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Abstract: IA Petri net controller method for Petri net model with uncontrollable transitions that enforces the con-
junctions a set of linear inequalities on the Parikh vector or place markings is proposed. The method for constructing
a Petri net feedback controller is based on part design and Petri net reduction technique. Constraints are classified into
admissible and inadmissible constraints. Matrix-Transformation method is proposed to transform the inadmissible
constraint into admissible one to construct the controller. The method eases the design of controller and holds remark-
able advantages especially for systems with large scale, because it only considers local incident matrix related to the
place and Parikh constraints and uncontrollable transitions. Finally, the method is proved to be simple and efficient
through some examples.
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1. Introduction

In a flexible manufacturing system (FMS), different
types of raw parts enter the system at discrete points of
time and are processed concurrently, sharing a limited
number of resources such as machine tools, automated
guided vehicles, robots, buffers and fixtures. In such
an FMS, each raw part follows a pre-established pro-
duction sequence through the set of system resources.
These production sequences are executed concurrently
and therefore have to compete for the set of shared
resources. This competition can cause deadlocks, in
which each of a set of two or more jobs keeps wait-
ing indefinitely for the other jobs in the set to release
resources [1]. Deadlocks and related blocking phe-
nomena often cause unnecessary productivity loss and
therefore it is essential to develop a way to ensure that
deadlocks never occur in an FMS. Petri nets have been
taken as a tool for control synthesis of discrete event
systems for their power on compact description of the
state space, modeling of systems, graphical function,

concurrency description of events and distributed state
representation.

Mainly two types of Petri net (PN) controllers have
been proposed in the literature [2]: the structural con-
troller, where control policy is represented as a net
structure, and the logical controller, where control ac-
tions (event enabling/disabling) are computed by an
on-line controller as a feedback function of the mark-
ing of the system. For structural controller, many re-
searchers have studied [3]. There are several advan-
tages in structural controller compared with logical
controller: computation of control action is faster, and
the same PN execution algorithms may be used for
both the original system and the supervisor. In addi-
tion, a closed-loop model of the system under control
can be built with standard net composition construc-
tions. The existence of liveness-ensuring supervisors
for Petri nets with uncontrollable transitions has been
studied in [4, 5]. Techniques for deadlock avoidance
have been proposed by a variety of researchers [1, 6,
7]. These techniques involve analysis of the siphons
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or other similar structures within the Petri net plant.
Often, the resulting controllers can be expressed by
supervisors enforcing sets of linear inequalities on the
reachable plant states. The main idea is that constraints
transformation, but sometimes it will induce OR-logic
linear constraint.

In this paper we propose a new approach to supervi-
sory control of discrete event system (DES) for forbid-
den state problems, which couples supervisory control
theory to the PN models with uncontrollable transi-
tions through inhibitor arcs. Finally, compared with
those methods in [4, 8, 9] through examples, the method
is proved to be simple and efficient and it can avoid
deadlocks.

2. Controller Design Based on Place Mark-
ing

Supervisory control of a DES is illustrated in Fig-
ure 1. The architecture consists of four parts: (1) the
discrete event system (DES) to be controlled, (2) the
controller (supervisor), (3) sensor readings, regarded
as outputs from the DES and as inputs to the con-
troller, and (4) control actions, regarded as outputs
from the controller and as inputs to the DES. The su-
pervisor must guarantee that no forbidden state will be
reached, that specified target states remain reachable
(non-blocking) and that controlled behavior is maxi-
mally permissive, i.e., the supervisor does not unnec-
essarily constrain system operation and is in this sense
’optimal’.

Figure 1 Supervisory control of a DES

The plant and the monitor are assumed to run con-
currently as follows. The occurrence of an event in

the plant is transmitted to the controlled model as a
plant output through sensory feedback, resulting in the
controlled model state change. The monitor functions
and the inhibitor arcs as a state-feedback controller,
whose enabling/disabling control actions are output
as a plant input, closing the feedback loop. The con-
trolled behavior of the plant will be the subset of un-
controlled.

