software
system [7].

The software architecture of a system is the set
of structures needed to reason about the system,
which comprises software elements, relations among
them, and properties of both. The term also refers to
documentation of a system's software architecture.
Documenting software architecture facilitates
communication between stakeholders, documents
early decisions about high-level design, and allows
the reuse of design components and patterns
between projects [8]. Software programming is a
hard design task, mainly due to the complexity
involved in the process. Nowadays this complexity
is increasing to levels in which reuse of previous
software designs are very useful to short cut the
development time [9].

The various benefits of the software architecting
are as given below

• Architecting helps manage complexity.
• Architecting ensures architectural integrity.
• Architecting reduces maintenance costs.
• Architecting provides a basis for reuse [10].

The major design task in building enterprise
applications is to design good software architecture.
During recent years, the notion of software
architecture has emerged as the appropriate level for
dealing with software quality. One of the major
issues in software systems development today is
quality. A quality attribute is a nonfunctional
characteristic of a component or a system [11].
Software must possess the qualities like Safety,
Reliability, Availability, Cost, Maintainability,
Performance or Response, Time, Energy
consumption [12]. There are some recent attempts to
establish software science as a foundation of
software engineering. This may promote more
analytical reasoning about software architecture, if it
becomes popular. Software architectural design
would benefit from analytical reasoning with
scientific foundations. Importance of software
architecture in the software design process is
generally accepted among practitioners [13].

The rest of the paper is organized as follows:
Section 2 gives a brief discussion on various recent
researches done on the software design field.
Section 3 explains about the proposed technique for
software architecture using HPSO. Section 4 gives
the detailed explanation about the results obtained
and the section 5 concludes our proposed
methodology.

2. Related Research
Architecture-based management approaches

promote the use of architectural models. They serve
as guidelines for various management functions.
Some of the recent research works done by the
researchers are given in this section

Over the past decade the dynamic capabilities of
self-adaptive software-intensive systems have
proliferated and improved significantly. To advance
the field of self-adaptive and self-managing systems
further and to leverage the benefits of self-
adaptation, there was a need to develop methods and
tools to assess and possibly certify adaptation
properties of self-adaptive systems, not only at
design time but also, and especially, at run-time. N.
M. Villegas et al [1] proposed a framework for
evaluating quality-driven self-adaptive software
systems. Their framework was based on a survey of
self-adaptive system papers and a set of adaptation
properties derived from control theory properties.
They also established a mapping between those
properties and software quality attributes. Thus,
corresponding software quality metrics can then be
used to assess adaptation properties.

48

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

Software validation and verification (V&V)
ensures that software products satisfy user
requirements and meet their expected quality
attributes throughout their lifecycle. While high
levels of adaptation and autonomy provide new
ways for software systems to operate in highly
dynamic environments, developing certifiable V&V
methods for guaranteeing the achievement of self-
adaptive software goals is one of the major
challenges facing the entire research field. G.
Tamura et al. [14] proposed a paper in which they
have (i) analyzed fundamental challenges and
concerns for the development of V&V methods and
techniques that provide certifiable trust in self-
adaptive and self-managing systems; and (ii)
presented a proposal for including V&V operations
explicitly in feedback loops for ensuring the
achievement of software self-adaptation goals. Both
of those contributions provide valuable starting
points for V&V researchers to help advance this
field.

Self-adaptation has been widely recognized as
an effective approach to deal with the increasing
complexity and dynamicity of modern software
systems. One major challenge in self-adaptive
systems was to provide guarantees about the
required runtime qualities, such as performance and
reliability. Existing research employs formal
methods either to provide guarantees about the
design of self-adaptive systems, or to perform
runtime analysis supporting adaptations for
particular quality goals. Yet, work products of
formalization were not exploited over different
phases of the software life cycle. D. Weyns [2]
proposed a paper, in which they have argued for an
integrated formally founded approach to validate the
required software qualities of self-adaptive systems.
That approach integrated three activities: (1) model
checking of the behavior of a self-adaptive system
during design, (2) model-based testing of the
concrete implementation during development, and
(3) runtime diagnosis after system deployment.
They have illustrated that approach with excerpts of
an initial study and discuss for each activity research
challenges ahead.

