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Abstract: Fault diagnosis is essential for the reliable, safe, and efficient operation of the plant and for maintaining
quality of the products in industrial system. This paper presents an ensemble fault diagnosis algorithm based on fuzzy
c-means algorithm (FCM) with the Optimal Number of Clusters (ONC) and probabilistic neural network (PNN), called
FCM-ONC-PNN. In clustering methods, the estimation of the optimal number of clusters is significant for subsequent
analysis. As a simple clustering method, FCM has been widely discussed and applied in pattern recognition and
machine learning, but FCM could not guarantee unique clustering result because initial cluster number is chosen
randomly. As the number of clusters is randomly chosen, the iterative amount is large and the result of the classification
is unstable. In this paper, firstly subtractive clustering is proposed to find the optimal number of clusters and the
clustering results of the FCM are compared with random initialization method, and then PNN is used to classify the
clustering data of FCM. The experiments show that the modified initial cluster number of FCM algorithm can improve
the speed, and reduce the iterative amount. At the same time, FCM-ONC-PNN approach can make classification more
stable and have higher precision.
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1. Introduction

With an increasing requirement for dynamic sys-
tems to be more secure and more reliable, fault de-
tection and diagnosis (FDD) in a control system is be-
coming more and more critical and important. The
main task of fault diagnosis is to detect and isolate the
occurring fault in order to avoid overall failure of the
monitored system and any catastrophes involving hu-
man fatalities or material damage.

There are many methods for fault diagnosis [1-5],
which can be grouped into the following two cate-
gories: 1) Model-based FDD; 2) Data-driven FDD in-
cluding knowledge-based FDD [6]. In the early days,

model-based FDD constituted the main stream of re-
search. However, mode-based FDD uses mathemati-
cal system models to estimate the system state and pa-
rameters, and in general these methods can only be ap-
plied to low dimensional systems. Alternatively, data-
driven FDD can deal with high dimensional data, and
data dimension reduction techniques [7-9] are gener-
ally used to highlight important information in data
sets.

Fault diagnosis involves two stages [10]: Prepro-
cessing and classification. The preprocessing includes
feature extraction and selection. The classification sta-
ge maps a pattern from the feature space to a decision.

International Journal of Intelligent Engineering and Systems, Vol.4, No.2, 2011 51



This mapping is done by a classifier which generates
a class membership function in order to classify un-
labelled incoming patterns into one of the predefined
classes. Depending on the information available for
classifier training, one can distinguish between super-
vised learning [11-14], such as PNN and SVM, and
unsupervised learning [15-17], also called clustering.

Although single fault diagnosis approach can be used
for fault classification, but each fault diagnosis tech-
nique has its disadvantages, and its effect of fault clas-
sification is limited. Therefore, ensemble methods in-
corporating several techniques for fault detection and
diagnosis seem attractive.

Some researchers deal with an ensemble method of
testing analog VLSI circuits [18], using wavelet trans-
form for analog circuit response analysis and arti?cial
neural networks (ANN) for fault diagnosis. Recogni-
tion system for totally unconstrained handwritten char-
acters for south Indian language of Kannada is pro-
posed [19]. The proposed feature extraction technique
is based on Fourier Transform and well known Princi-
pal Component Analysis (PCA). The system trains the
appropriate frequency band images followed by PCA
feature extraction scheme. For subsequent classifica-
tion technique, Probabilistic Neural Network (PNN)
is used.

Some articles add some clustering algorithms be-
fore PNN classification [1, 20]. Seok-Beom Roh [21]
introduces a new category of fuzzy models called a
fuzzy ensemble of parallel polynomial neural network,
which consists of a series of polynomial neural net-
works weighted by activation levels of information
granules formed with the use of fuzzy clustering. The
two underlying design mechanisms of the proposed
networks rely on information granules resulted from
the use of fuzzy C-means clustering (FCM) and take
advantage of polynomial neural networks (PNN). They
consider polynomial neural networks, which exhibit
highly nonlinear characteristics when being viewed as
local learning models. They use FCM to form infor-
mation granules and to overcome the high dimension-
ality problem. They adopt PNN to find the optimal
local models, which can describe the relationship be-
tween the input variables and output variables within
some local region of the input space.

A landslide susceptibility analysis is performed by
means of Artificial Neural Network (ANN) and Clus-
ter Analysis (CA) [22]. This kind of analysis is aimed
at using ANN to model the complex non linear rela-
tionships between mass movements and conditioning
factors for susceptibility, in order to identify unstable

areas. CA is adopted to improve the selection of train-
ing, validation, and test records from data.