2.1 Petri net reduction technique and part net de-
sign

The Petri net reduction technique is one of the im-
portant techniques to reduce Petri net size. Its aim is
to reduce the Petri net model scale and to maintain the
consistency of the Petri net, for example, live, safe and
bounded. The method proposed in this paper is based
on Wang’s [8] Petri net reduction technique. A Petri
net with n places and m transitions is given. Suppose
there are k constrained places pi (1≤ i≤ k) in the net,
and fuse k constrained places into one place pe, whose
marking is equal to the sum of the markings of the
constrained places, therefore it eases the design of the
controller. Furthermore, it only considers the direct or
indirect transitions related to the constraints based on
part net design. After these transformations, the local
incident matrix dimension of constrained places will
not become large as scale increasing of system. So the
computation required to find the Petri net controller is
quite simple.

2.2 Controller design for fully controllable
In DES Petri net model, the logical conjunction of

separate linear constraints involves marking only, which
has the following form:

C = Lu≤ b (1)

where L ∈ Znc×m, u ∈ Zm, b ∈ Znc , m is the num-
ber of places, nc is the number of constraints, namely
the number of controller. The detailed design of con-
troller is as shown in Figure 2 when all transitions are
controllable.

1). Find the local incident matrix of constrained
place based on part net design and Petri net reduction
technique.

D =

t1 t2 · · · t j

p1



d11 d12 · · · d1 j

...

...
...

...
...

pk dk1 dk2 · · · dk j

(2)

where p1, p2 . . . pk are constrained places, namely not
all lnc j are zero in corresponding matrix L, t1, t2 . . . t j
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are transitions related to the constrained places which
can avoid the high dimension of Petri net model through
only considering the direct or indirect transitions re-
lated to the constrained places.

Figure 2 Flow chart of for fully controllable

2). Find the weight coefficient matrix of constrained
places:

Lr =




l11 l12 · · · l1k
...

...
...

...
lnc1 lnc2 · · · lnck


 (3)

where k is the number of constrained places, the di-
mension of matrix Lr is less than or equal to that of
matrix Lr since Lis simply the coefficient matrix of
constrained places, but L is the coefficient matrix of
all places.

3). Find fusing places matrix Dε [10]by Petri net
reduction technique based on local incident matrix D
and coefficient matrix Lr of constrained places, i.e.,

4). Find local incident matrix of controller places
based on fusing places matrix Dε , Dc = Dε

Construct the controller based on matrix Dc, and its
initial tokens should be:

uc0 = b−Lrur0 (6)

ur0 is the initial token of constrained places.

2.3 Controller Design for Petri Net Model with
Uncontrollable Transition

2.3.1 Uncontrollable Transitions
A transition is called uncontrollable if the firing of

that transition may not be inhibited by an external ac-
tion. The freedom of an uncontrollable transition to
fire is limited solely by the structure and state of the
plant. It must not contain an arc from a controller
place to the uncontrollable transition.

In order for a Petri net controller to inhibit a tran-
sition, it must contain an arc from a controller place
to the transition. The transition will be disabled if the
number of tokens in the control place is less than the
arc weight. The controller is inadmissible if it con-
tains an arc from a controller place to the uncontrol-
lable transition.

2.3.2 Controller Designing
The detailed design of controller is as shown in Fig-

ure 3 when there are uncontrollable transitions in the
Petri net model.

1). Find the local incident matrix of constrained
place based on part net design and Petri net reduction
technique. where p1, p2 . . . pk are constrained places,
namely not all lnc, j are zero in corresponding matrix
L, t1, t2 . . . t j are transitions related to the constrained
places which can avoid the high dimension of Petri net
model through only considering the direct or indirect
transitions related to the constrained places. Where
n ≥ 0 h ≥ 0, t j+1, . . . , t j+n are uncontrollable transi-
tions, pm, . . . , pm+h are unconstrained places related
to uncontrollable transitions.

2). Find the weight coefficient matrix Lr of con-
strained places and unconstrained places related to un-
controllable transitions:

Lr =




l11 l12 · · · l1k l1m · · · l1(m+h)
...

...
...

...
...

...
...

ln1 ln2 · · · lnk lnm · · · ln(m+k)


 (8)

where k is the number of constrained places, h is the
number of unconstrained places related to uncontrol-
lable transitions, the dimension of matrix Lr is less
than or equal to that of matrix L since Lr is simply
the coefficient matrix of constrained places, but is the
coefficient matrix of all places.