Quality of software is one of the major issues in
software intensive systems and it is important to
analyze it as early as possible. An increasingly
important quality attribute of complex software
systems is adaptability. Software architecture for
adaptive software systems should be flexible enough
to allow components to change their behaviors
depending upon the environmental and stakeholders'
changes and goals of the system. Evaluating
adaptability at software architecture level to identify

the weaknesses of the architecture and further to
improve adaptability of the architecture are very
important tasks for software architects today. P.
Tarvainen [15] proposed an Adaptability Evaluation
Method (AEM) that defines, before system
implementation, how adaptability requirements can
be negotiated and mapped to the architecture, how
they can be represented in architectural models, and
how the architecture can be evaluated and analyzed
in order to validate whether or not the requirements
are met. AEM fills the gap from requirements
engineering to evaluation and provides an approach
for adaptability evaluation at the software
architecture level. In that paper AEM was described
and validated with a real-world wireless
environment control system. Furthermore,
adaptability aspects, role of quality attributes, and
diversity of adaptability definitions at software
architecture level are discussed.

Over a period of some 20 years, different aspects
of co-management (the sharing of power and
responsibility between the government and local
resource users) have come to the forefront. F.
Berkes [16] proposed a paper which focused on a
selection of these: knowledge generation, bridging
organizations, social learning, and the emergence of
adaptive co-management. Co-management can be
considered a knowledge partnership. Different levels
of organization, from local to international, have
comparative advantages in the generation and
mobilization of knowledge acquired at different
scales. Bridging organizations provide a forum for
the interaction of these different kinds of knowledge,
and the coordination of other tasks that enable co-
operation: accessing resources, bringing together
different actors, building trust, resolving conflict,
and networking. Social learning was one of those
tasks, essential both for the co-operation of partners
and an outcome of the co-operation of partners. It
occurs most efficiently through joint problem
solving and reflection within learning networks.
Through successive rounds of learning and problem
solving, learning networks can incorporate new
knowledge to deal with problems at increasingly
larger scales, with the result that maturing co-
management arrangements become adaptive co-
management in time.

3. Component Architecture for Software
Adaption

If architecture can be termed as the set of plan
resolutions, then texting the architecture reduces the
documentation of the collection of plan resolutions.
However, this does not appear to be practical. Our

49

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

general position is to get at the outcome of the plan
resolutions, with the results selected, but the logic
behind them is inaccessible. Most of the logic
behind the solutions generally vanishes for good, or
is stored only in the brains of the few people linked
with them, if they are still around. Therefore, the
logic behind a solution is not acquired definitely.
But it is implied data, indispensable for the solution
selected, but not recorded.

The data containing the pros and cons of
software structural design and its background is
called Architectural Knowledge and has caused a
standard modification in the software architecture
community. The most significant kind of AK is
architectural decisions, which moulds software
architecture. Supplementary kinds of AK is
comprised of notions from architectural plan, needs
engineering, people and the growth activity.
Software architecture is normally the structure of
modules in a program or system, their inter relations,
and the doctrines and plan strategies. They help to
manage the plan and growth in due course.