There are two types of evaluation index to estimate
the optimal number of clusters: one is an external
measure based on a priori or empirically obtained bi-
ological information, and the other is an internal mea-
sure based on statistical indices. Different internal
measures consider the compactness of each cluster,
the separation of clusters, or a combination of both.
In fuzzy k-means clustering, indices, such as the par-
tition coefficient (PC) and fuzzy hyper volume (FHV )
consider compactness, and indices such as the Xie-
Beni index (XB) and the PBM index consider both
compactness and separation. These techniques [23-
29] could estimate the number of clusters in several
benchmarks; however, they are not universally appli-
cable for many practical situations.

To solve the optimal number of clusters problem,
this paper adds the subtractive clustering [30, 31] to
determine the number of clusters, and presents an en-
semble approach based on FCM of the optimal num-
ber of clusters and PNN.

This paper is organized as follows. The second sec-
tion briefly introduces fault diagnosis strategy based
on FCM-ONC-PNN. To validate the performance and
effectiveness of the proposed scheme, the application
of FCM-ONC-PNN approach to simulation benchmark
of TE process is illustrated in Section 3. Finally, con-
cluding remarks are made in Section 4.

2. FCM-ONC-PNN Algorithm

2.1 FCM
Fuzzy C-means (FCM) is one of the most popu-

lar unsupervised fuzzy clustering algorithms, which
has been widely used for image segmentation. The
general fuzzy C-means clustering algorithm was pro-
posed by Bezdek [32, 33].

The FCM algorithm assigns pixels to each category
by using fuzzy memberships. Let X = {xi, i = 1,2, . . . ,
N|xi ∈ Rd} denote an image with N pixels to be par-
titioned into c classes (clusters), where xi represents
feature data. The algorithm is an iterative optimiza-
tion that minimizes the objective function defined as
follows:

Jm =
c

∑
k=1

N

∑
i=1

um
ki ‖ xi−υk ‖2 (1)
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with the following constraints:

c

∑
k=1

uki = 1, ∀i;

0≤ uki ≤ 1, ∀k, i;
N

∑
i=1

uki > 0, ∀k

(2)

where uki represents the membership of pixel xi in the
kth cluster, υk is the kth class center, ‖ · ‖ denotes the
Euclidean distance, m > 1 is a weighting exponent on
each fuzzy membership. The parameter m controls the
fuzziness of the resulting partition. The membership
functions U and cluster centers V are updated by the
following expressions:

uki =
1

∑c
l=1(

‖xi−υk‖
‖xi−υl‖ )

2/(m−1)
(3)

and

υk =
∑N

i=1 um
kixi

∑N
i=1 um

ki
(4)

In implementation, matrix υ is usually randomly
initialized, and then U and V are updated through an
iterative process using (3) and (4), respectively.

2.2 Subtractive Clustering
Part of the problems faced by the FCM is determin-

ing the number of clusters needed prior to learning.
This is usually inputted by the user through a series of
trial and error values. Also the usage of random ini-
tialization does not provide deterministic results. Sub-
tractive clustering can overcome these problems.

Subtractive clustering [30, 31] is, essentially, a mod-
ified form of the Mountain Method. Thus, let Z be
the set of data points obtained by concatenation of N
value of the X(k− 1) and t, where t = bt1, . . . tnyc is
the vector of output target values, corresponding to the
ŷ(k). In the algorithm, each point is seen as a potential
cluster center, for which some potential measures are
assigned according to (5):

pi =
N

∑
j=1

e−α[zi−z j]2 (5)

where α = 4/r2
a and ra > 0 define the neighborhood

radius for each cluster center. Thus, the potential as-
sociated with each cluster depends on its distance to
all the points, leading to clusters with high potential
where neighborhood is dense. After calculating po-
tential for each point, the one with higher potential is

selected as the first cluster center. Let z∗1 be the center
of the first group and p∗1 its potential. Then the poten-
tial pi for each zi is reduced according to Eq.(6), espe-
cially for the points closer to the center of the cluster:

pi = pi− p∗1e−β [zl−z∗1]
2

(6)

where β = 4/r2
b and rb > 0 represent the radius of

the neighborhood for which significant potential re-
duction will occur. The radius for reduction of poten-
tial should be to some extent higher than the neigh-
borhood radius to avoid closely spaced clusters. Typ-
ically, rb = 1.25ra. Since the points closer to the clus-
ter center will have their potential strongly reduced,
the probability for those points to be chosen as the
next cluster is lower. This procedure (selecting centers
and reducing potential) is carried out iteratively until
stopping criteria is satisfied. Additionally two thresh-
old levels are defined, one above which a point is se-
lected for a cluster center and the other below which a
point is rejected.