3). Admissible Constraint and Constraint Transfor-
mations

[1] Examine if the constraints are admissible. The
constraints are admissible if LrDuc ≤ 0 is true (Duc
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De = LrD =




t1 t2 ··· t j

pe1

k

∑
i=1

l1idi1

k

∑
i=1

l1idi2 · · ·
k

∑
i=1

l1idi j

...
...

...
...

...

penc

k

∑
i=1

lncidi1

k

∑
i=1

lncidi2 · · ·
k

∑
i=1

lncidi j




(4)

Dc =




t1 t2 ··· t j

pc1 −
k

∑
i=1

l1idi1 −
k

∑
i=1

l1idi2 · · · −
k

∑
i=1

l1idi j

...
...

...
...

...

pcnc −
k

∑
i=1

lncidi1 −
k

∑
i=1

lncidi2 · · · −
k

∑
i=1

lncidi j




(5)

is the incident matrix corresponding to the uncontrol-
lable transitions in matrix D), then go to 4).

[2] The constraints are inadmissible if LrDuc ≥ 0,
namely, it contains an arc from a controller place to
the uncontrollable transition. Transform constraints C
to admissible constraints C′ = Lu≤ b, causing L′rDuc≤
0 through constraints transformation.

Figure 3 The flow chart of controller design

Theorem 1 Let R ∈ Znc×(k+h), satisfy Rur ≥ 0, ∀ur

(ur are markings of constrained places); if L′rur ≤ b,
where L′r = R+Lr, then Lrur ≤ b.

Proof: L′rur ≤ b, then (R+Lr)ur ≤ b, Rur +Lrur ≤ b,

substituting Rur ≥ 0 into Rur +Lrur ≤ b gives.
In Theorem 1, L′r must satisfy L′rDuc ≤ 0. Find L′r

by matrix transformation, the detailed process can be
stated as follows:

Let

M =
[

Duc I
LrDuc 0

]

where M ∈ Z(k+h+nc)×(nuc+k+h), Lr ∈ Znc×(k+h), Duc ∈
Z(k+h)×nuc , I ∈ Z(k+h)×(k+h), 0 ∈ Znc×(k+h). M(i, j)
denotes the (i, j)th element of the matrix M, and let
j = 1.

¬ If M(p, j) > 0 is true in the M(h + h + 1 . . .k +
h+nc, j), then go to ­; otherwise j = j +1, carry out
¬ again.

­ If M(q, j) < 0 is not true in the M(1 . . .k + h, j),
then the legal controller cannot be designed firsthand
as it needs transforming, otherwise find out min(|M(k+
h + 1 . . .k + h + nc, j)|), which satisfies M(q, j) < 0,
then go to ®.

® If |M(q, j)| ≥M(p, j) is true, then go to (a), oth-
erwise go to (b):

(a) M(p,•) = M(p,•)+M(q,•) :
(b) d = f loor(M(p, j)/|M(q, j)|),

If mod (M(p, j),M(q, j)) = 0,
Then M(p,•) = M(p,•)+dM(q,•);
Otherwise M(p,•) = M(p,•)+(d +1)M(q,•).

¯ Carry out ¬ again until M(p, j) > 0 is not true
in M(k + h + 1 . . .k + h + nc, j), and now matrix M
is transformed into matrix M′, so L′r = R + Lr can be
found.
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D =




t1 t2 ··· t j t j+1 ··· t j+n

p1 d11 d12 · · · d1 j d1( j+1) · · · d1( j+n)
...

...
...

...
...

...
...

...
pk dk1 dk2 · · · dk j dk( j+1) · · · dk( j+n)
pm dm1 dm2 · · · dm j dm( j+1) · · · dm( j+n)
...

...
...

...
...

...
...

...
pm+h d(m+h)1 d(m+h)2 · · · d(m+h) j d(m+h)( j+1) · · · d(m+h)( j+n)




(7)

Where

M′ =
[

Duc I
L′rDuc R

]

The new legal controller can be designed according
to the new constraints L′rur ≤ b, and it satisfies the rule
of uncontrollable transition.

[3] After matrix transformation, the constraints are
OR-logics linear constraints, then construct monitor
according to 4) and 6).

