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Abstract: Particle swarm optimization (PSO) is a swarm intelligence algorithm, has been successfully applied to
many engineering optimization problems and shown its high search speed in these applications. However, as the
dimension and the number of local optima of optimization problems increase, PSO and most existing improved PSO
algorithms such as, the standard particle swarm optimization (SPSO) and the Gaussian particle swarm optimization
(GPSO), are easily trapped in local optima. In this paper we proposed a novel algorithm based on SPSO called
Euclidean particle swarm optimization (EPSO) which has greatly improved the ability of escaping from local optima.
To confirm the effectiveness of EPSO, we have employed five benchmark functions to examine it, and compared it with
SPSO and GPSO. The experiments results showed that EPSO is significantly better than SPSO and GPSO, especially
obvious in higher-dimension problems. As one of tis application, we applied EPSO to the structure prediction of toy
model both on artificial and real protein sequences. Predicting the structure of protein through its sequence of amino
acids is a complex and challenging problem in computational biology. Though toy model is one of the simplest and
effective models, it is still extremely difficult to predict its structure as the increase of amino acids. The experimental
results demonstrated that EPSO was efficient in protein structure prediction problem in toy model.
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1. Introduction

Eberhart and Kennedy developed a particle swarm
optimization (PSO) [1, 2] as a swarm intelligence al-
gorithm [3, 4] simulating a swarms of birds schooling.
It has been successfully employed to solve optimiza-
tion problems effectively in various areas [5, 6, 7].
Shi and Eberhart put forward the conception of inertia
weight to improve the performance of PSO, and this
method called standard particle swarm optimization
(SPSO) [8, 9]. Renato A. Krohling proposed Gaus-
sian particle swarm optimization algorithm (GPSO)
[10] based on the Gaussian probability distribution.

However, SPSO is easily trapped in local optima
and premature convergence, especially in higher-di−
mension problems. The main reason is that particles
will fly to their own best position and the global parti-

cle’s position rapidly according to their own and com-
panion’s flying experience [11]. So the particles will
become more and more similar and cluster to the glob-
al best particle that falls into local optima [12].

In order to overcome the disadvantages of SPSO,
we proposed a novel approach called Euclidean parti-
cle swarm optimization (EPSO). If the global best fit-
ness has not been updated for a certain times, it may
be trapped in local optima, so the velocities of parti-
cles will get an interference factor. The value of in-
terference factor will be self-adaptive according to the
Euclidean distance between the current particle and
the global best particle. Experiments confirmed that
EPSO kept the diversity of particles and has greatly
improved the ability of escaping from local optima.

The structure of protein determines its function in
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molecular. Predicting the structure of protein through
its sequence of amino acids is a complex and chal-
lenging problem in computational biology. The native
structure of a protein is associated with the structure
of the global minimum of the free energy consisting
of the intramolecular interaction among protein atom-
s and between the proteins and surrounding solvent
molecules [14]. Based on this minimum free-energy
theory, many simplified protein models have been pro-
posed to predict the structure of protein. Toy model is
one of the simplest and most effective protein mod-
els proposed by Stillinger 1993 [15], however, it is
still extremely difficult to predict the structure of pro-
tein with it. Many methods, such as high temperature
Monte Carlo method (HTML) [16], pruned enriched
Rosenbluth method (PERM) [17] and Particle Swarm
Optimization with a Constriction Factor (CPSO) [18],
have applied to search ground state structure of pro-
tein based on toy model.

In this paper, we will apply EPSO to protein struc-
ture prediction of toy mode both on artificial and real
protein sequence and present a lot of experimental re-
sults to verify its effectiveness.

2. Standard Particle Swarm Optimization

SPSO is also a population-based algorithm which
initialized with a population of candidate solutions.
Each candidate solution in SPSO is called a particle.
Each particle has a velocity vector vi = (vi1,vi2...vin)
and a position vector xi = (xi1,xi2...xin). Each par-
ticle knows its best fitness fpbest and position pi =
(pi1, pi2...pin) so far. Moreover, each particle knows
the global best fitness fgbest in the group among fpbest
and position pg = (pg1, pg2...pgn) so far. Here i =
1,2, ...m is the particle’s index, m is the total number
of particles, and n is the dimension of optimization
problem. Velocity and position of each particle can be
modified by the following equations:

vi = wvi+c1rand(pi−xi)+c2Rand(pg−xi) (1)

xi+1 = xi +vi (2)

where w is the inertia weight, usually decreasing lin-
early from 0.9 to 0.4 [9]; c1 and c2 are positive con-
stants, called acceleration coefficients, usually setting
c1 = c2 = 2.0; rand and Rand are random number-
s in the range [0,1] generated according to a unifor-
m probability distribution. Particles’ velocities along
each dimension are limited to vmax which is specified
by user.