2.3 Probabilistic Neural Network
The probabilistic neural network (PNN) used in this

study, shown in Fig.1, mainly includes a radial basis
layer and a competitive layer. The radial basis layer
contains the same number of neurons as that of the
train set. Each neuron is responsible to calculate the
probability that an input feature vector is associated
with a specific class.

The radial basis layer biases are all set as

b =
[− log(0.5)]1/2

spread
(7)

where spread is extended coefficient of RBF .
With an input victor X , the radial basis neuron com-

pares it with the neuron weight Wji and multiplies with
a bias b to calculate the probability,

O j = radbas(v j) (8)

where radbas can be selected from any of several can-
didate radial functions. In this paper, this radial func-
tion is selected as a Gaussian function.

O j = e−v2
j (9)

v j =‖Wji−X ‖ ·b (10)

where ‖ · ‖ denotes the Euclidean distance.
Consequently, as the distance between Wji and X de-

creases, the output O j increases and reaches the max-
imum of 1 when Wji = X . The sensitivity of the radial
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Figure 1 The sketch of PNN

basis neurons can be adjusted by varying the value of
b through the extended coefficient: spread. The com-
petitive lay then determines the maximum in the prob-
abilities and assigns 1 to the associated class, 0 to the
others.

2.4 FCM-ONC-PNN
This algorithm is proposed to improve the diagnose

accuracy and speed. At the same time, it is a combina-
tion of algorithm about FCM and PNN. Fig.2 shows
the sketch of the algorithm, which is briefly described
as follows:

Step 1: Get test data. For example, the data in this
paper come from Tennessee Eastman process.

Step 2: Chose the initial cluster number randomly
or determine it by subtracting .

Step 3: Cluster the data sets using FCM algorithm.
Step 4: Compare the clustering results of FCM-ONC

with random initialization method, and then evaluate
clustering effectiveness.

Step 5: Diagnose faults to the clustering data of
FCM-ONC by PNN.

3. Case Study

To validate the performance and effectiveness of the
method, FCN-ONC-PNN algorithm is applied to TE
Process (as showed in Fig.3) [34]. The test data of
fault 1fault 2 and fault 8 are seen as Example data set
(as showed in Fig.4, Fig.5 and Fig.6).

TE process is a benchmark problem in process en-
gineering. Downs and Vogel presented this particular
process at an AICHE meeting in 1990 as a plant-wide
control problem. The simulator of the Tennessee East-
man process consists of five major unit operations: a
reactor, a product condenser, a vapor-liquid separa-
tor, a recycle compressor, and a product stripper. Two
products are produced by two simultaneous gas-liquid
exothermic reactions, and a byproduct is generated by
two additional exothermic reactions. The process has

Figure 2 The sketch of the process

12 manipulated variables, 22 continuous process mea-
surements, and 19 compositions. The simulator can
generate 21 types of different faults, listed in Table 1.
Once the fault enters the process, it affects almost all
state variables in the process.

3.1 Evaluation method
To evaluate the efficiency of clustering algorithms,

PC and PE have been employed in the following ex-
periments. Bezdek has defined a performance mea-
sure based on minimizing the overall content of pair
wise fuzzy intersection in U , the partition matrix. He
has also proposed cluster validity index for fuzzy clus-
tering [30]: partition coefficient (PC). The index is
defined as

PC =
1
N

N

∑
i=1

C

∑
j=1

u2
i j (11)

where the PC index indicates the average relative amount
of membership sharing done between pairs of fuzzy
subsets in U , by combining into a single number, the
average contents of pairs of fuzzy algebraic products.
The index values range in 1/C, where C is the number
of clusters.
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The more the PC is close to 1, the more distinct the
result is; on the contrarythe more the PC is close to
1/C, the vaguer the result is.

Bezdek has proposed the partition entropy (PE) [33],
which is defined as

PE =− 1
N

N

∑
i=1

C

∑
j=1

ui j · loga(ui j) (12)

where a is the basis of the algorithm. The PE index is
a scalar measure of the amount of fuzziness in a given
U . The index is computed for values of C, greater than
1, and its values vary between [0, logaC].

Figure 3 Control system of the Tennessee Eastman process

Figure 4 Example data set of fault 1

The lesser PE, the more distinct clustering result of
FCM On the contrary, the closer to the logaC for PE,
the vaguer clustering result of FCM.