4). Find fusing places matrix De [6] by Petri net
reduction technique based on local incident matrix D
and coefficient matrix Lr of constrained places, i.e.,

5). Find local incident matrix of controller places
based on fusing places matrix De, Dc =−De

Construct the controller based on matrix , and its
initial tokens should be:

uc0 = b−Lrur0 (or uc0 = b−L′rur0) (11)

ur0 is the initial token of constrained places.
6). If the constraints are OR-logics linear constraints,

then construct the monitor according to matrix De,
and add inhibitor arcs from monitor to the transitions
where the element in the matrix Dc correspondence is
> 0, and uc0 = Lrur0.

3. Controller Design Based on Parikh vector

3.1 Parikh Vector Constraints
In DES Petri net model, the logical conjunction of

separate linear constraints involves Parikh vector only,
which has the following form:

cv < b (12)

where C ∈ Zmc×n, b ∈ Z+mc , Z is the set of integers,
Z+ is the set of non-negative, n is the number of tran-
sitions in the plant, n is the number of places, mc is
the number of constraints.

According to [5], for the linear inequality constraint
(12), each place can be described with an inequality.

Consider the place p1 in Figure 1: when transition
t1 fires once, then decreasing one token in place p1.
When transition t2 fires once, then one token in place
p1 is decreased. Since gaining is greater than losing,
the inequality is obtained:

3+ v2 ≥ v1

formalizing:

v1− v2 ≤ 3

The places p2, p3, p4, p5 in the Figure 4 can be
represented respectively:

v3− v1− v4 ≤ 0

v2 + v6− v3 ≤ 1

v4− v5 ≤ 0

v5− v6 ≤ 0

If the constraints can be described with inequality
(12), then the controller place can be obtained corre-
spondingly to each constraint. The incidence matrix
and initial markings of controller place is:

Dpc =−c; µc = b

3.2 Controller Design for Partially Controllable
In linear inequalities (12), if the transitions related

to the Parikh vectors are uncontrollable, then the method
taken is shown as follows:

Examine if the constraints are admissible. A set of
constraints is admissible if Cuc ≤ 0 is true, in spite
of the inability to detect or control certain transitions.
(Cuc is the coefficient matrix corresponding to the un-
controllable transitions in coefficient matrix C). Then
construct the controller; otherwise, carry through con-
straints transformation.

Theorem 2: Let R∈Zmc×muc (muc is number of places
related to uncontrollable transitions), C′ = RD + C,
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De = LrD =




t1 ··· t j ··· t j+n

pe1

k

∑
i=1

l1idi1 · · ·
k

∑
i=1

l1idi j · · ·
k

∑
i=1

l1idi( j+n)

...
...

...
...

...

penc

k

∑
i=1

lncidi1 · · ·
k

∑
i=1

l1idi j · · ·
k

∑
i=1

lncidi( j+n)




(9)

Dc =−De =




t1 ··· t j ··· t j+n

pe1 −
k

∑
i=1

l1idi1 · · · −
k

∑
i=1

l1idi j · · · −
k

∑
i=1

l1idi( j+n)

...
...

...
...

...

penc −
k

∑
i=1

lncidi1 · · · −
k

∑
i=1

l1idi j · · · −
k

∑
i=1

lncidi( j+n)




(10)

Figure 4 Petri net model

b′ = b−Rµ0, where R≥ 0, b′ ≥ 0, if C′v≤ b′ is true,
then Cv≤ b is true.

Proof: C′v≤ b′, namely (RD+C)v≤ b−Rµ0, then
R(Dv+µ0)+Cv≤ b, since µ = Dv+µ0≥ 0, therefore
Cv≤ b.

Theorem 3: Let R ∈ Zmc×muc , if




R≥ 0
b−Rµ0 ≥ 0
RDuc +Cuc ≤ 0

Let C′ = RD+C, b′ = b−Rµ0, then C′v≤ b′ is a set

of admissible constraints.
Proof: C′uc = RDuc +Cuc ≤ 0, namely the quality

of uncontrollable transitions is satisfied for the Parikh
vector constraints (C′,b′), so C′v ≤ b′ is a set of ad-
missible constraints.

The method of transforming inadmissible constraints
into admissible constraints is given according to theo-
rem 2 and theorem 3.

R in theorem 3 can be obtained according to matrix
transformation:

Let
[

Duc µ0 I
Cuc −b 0

]

where M ∈ Z(muc+mc)×(nuc+mc), Duc ∈ Zmuc×nnc , Cuc ∈
Zmc×nuc , I ∈ Zmuc×muc , 0 ∈ Zmc×muc .