3.1. Proposed Methodology for Software
Architecture

Our research work intends to build the
component based software architecture with
adaptive configurations using Particle Swarm
Optimization and clustering techniques. Since
Building architecture is an inspiring progression, in
this paper, we will propose Hybrid Particle Swarm
Optimization (PSO) – Cuckoo Search (CS)
algorithm. This is used for developing an adaptive
software architecture based on the Process control
model. In the initial stage, the components selection
is done based on test cases. Subsequently, adaptive
architecture will be built using PSO - CS on the
basis of clustering results. The architecture building
is enabled with its functional requirements,
responsibility and evaluation. The basic block
diagram of our proposed component based software
architecture model is shown in the figure 1 below:

Figure.1 Flow diagram of our proposed method

3.2. Component Optimization with the Aid of
HPSO

PSO designing was done on the basis of the
social behavior of birds in a flock. In PSO, each
particle soars in the exploration space with a
velocity adjusted by its own flying memory and also
by its companion’s flying experience. It is a fitness
function which determines the task value of each
particle. PSO is an evolutionary algorithm which is
very similar to that of the Genetic Algorithm. Here a
particular scheme is initiated by considering a
population of arbitrary solution. Here we have
incorporated the Cuckoo Search algorithm into PSO
which helps to obtain better optimization result than
in normal PSO.

In HPSO along with each solution, arbitrary
velocity is also assigned. This forms a particle
which monitors its coordinates in the problem space
in association with the best solution. For the
remaining process to be executed, the fitness value
remains the major consideration. This is referred to
as pbest, whereas Gbest in HPSO refers to the
location of the above solution.

The HPSO thus provides better solution and the
steps involved are given in the below section.
Hospital management application is the application

50

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

used in our proposed method. The test cases
generated from this input is applied to the HPSO for
optimization. It is through which the optimized
components are selected.

3.2.1. Steps in Hybrid Particle Swarm
Optimization

The various steps involved for implementing the
HPSO is explained below,

• First initiate a population of elements
(solutions) with position and velocity chosen
randomly for n-variable in the problem space.

• For each of these arbitrarily created elements
estimate the fitness functions in n- variables.

• Now compare this fitness value with the
particles pbest value. If these recent fitness value is
improved than the pbest then chose the current
fitness value as the pbest for the further processing.

• These fitness values is weighed against the
overall finest preceding values and if the current
value is better then update the gbest for the current
particles array index and value as the new gbest.

• The position and velocity of the particle are
assorted and then repeat the steps until the criterion
of better fitness is obtained. Updation of velocity
and the position of the particle is performed by
utilizing the equations given below,

)1())()((

))()(()()1(
'

22

11

tptdka

tptdkatxtx

ii

iiii

−

+−+=+

)2()1()()1(++=+ txtptp iii
Here 1a and 2a represents the acceleration

constants that is needed for combining each particle
with the pbest and gbest. Updating the best position
of the particle can be given as per the equation
below,





<++
≥+

=+
))(())1((),1(

))(())1((,)(
)1(

tdftpftp
tdftpftd

td
iii

iii
i

 (3)

The fitness of the solution is estimated using the
equation mentioned above and the better solution
are selected based on these fitness values. The
obtained solutions from the PSO are then given as
input to the cuckoo search algorithm inorder to
optimize the solution further. The optimized
solution from PSO will be the input for cuckoo
which is further processed

3.2.2. Cuckoo Search Algorithm

The cuckoo search algorithm represents a
biologically inspired algorithm. Its origin can be
dated back to the breeding conduct of the cuckoos
and it is easy to implement. Each egg signifies a

solution and an egg of a cuckoo corresponds to a
novel solution. The novel and superior solution
replaces the worst solution in the nest. The various
steps that are involved in the modified cuckoo
search algorithm is explained briefly in the below
steps,
Step 1: Initialization Phase
The population (Pi, where i=1, 2, N) of host nest is
initialized at random.
Step 2: Generating New Cuckoo Phase
With the help of the levy flights a cuckoo is selected
randomly which generates novel solutions.
Subsequently, the engendered cuckoo is evaluated
by employing the objective function for ascertaining
the excellence of the solutions.
Step 3: Fitness Evaluation Phase
The fitness function is evaluated in accordance with
Equations 4 and 5 shown hereunder, followed by the
selection of the best one.