3. Euclidean Particle Swarm Optimization

In view of the defects of SPSO, we proposed an im-
proved algorithm EPSO. The core concept of EPSO
is that if the global best fitness has not been updated
for K times, velocities of particles will get an inter-
ference factor to make most of particles fly out of the
local optima but the best one is kept continuing to do
local search. Here K is a constant which will be deter-
mined by experiments described in section IV(C).

The value of interference factor is related to the cur-
rent particle’s position xi and the global best particle’s
position pg and produced by sigmoid function accord-
ing to the Euclidean distance between xi and pg. So
the interference factor is called Euclidean interference
factor ε that is obtained by modified sigmoid function
as below:

εi = (
1

1+ exp(−a/di)
−0.5)∗2vmax (3)

where di is the Euclidean distance from current par-
ticle i to the global best particle; slope parameter a
usually set to 0.5.

We add ε to velocities of particles if the global best
fitness has not been updated for K times, and update
the velocities of particles as following:

vi=wvi+c1rand(pi−xi)+c2Rand(pg−xi)+εi (4)

In the initial stage of optimizing, the value of d is
large, ε will be small, particles will continue to search
along original directions; in the late stage of optimiz-
ing, the value of d is very small due to the high degree
of similarity of particles, and ε will be large, so parti-
cles will get a large interference and escape from local
optima to find a better fitness.

The algorithm of EPSO is described as follows:

Step 1 Initial the value of K and maximum iteration
number. Initial the position xi and the velocity
vi of each particle within the allowable range.

Step 2 Calculate the fitness of each particle.

Step 3 Determine the previous best position pi and
fitness fpbest of every particle.

Step 4 Determine the global best position pg and fit-
ness fgbest so far. If fgbest has not been updated,
counter c = c+1.

Step 5 If c > K, update vi and xi according to (6), (7)
and (4), and then set the counter c = 0. Else,
update vi and xi according to (5), (6).

Step 6 If the maximum iteration number is met, stop
algorithm, else go to Step 2.
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4. Experiments and Discussion

4.1 Benchmark functions
In order to confirm the effectiveness of EPSO, five

benchmark functions, which were popularly used in
the literatures [1, 8, 10], will be also used in our ex-
periments. The five functions are shown as below.

F1: Sphere function

f (x) =
n

∑
i=1

x2
i , xi ∈ [−100,100]

F2: Rosenbrock function

f (x)=
n

∑
i=1

(100(xi+1−x2
i )

2+(xi−1)2), xi ∈ [−30,30]

F3: Rastrigin function

f (x)=
n

∑
i=1

(x2
i −10cos(2πxi)+10), xi ∈ [−5.12,5.12]

F4: Griewank function

f (x)=
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos(
xi√

i
)+1, xi ∈ [−600,600]

F5: Schaffer’s f6 [13] function

f (x)=0.5−
(sin

√
x2

1 + x2
2)

2 −0.5

1.0+0.001(x2
1 + x2

2)
2 , xi ∈ [−100,100]

4.2 Experimental setting
All the experiments were performed on a computer

with Intel 2 core 2.5G processor, 2G memory, Linux-
64 system. All the algorithms were written in C and
compiled by gcc-4.3.2 compiler. In all cases, the swar-
m size was 20, inertia weight w was 0.9 at the begin-
ning of the run, and made to decrease linearly to 0.4 at
the end. The parameters c1 and c2 were 2.0. The max-
imum velocity vmax was set at half value of the upper
bound.

4.3 Determination of parameter K

The value of parameter K is very important for the
performance of EPSO algorithm. We took three bench-
mark functions to determine the value of K. The di-
mensions of those functions were set to be 20 and 30.

Let K increase from 0 to 1500 (+5), and computed the
success convergence rate of 100 running times in the
maximum iteration number. The convergence error
and the maximum iteration number for each function
were different. The results are shown in Figure 1.