M(i, j) denotes the (i, j)th element of the matrix M,
and let j = 1.

¬ If M(i, j) > 0 in the M(muc + 1 . . .muc + mc, j),
then go to ­; otherwise j = j +1, carry out ¬ again.

­ If M(q, j) < 0 is not true in the M(1 . . .muc, j),
then the admissible controller cannot be designed, oth-
erwise find out min(|M(muc+1 . . .muc + mc, j)|) that
satisfies M(q, j) < 0, then go to ®.

® If |M(q, j)| ≥M(p, j) is true, then go to (a), oth-
erwise go to (b):

(a) M(p,•) = M(p,•)+M(q,•);
(b) f loor(M(p, j)/|M(q, j)|),

If mod(M(p, j),M(q, j)) = 0
Then M(p,•) == M(p,•)+dM(q,•);
Otherwise M(p,•) == M(p,•)+(d +1)M(q,•);
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¯ Carry out ¬ again until M(p, j) > 0 is not true in
M(muc +1 . . .muc +mc, j; and now matrix M is trans-

formed into matrix M′ =
[

Duc µ0 I
C′uc Rµ0−b R

]
, so

C′ = RD+C can be found.
The new admissible controller can by designed ac-

cording to the new constraints: C′v≤ b′. Since it only
considers the places related to uncontrollable transi-
tions and the transitions related to above places, so it
reduces the matrix dimension. The superiority is more
remarkable especially for systems with large scale.

4. Case Study

4.1 Case 1
A simple Petri net is shown in Figure 5 (real line

part) where t3 and t6 are uncontrollable transitions.
Suppose it is needed to design a controller to force

the following combined constraints to be satisfied:

u5 +u6 ≤ 1 (13)

The broken line part in Figure 3 is controller, which
is designed with the method in this paper.

De = LrD =

t1 t2 t3 t4 t5 t6
p3




1 0 −1 0 0 0



p4 0 1 −1 0 0 0
p5 0 0 1 −1 0 0
p6 0 0 0 0 −1 1
p7 0 0 0 0 1 −1

[
0 0 1 1 0

]

From matrix D, the matrix Duc is:

Duc




−1 0
−1 0
1 0
0 1
0 −1




LrDuc = [1 1]

Positive number is concluded in the matrix LrDuc,
namely it contains an arc from the controller place to
the uncontrollable transition, so inequality (13) is in-
admissible, and it needs to be transformed.

From the constraint transformation method in 3),
substitute Lr and Duc into M, and in terms of con-
straint transformation method ¬ to ¯

R1
[

1 0 0 0 1
]
,

R′1
[

0 1 0 0 1
]
,

L′r = R+LR =
[

1 0 1 1 1
]

or

L′r =
[

0 1 1 1 1
]

the new constraints are then:

u5 +u6 ≤ 1⇒ u3 +u5 +u6 +u7 ≤ 1 (14)

or

u4 +u5 +u6 +u7 ≤ 1 (15)

The constraints are OR-logics linear constraints, while
the controller cannot be designed with the method in
[8, 11]. According to the method in this paper, con-
struct De,

De = L− rD =
[

0 0 1 −1 −1 1
]

;

uc0 = Lrur0 = 0

If take the method of Moody [9] to design the con-
troller, then

L =
[

0 0 0 0 1 1 0
]

;

Dp =




−1 0 0 1 0 0
0 −1 0 1 0 0
1 0 −1 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1




;

The dimension of matrix L and matrix Dp is much
obviously higher than that of matrix Lr and matrix D.
Especially for systems with large scale, the computa-
tion complexity will increase as the dimension of ma-
trix L and matrix Dp increase. But apply the method
proposed in this paper, the dimension of matrix Lr and
matrix D will not increase as the plant scale becomes
large, so the method is efficient.

4.2 Case 2
Consider the typical example “cat and mouse” in

DES (Figure 6). Figure 7a and b are Petri net mod-
els for cat and mouse respectively, where transition c8
and transition m5 are uncontrollable [12]. It is neces-
sary to design controllers to insure that cat and mouse
are not in the same room at the same time. Describe
the control target with place marking constraints in
[13], however in [9], describe the constraints with Parikh
vector.