N

C
m p

P
F = (4)

mFpopularityimumfitness == max (5)
Where,

CP - signifies the selected population

NP - represents the total population
Step 4: Updation Phase
At the beginning, the solution is optimized by the
levy flights by employing the cosine transform. The
superiority of the fresh solution is estimated and a
nest is chosen at random among them. If the
superiority of new solution in the elected nest is
advanced to the previous solution, it is restored by
the new solution (Cuckoo). Otherwise, the preceding
solution is considered as the finest solution. The
levy flights employed for the general cuckoo search
algorithm is expressed by the Equation 6 shown
below:

)()()1(* NLvyLfLfLf n
i

n
ii ⊕+== + α (6)

Step 5: Reject Worst Nest Phase
In this section, the worst nests are unobserved,
considering their possibility values and fresh ones
are created. Consequently, based upon their fitness
function the best solutions are ranked. Thereafter,
the best solutions are distinguished and marked as
optimal solutions.
Step 6: Stopping Criterion Phase
The above process is repeated until the best solution
is reached based on the termination criteria.

4. Result and Discussion

51

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

In our experimental procedure, we have utilized
the Particle swarm optimization for the software
architecture. The implementation is done in the
JAVA platform and the results are given as follows.
The hospital management system is utilized in our
proposed method as the source software and the
input to our proposed system is the hospital
management application. From the Hospital
management system, the test cases are extracted and
the components are optimized. The test cases
involved are from a number of derived classes. Our
analyzed components are coupled with device,
coupling of object, cost, reliability and popularity.

It is on the basis of the fitness value of the
parameter chosen that the whole process labors in
Hybrid Particle Swarm optimization. For the
purpose of additional processing, the parameter with
high fitness value is chosen. For both Particle
Swarm optimization and Genetic Algorithm, the
fitness values of the chromosomes are computed.
For dissimilar iteration the results are charted. While
viewing Table 1 it can be confirmed that the fitness
value for the suggested technique verified is
superior to the technique where there is GA
application.

Table 1. Fitness value between HPSO, Conventional PSO

and GA for each iteration.

Iterations
Fitness value

Proposed
method
using
HPSO

PSO

Using
GA

5 21 15 16
10 19 13 15
15 17 13 13
20 15 12 13
25 13 12 13

For the above table the corresponding graphical

representation is shown in the below figure 2. From
the graph it is clear that our proposed method has
delivered better outcome in terms of fitness when
compared to conventional PSO and GA

Figure.2 Comparison of Fitness value between HPSO,

Conventional PSO and GA

The computational time is well thought-out as
the most important issue in software architecture as
made cleared in the preceding section. The
computational time for the software architecture
plan based on the chosen test cases by means of
HPSO are computed and the resulting values are
charted. The similar evaluation for existing
algorithms like PSO and GA are also tabulated
inorder to compare our proposed system
performance. The significances of the computation
time we attained for different test cases are shown in
Table 2.

Table 2. Computational time for HPSO, Conventional

PSO and GA for various optimal testcases
Optimal

Test
Cases

Computational time

HPSO

PSO

GA

5

659

804

4329

10

951

1122

4531

15

1456

1781

4923

20

1821

2078

4986

25

2131

2603

5083

The graph is designed for computational time for

optimal test cases based on the values shown in
above table. Using HPSO, PSO and GA the
graphical representation of computational time for
our suggested method are compared which is shown
in figure 3. As shown in the graph, the
computational time for PSO has been less
significant when match up to that of GA.

52

International Journal of Intelligent Engineering and Systems, Vol.9, No.3, 2016

Figure.3 Comparison of Computational Time for HPSO,

PSO and GA

5. Conclusion
In this paper, we have proposed Hybrid Particle

Swarm Optimization (PSO) – Cuckoo Search (CS)
algorithm for developing an adaptive software
architecture based on the Process control model.
Initially, the components were clustered based on an
efficient clustering algorithm. After that, adaptive
architecture would be built by using PSO - CS on
the basis of clustering results. The architecture was
built along with its functional requirements,
responsibility and evaluation. The results showed
that our proposed method had delivered better
results in terms of test case optimization values
when compared to other optimization techniques
like conventional Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA). In future, we
have planned to improve the computational time by
employing alternate optimization techniques and
also various other architectural parameters could be
considered which can aid in better architecture of
software.