Figure 1 shows that EPSO has higher convergence
rate for those benchmark functions when K got the
value on interval [20,100]. So the value of K in EP-
SO is set as 60 which is the sharp middle number of
interval [20,100].

4.4 Comparison of SPSO, GPSO and EPSO
To confirm the effectiveness and performance of EP-

SO, we compared it with SPSO and GPSO based on
the benchmark functions introduced in section IV(A).
For the purpose of comparison, the experimental pa-
rameters were the same as the section IV(B).

The functions F1 to F4 were used to find the min-
imum 0. The dimensions of each function were set
to be 10 to 50 (+10), the maximum numbers of itera-
tions were different according to the difficulty to find
the minimum respectively. Each experiment was re-
peated for 1000 times to compare the performance of
EPSO with SPSO and GPSO through the mean best
fitness and the smallest best fitness that they obtained
for all the runs. The results were listed in Table 1.

In Table 1, Dim. is the dimensions of functions,
Gen. is the maximum numbers of iteration, Mean and
Best are the mean value and smallest value of best
fitness after the algorithm run Gen. times, and B.rate
is the better rate of mean best fitness compared EPSO
with GPSO or SPSO.

As seen in Table 1, EPSO is significantly better than
SPSO and GPSO both in the benchmark functions.
EPSO found the lower Mean and Best value of func-
tions, and outperformed the other two algorithms. Al-
though, EPSO is worse than GPSO in Rastrigin func-
tion, the B.rate is decreasing as the increment of func-
tion’s dimensions and it is still better than SPSO obvi-
ously. Furthermore, Table 1 also shows that the bigger
dimensions of functions are, the better performance of
EPSO will have.

In order to further confirm the performance of EP-
SO, we also took F5 for experiment. F5 was a bench-
mark function in Genetic Algorithm. It would always
fall into the same local optima in finding the max-
imum, no matter how many the maximum iteration
number was. This experiment was to compare the per-
formance of EPSO with SPSO and GPSO through the
times of finding the maximum 1.0 after repeated for
1000 times. The maximum numbers of iteration set as
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Figure 1 Experiments results for determining K

Table 1 The experimental results for benchmark functions and comparison
EPSO GPSO SPSO

Dim. Gen. Mean Best Mean Best B.rate Mean Best B.rate
10 500 0.0000 0.0000 0.0000 0.0000 0% 0.0000 0.0000 0%
20 1000 0.0000 0.0000 0.0005 0.0000 100% 0.0359 0.0000 100%

F1 30 1500 0.0000 0.0000 0.3477 0.0000 100% 0.9024 0.0000 100%
40 2000 0.0000 0.0000 2.8394 0.0000 100% 4.2047 0.0000 100%
50 2500 0.0000 0.0000 17.1798 0.0000 100% 22.7763 0.0001 100%
10 1000 2.2827 0.0000 3.4794 0.0000 34% 2.4215 0.0000 6%
20 3000 12.5966 0.0000 15.4443 0.0001 18% 21.4682 0.0000 41%

F2 30 5000 33.1653 0.0000 147.7717 0.0019 78% 218.4175 0.0000 85%
40 7000 51.8153 0.0001 302.5478 0.1330 83% 594.7099 0.0004 91%
50 9000 69.8725 0.0202 3852.2849 10.2961 98% 3091.4274 0.6425 98%
10 1000 3.7578 0.0000 5.3399 0.0000 30% 7.4054 0.0000 49%
20 3000 9.1287 1.9899 8.2607 0.0000 -11% 17.0971 2.9848 47%

F3 30 5000 18.9856 4.9748 11.9051 0.9949 -59% 29.2762 6.3722 35%
40 7000 30.9724 8.9546 22.3094 2.9854 -39% 45.7170 13.0730 32%
50 9000 44.9705 16.9143 41.8352 10.0307 -7% 69.1484 21.9986 35%
10 500 0.1391 0.0000 0.1419 0.0073 2% 0.1469 0.0000 5%
20 1000 0.0412 0.0000 0.0441 0.0000 7% 0.0807 0.0000 49%

F4 30 1500 0.0180 0.0000 0.0438 0.0000 59% 0.2192 0.0000 92%
40 2000 0.0123 0.0000 0.1602 0.0000 92% 0.4104 0.0000 97%
50 2500 0.0094 0.0000 0.5274 0.0000 98% 0.7113 0.0002 99%

1500. The results were listed in Table 2.

Table 2 The experimental results for F5
Algorithms Mean Best Obtained times

SPSO 0.9928 1.0000 237
GPSO 0.9928 1.0000 237
EPSO 0.9980 1.0000 807

As shown in Table 2, each algorithm could find max-
imum 1.0, but EPSO obtained for 807 times, far more
than 237 times which SPSO and GPSO obtained. It
shows that EPSO easily escape from local optima, and
find the optimum of function.