It is needed to design a controller to force the fol-
lowing combined constraints to be satisfied:

(vc3 +vc6−vc1−vc4)+(vm3 +vm6−vm1−vm4)≤ 1

(16)
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Figure 5 Petri net model

Figure 6 A controlled Petri net

(vc1 + vc8− vc2− vc7)+(vm2− vm3)≤ 1 (17)

(vc2− vc3)+(vm1− vm2)≤ 1 (18)

Figure 7 Model of “cat and mouse”

Figure 8 Petri net model of mouse

(vc4 + vc7− vc5− vc8)+(vm5− vm6)≤ 1 (19)

(vc5− vc6)+(vm4− vm5)≤ 1 (20)

(17) and (19) are inadmissible constraints, due to
the coefficients of uncontrollable transition c8 and m5.
So, in this paper, it only considers constraints (17) and
(19) to construct the controllers.

Construct local incident matrix D which is local the
incident matrix of places p2, p4, p9 and p10 that are
related to uncontrollable transition c8 and m5. The
transitions in matrix D are related to places p2, p4, p9
and p10 and the transitions where the coefficients are
not equal to 0 in constraints (17) and (19).

Duc =




1 0
−1 0
0 1
0 −1



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D =




c1 c2 c4 c5 c7 c8 m2 m3 m4 m5 m6

p2 1 −1 0 0 1 1 0 0 0 0 0
p4 0 0 1 −1 1 −1 0 0 0 0 0
p9 0 0 0 0 0 0 0 0 0 1 −1
p10 0 0 0 0 0 0 0 0 1 −1 0




The coefficient matrix corresponding to inadmissi-
ble constraints (11) and (13) is C:

C =
[

1 −1 0 0 −1 1 1 −1 0 0 0
0 0 1 −1 1 −1 0 0 0 1 −1

]

where the coefficient matrix corresponding to uncon-
trollable transition c8 and m5 is:

Duc =
[

1 0
−1 1

]

Design the controllers with the method proposed in
this paper:

M =
[

Duc µ0 I
Cuc −b 0

]
=




1 0 0 1 0 0 0
−1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 −1 1 0 0 0 1
1 0 −1 0 0 0 0
−1 1 −1 0 0 0 0




Obtain M′ through matrix transformation:

M′ =




1 0 0 1 0 0 0
−1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 −1 1 0 0 0 1
0 0 −1 0 1 0 0
−1 0 0 0 0 0 1




This is:

R =
[

0 1 0 0
0 0 0 1

]

C′ = RD+C

=
[

1 −1 1 −1 0 0 1 −1 0 0 0
0 0 1 −1 1 −1 0 0 1 0 −1

]

That is, inadmissible constraints (17) and (19) are
transformed into new admissible constraints:

(vc1− vc2 + vc4− vc5)+(vm2− vm3)≤ 1 (21)

(vc4− vc5 + vc7− vc8)+(vm4− vm6)≤ 1 (22)

Figure 9 The controlled Petri net model of case 2

Design the controllers according to inequalities (21)
and (22). The controlled Petri net is shown in Figure
8, where the broken line parts are controllers s1 and
s2. If take the method of [9] to design the controller,
then the dimension of matrix M is 12× 13, however
the dimension of matrix M in this paper is 6×7. The
method cuts down the calculating works during con-
troller designing through reducing the matrix dimen-
sion, because it only considers the places related to
uncontrollable transitions and the transitions related
to these places.

5. Conclusion

In this paper, a supervisory control approach has
been proposed for Petri net plants with uncontrollable
transitions that enforce the conjunction of a set of lin-
ear inequality constraints on the Parikh vector or place
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markings. The proposed method is entirely straight-
forward logically, graphically, technologically, and able
to avoid deadlock. This method becomes a useful al-
ternative to mapping monitors when there does not ex-
ist an admissible constraint after the constraint trans-
formation for the given problem. The method is based
on part net design, and it only considers the direct
or indirect transitions related to the constraints. So
the computation required to find the Petri net con-
troller is quite simple. Compared with the synthesis
method proposed by Wang [8] and Moody [4], the
method should be widely applicable and of practical
interest. The efficiency of the method has been shown
by means of examples. The method with these ad-
vantages lends itself as a practical approach to control
synthesis of large and complex DES.
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