3.2 Evaluation on clustering effectiveness
In order to test the effectiveness of the FCM-ONC

method, the data set of TE Process is used.
Supposing the random number of clusters is 3. Fig.7,

Fig.8 and Fig.9 show the results of the FCM algorithm

Table 1 Process faults for the Tennessee Eastman process
Variable Disturbances Tpye

A/C feed ratio, B
1 composition Step

constant
2 B composition, A/C Step

ration constant
3 D feed temperature Step

Reactor cooling
4 water inlet Step

temperature
Condenser cooling

5 water inlet Step
temperature

6 A feed loss Step
C header pressure

7 loss-reduced Step
availability

8 A, B, C feed Random variation
9 D feed temperature Random variation

10 C feed temperature Random variation
Reactor cooling

11 water inlet Random variation
temperature

Condenser cooling
12 water inlet Random variation

temperature
13 Reaction kinetics Slow drift

Reactor cooling
14 water valve Sticking

Condenser cooling
15 water valve Sticking

16-20 Unknown Unknown
The valve for Step

21 Stream 4 was fixed constant
at the steady state position

position

Figure 5 Example data set of fault 2
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Figure 6 Example data set of fault 8

with the initial C = 3. From Fig.7, Fig.8 and Fig.9 we
find that the random number of clusters algorithm can
not accurately cluster the data set.

However, by subtracting clustering we know that
the initial number of clusters is 2, Fig.10, Fig.11 and
Fig.12 show the clustering result of the FCM algo-
rithm with the ONC initialization method on the ex-
ample data (C = 2). From Fig.10, Fig.11 and Fig.12,
we find that the FCM-ONC algorithm can accurately
discover the initial cluster number.

Furthermore, Table 2 illustrates the influence of the
two evaluation methods on clustering and the compar-
ison results of two initialization methods on the exam-
ple data.

Figure 7 Clustering result of FCM on fault 1 data set (C =
3)

3.3 Faults diagnosis of the clustering data of FCM
through the PNN

PNN is a feed-forward neural network with super-
vised learning which uses Bayes decision rule and Parzen

Figure 8 Clustering result of FCM on fault 2 data set (C =
3)

Figure 9 Clustering result of FCM on fault 8 data set (C =
3)

Figure 10 Clustering result of FCM-ONC on fault 1 data
set (C = 2)
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Figure 11 Clustering result of FCM-ONC on fault 2 data
set (C = 2)

Figure 12 Clustering result of FCM-ONC on fault 8 data
set (C = 2)

Table 2 The Comparison with different initialization meth-
ods

TE Evaluation The proposed Random
Fault method method method

(C = 2) (C = 3)
01 PC 0.97184 0.89076
01 PE 0.082754 0.2935
02 PC 0.95784 0.82378
02 PE 0.12547 0.43962
08 PC 0.85747 0.83544
08 PE 0.35521 0.43653

window. In order to deal with the effectiveness and
precision of fault diagnosis, the PNN is used. The ini-
tial data sets come from result of clustering through
FCM (as showed in Fig.13 and Fig.14) show the initial
data sets about fault 1. It is clustered two classes by
FCM. Fig.13 (C = 1) is a kind of data. Fig.14 (C = 2)
is another kind of data. Compared fault 1 (C = 1 and
C = 2) with the normal data by PNN, Fig.15 shows the
classifying result of the two kinds of data set (C = 1
and C = 2). The first 160 data are normal data, the
last 800 data are fault data. The experimental results
show that the FCM-ONC-PNN method outperforms
the other initialization methods. At the same time,
the experiments show that the modified initial cluster
number of FCM algorithm can improve the speed (as
showed in Fig.16 and Fig.17), and reduce the iterative
amount.

Figure 13 Fault 1 data set by FCM-ONC clustering (C = 1)

Figure 14 Fault 1 data set by FCM-ONC clustering (C = 2)
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Figure 15 Classifying result of the fault 1 data by FCM-
ONC-PNN

Figure 16 Iterative amount of FCM on fault 1 data

Figure 17 Iterative amount of FCM-ONC on fault 1 data

4. Conclusion

An ensemble fault diagnosis method based on FCM
with optimal number of clusters and PNN, called FCM-
ONC-PNN, is presented in this paper. Simulation stud-
ies show that the proposed algorithm not only pro-
vides an accepted degree of accuracy in fault classi-
fication under different fault conditions, but it is also
a reliable, fast and computationally efficient tool.
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