To sum up the above arguments, EPSO has better
convergence efficiency and precision than SPSO and
GPSO. It has greatly improved the ability of escaping

from local optima to find the better fitness, especially
obvious in higher-dimension problems.

5. Toy model

In the toy model, the 20 amino acid residues are
classified into hydrophobic residues and hydrophilic
residues represented by the letters A and B respective-
ly. There is only one fixed length bond between t-
wo consecutive residues. And the angle between the
two bonds can change freely. The configuration of
any n-mer is specified by the n − 2 angles of bend
θ2, ...,θn−1 ∈ [−π,π), residues along the backbone can
be encoded by a set of binary variables ξ1, ...,ξn. If
ξ1 = 1, the ith residue is A, if ξ1 = −1, it is B. The
intramolecular protein energy function Φ is expressed
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as follows for any n-mer :

Φ =
n−1

∑
i=2

V1(θi)+
n−2

∑
i=1

n

∑
j=i+2

V2(ri j,ξi,ξ j) (5)

where V1(θi) is backbone bend potentials, expressed
as formula (6) and V2(ri j,ξi,ξ j) is nonboned interac-
tions, expressed as formula (7).

V1(θi) = 1/4(1− cosθi) (6)

V2(ri j,ξi,ξ j) = 4(r−12
i j −C(ξi,ξ j)r−6

i j ) (7)

where ri j denotes the distance between residue i and
j of the chain. The coefficient C(ξi,ξ j) = (1+ ξi +
ξ j + 5ξiξ j). For an AA pair, C(ξi,ξ j) = 1, regard-
ed as strongly attracting, for a AB pair, C(ξi,ξ j) =
0.5, regarded as weakly attracting and for a BB pair,
C(ξi,ξ j) = −0.5, regarded as weakly repelling. The
protein structure prediction problem can be described
as giving a sequence of amino aid residues to find a
group solution to make the energyΦminimal.

6. Experiments and Discussion

To confirm the effectiveness and performance of EP-
SO applied in protein structure prediction of toy mod-
el, we took experiments both on artificial and real pro-
tein sequences, and compared the results with report-
ed in other papers.

All the experiments were implemented by C in Lin-
ux system. In all cases, the swarm size was 20, K
was 60, inertia weight w was 0.9 at the beginning of
the run, and made to decrease linearly to be 0.4 at the
maximum number of iterations. The parameters c1
and c2 were 2.0. The max velocity vmax was set at half
value of the upper bound π .

6.1 Experiments on Artificial Sequences
For short protein sequences, EPSO got the ground

state energy presented by Stillinger easily. Fibonacci
sequences is the artificial protein sequence studied in
Refs [16], they are defined recursively by:

S0 = A,S1 = B,Si+1 = Si−1 ∗Si (8)

where ”∗” is a concatenation operator. The first few
sequences are S2 = AB, S3 = BAB, S4 = ABBAB, etc.
Hydrophobic residue A occurs isolated along the chain,
while hydrophilic residue B occurs either isolated or
in pairs and the molecules have a hierarchical string
structure. We considered the Fibonacci sequences with
length 13, 21, 34 and 55 for experiments, and the four
artificial protein sequences are shown in Table 3.

Table 3 Fibonacci sequences
A.S. Sequence
S13 ABBABBABABBAB
S21 BABABBABABBABBABABBAB
S34 ABBABBABABBABBABABBABABBABBABABBAB
S55 BABABBABABBABBABABBABABBABBABABBAB

BABABBABABBABBABABBAB

where A.S. denotes the artificial protein sequence. The
results of experiments are listed in Table 4. EHT ML

is the minimum energy obtained by high temperature
Monte Carlo method (HTML) [16], EPERM is the low-
est energy by pruned enriched Rosenbluth method (PER-
M) [17], EEPSO is the lowest energy obtained by EP-
SO.