Reference
[1] N. M. Villegas, G. Tamura, and R. Casallas, “A

Framework for Evaluating Quality-Driven Self-
Adaptive Software Systems”, In Proc. of the 6th
International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pp. 80-89,
2011.

[2] D. Weyns, “Towards an Integrated Approach for
Validating Qualities of Self-Adaptive Systems”, In
Proc. of the 10th International Workshop on
Dynamic Analysis, Minneapolis, MN, pp. 24-29,
2012.

[3] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Chengy
and J. M. Bruel, “ELAX: Incorporating Uncertainty
into the Specification of Self-Adaptive Systems”, In

Proc. of the 17th IEEE International Requirements
Engineering Conference, pp. 79-88, 2009.

[4] J. Zhang, B. H. C. Cheng, Z. Yang, and P. K.
McKinley, “Enabling Safe Dynamic Component-
Based Software Adaptation”, Architecting
Dependable Systems III, pp. 194–211, 2005.

[5] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M.
A. Babar, “A comparative study of architecture
knowledge management tools”, The Journal of
Systems and Software, Vol. 88, No. 3, pp. 352-370,
2009.

[6] L. Dobrica, A. D. Ioniţa, R. Pietraru And A. Olteanu,
“Automatic Transformation Of Software
Architecture Models”, U.P.B. Sci. Bull, Series C, Vol.
73, No. 3, pp. 3-16, 2011.

[7] O. Raiha, E. Makinen and T. Poranen, “Using
Simulated Annealing for Producing Software
Architectures”, Thesis, Department Of Computer
Sciences, University Of Tampere, pp. 2131-2136,
Apr 2009.

[8] T. Ludik, J. Navratil, and A. Langerova, “Process
Oriented Architecture for Emergency Scenarios in
the Czech Republic”, World Academy of Science,
Engineering and Technology, Vol. 59, pp. 2342-2351,
2011.

[9] A. Sharma, R. Kumar, and P. S. Grover, “A Critical
Survey of Reusability Aspects for Component-Based
Systems”, World Academy of Science, Engineering
and Technology, Vol. 19, pp. 411-415, 2007.

[10] P. Eeles, “Software Architecture Masterclass”, In.
proc. of IBM Rational Software Conference, 2009.

[11] H. Gumuskaya, “Core Issues Affecting Software
Architecture in Enterprise Projects”, World Academy
of Science, Engineering and Technology, Vol. 9, pp.
32-37, 2005.

[12] I. Meedeniya, “Robust Optimization of Automotive
Software Architecture”, In. proc. of AutoCRC
Technical Conference, 2011.

[13] P. P. Dey, “Strongly Adequate Software
Architecture”, World Academy of Science,
Engineering and Technology, Vol. 60, pp. 366-369,
2011.

[14] G. Tamura, N. M. Villegas, H. A. Muller, J. P. Sousa,
B. Becker, G. Karsai, S. Mankovskii, M. Pezze, W.
Schafer, L. Tahvildari, and K. Wong, “Towards
Practical Runtime Verification and Validation of
Self-Adaptive Software Systems”, Software
Engineering for Self-Adaptive Systems, pp. 108-132,
Jun 2012.

[15] P. Tarvainen, “Adaptability Evaluation at Software
Architecture Level”, The Open Software Engineering
Journal, Vol. 2, No. 1, pp. 1-30, 2008.

[16] F. Berkes, “Evolution of co-management: Role of
knowledge generation, bridging organizations and
social learning”, Journal of Environmental
Management, Vol. 90, No. 5, pp. 1692-1702, 2009.