Table 4 Results on artificial sequence
A.S. EHT ML EPERM EEPSO
S13 -3.2235 -3.2167 -3.2941
S21 -5.2881 -5.7501 -6.1980
S34 -8.9749 -9.2195 -9.8341
S55 -14.4089 -14.9050 -16.4474

From Table 4, it is clear that EPSO significantly bet-
ter than HTML and PERM methods as it got much
lower energy of the four protein sequences. Figure 2
shows the lowest energy conformations of those pro-
teins obtained by EPSO, in which the black dots rep-
resent hydrophobic residues A and the white circles
represent hydrophilic residues B.

(a) n = 13 (c) n = 34

(b) n = 21 (d) n = 55

Figure 2 The conformations of S13, S21, S34 and S55 ob-
tained by EPSO

As shown in Figure 2, the hydrophobic residues for-
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m the clusters of particles, and are always flanked by
hydrophilic residues along the chain. They simulate
real protein structure in a certain degree. Especial-
ly for the conformation of S13, it has the single hy-
drophobic core, which is analogous to the real protein
structure perfectly in two-dimensions.

6.2 Experiments on Real Sequences
To further confirm the performance of EPSO in pro-

tein structure prediction, we took several real protein-
s for experiments. All information of these proteins
were downloaded from PDB (http://www.r-csb.org/pdb/),
and the real protein sequences are showed in Table 5.

Table 5 Real protein sequences
R.S. Sequence
1bxp MRYYESSLKSYPD
1bxl GQVGRQLAIIGDDINR
1edp CSCSSLMDKECVYFCHL
1edn CSCSSLMDKECVYFCHLDIIW
1agt GVPINVSCTGSPQCIKPCKDQGMRFGKCMNRK

CHCTPK
1aho VKDGYIVDDVNCTYFCGRNAYCNEECTKLKGE

SGYCQWASPYGNACYCYKLPDHVRTKGPGRCH

where R.S. denotes the real protein sequence. We
searched the minimal energy of these real proteins
by EPSO and made comparison with other method-
s. The results are listed in Table 6. EGAA and ELAGAA

are the optimum energy obtained by GAA and LA-
GAA respectively [25, 26], ESA is the minimum ener-
gy obtained by Simulated Annealing Algorithm (SA)
[24], ECPSO is the lowest energy obtained by Particle
Swarm Optimization with a Constriction Factor (CP-
SO) [18], EEPSO is obtained by EPSO algorithm.

From Table 6, the minimal energy of those real pro-
tein obtained by EPSO is obviously lower than that
by other algorithms. Figure 2 shows the lowest ener-
gy conformations of these proteins by EPSO.

Table 6 Results on real proteins
R.S. EGAA ELAGAA EEPSO
1bxp -2.24484 -2.24484 -4.392713
1bxl -8.74685 -8.81260 -8.812603
1edp -5.60713 -6.64530 -10.06692
1edn -7.09609 -7.81925 -11.13420
R.S. ESA ECPSO EEPSO
1agt -17.362815 -19.616866 -21.424246
1aho -14.961273 -15.191101 -31.221805

As shown in Figure 3, the hydrophobic residues for-
m the clusters of particles, and are flanked by hy-
drophilic residues along the chain. They are analo-

(a) 1bxp (b) 1bxl (c) 1agt

(d) 1edp (e) 1edn (f) 1aho

Figure 3 The conformations of real proteins obtained by
EPSO

gous to the real protein structure in two dimensions,
that is to say EPSO is a great method to predict the
structure of real protein in toy model.

7. Conclusion

In this paper, we proposed an original improved al-
gorithm EPSO based on giving velocities of particles
a Euclidean interference factor when the global best
fitness has not improved for 60 generations, but keep
the best one continuing to do local search. In order
to confirm the effectiveness and performance of EP-
SO, we compared it with SPSO and GPSO algorithms
based on benchmark functions. Experimental result-
s show that EPSO has better convergence efficiency
and precision, and has greatly improved the ability of
escaping from local optima.

And we applied EPSO to the problem of protein
structure prediction in toy model. We took some ex-
periments both on artificial and real protein sequences
to search their minimal energy and compared it with
other methods. The experimental results showed that
EPSO found the lower energy of protein and better
than other methods. The conformations of proteins
obtained by our method also confirm that EPSO is an
effective method in protein structure prediction.
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