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Abstract: This note provides new stability criteria for a class of uncertain singular systems with multiple-state
delays. By introducing the state transformation, the study of the robust stability for original systems is changed
into this study for the equivalent systems. Based on the Lyapunov-Krasovskii functional combination with LMI
techniques, a delay-dependent robust stability criterion for the nominal systems of a class of uncertain singular systems
is established, which ensures the nominal systems are asymptotically stable. Furthermore, the delay-dependent robust
stability criterion for a class of uncertain singular systems with multiple-state delays is presented, which ensures the
class of uncertain singular systems is asymptotically stable. Finally, two numerical examples are given to illustrate the
effectiveness of the obtained results.
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1. Introduction

Time delays are frequently encountered in many dy-
namical systems, such as manufacturing systems, eco-
nomic systems, biological systems, networked sys-
tems, etc. They are generally regarded as a main source
of instability and poor performance in such systems.
One of the main purposes to analysize linear differen-
tial systems is to analyze the stability of the systems,
especially the certain and uncertain linear differential
control systems with time delay, which is important
not only in theory but also in practice and arouses a
lot of interests. Some results are obtained [1-5]. A
delay-dependent criterion for determining the stabil-
ity of systems with time-varying delays is obtained
by combing a new approach for linear time delay sys-
tems based on a descriptor representation with a re-
sult on bounding of cross products of vectors in [1].
In [4], the system with single state delay and uncer-
tainty is considered, and non-conservative results are

obtained by using new Lyapunov-krasovskii function-
als. The stability of regular systems with multiple-
state delay and uncertainty is considered in [6], and
based on Lyapunov-Krasovskii functionals combined
with LMI techniques. Thus delay-dependent robust
stability criteria are given.

It should be pointed out that the problem for singu-
lar systems is more complicated than that for regular
systems, and singular systems better describe physi-
cal systems than regular ones, so the singular systems
have been extensively studied in the past years [7-10].

Study of singular systems with time delay is of re-
curring interest [8, 10]. The robust stability and ro-
bust stabilization of uncertain singular systems with
single state delay are considered in [8]. The delay-
dependent robust stability criteria for two classes of
singular time-delay systems with norm-bounded un-
certainties are proposed in [11], which ensure that the
systems are regular, impulse free and asymptotically
stable for all admissible uncertainties. A great num-
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ber of results based on the theory of regular systems
have been extended to the area of singular systems
[9, 10]. Generally speaking, the existing results of
stability and stabilization for singular delay systems
can be classified into two types: delay-independent
conditions and delay-dependent conditions, and the
delay- independent case is more conservative than the
delay-dependent case, especially when the time delay
is comparatively small. The delay-independent case
has been extensively studied [13, 14]. Recently, the
problem of delay-dependent robust stability for un-
certain discrete singular time-delay systems has been
considered. In [15], the delay-dependent robust stabi-
lization result is proposed by transforming the system
into a standard state-space system.

This paper considers the robust stability of a class
of uncertain singular systems with multiple-state de-
lays. We obtain the transforming uncertain singular
systems which are called the equivalent system with
multiple-state delays via state transformation matrix,
so the research of the original system is changed into
the research of equivalent system. First, this brief con-
structs Lyapunov-Krasovskii functionals, which are ap-
plied to the equivalent nominal systems and equiva-
lent systems respectively. Then we present the delay-
dependent stability criteria, which ensure that the equiv-
alent systems are asymptotical stable. It ensures that
the original systems are asymptotically stable at the
same time.

Notations: R denotes the set of real numbers, Rn

denotes the n-dimensional Euclidean space over the
real and Rn×m denotes the set of all n×m real ma-
trices. For a real symmetric matrix X , the notation
X ≥ 0(X > 0) means that the matrix X is positive-
semidefinite (positive-definite), and λmin(X)(λmax(X))
denotes the minimum (maximum) eigenvalues of X .
Cn,τ :=C([−τ,0],Rn) denotes the Banach space of con-
tinuous vector functions mapping the interval [−τ,0]
into Rn, xt := x(t + θ), θ ∈ [−τ,0], t ≥ 0 denotes the
function family defined on [−τ,0] which is generated
by n-dimensional real vector valued continuous func-
tion x(t).t ∈ [−τ,∞]. ‖.‖ refers to the Euclidean vector
norm or spectral matrix norm,

‖φ‖ := sup−τ≤t≤0‖φ(t)‖

stands for the norm of a function φ(t) ∈ Cn,τ . The
symbol * will be used in some matrix expressions to
induce a symmetric structure, for example,

[
X Y
∗ Z

]
=

[
X Y

Y T Z

]

2. System Description
Consider the following uncertain time-delay singu-

lar systems described by
{

EẊ(t) = (A0 +4A0(x, t))x(t)+∑i=1
k (Ai +4Ai(x, t))x(t−hi)

x(t) = φ(t)∀t ∈[-h,0]
(1)

where x(t) ∈ Rn is the state vector, A j, j = 0,1, ...,k,
are known constant matrices with appropriate dimen-
sion, 4A j(x, t), j = 0,1, ...k are matrix functions rep-
resenting the uncertainties in the matrices A j, j = 0,1, ...k.
E is a singular matrix. Without the lose of generality,
we can assume that

E =
[

Ir 0
0 0

]

Ai =
[

Ai11 Ai12
Ai21 Ai22

]
,Ai11 ∈ Rr×r, i = 0,1, ...k,

x(t) =
[

x1(t)
x2(t)

]
,φ(t) =

[
φ1(t)
φ2(t)

]
,

x1(t),φ1(t) ∈ Rr×r,

4A j(x, t) = D jFj(x, t)E j, j = 0,1, ...,k

(2)

where Fj(x, t)∈ Rk j×g j are unknown real time-varying
matrices bounded by

FT
j (x, t)Fj(x, t)≤ I,∀t, j = 0,1, ...k (3)

D j and E j are known real constant matrices, hi, i =
0,1, ...,k, are the unknown constant delay terms, but
bounded 0 ≤ hi ≤ h. φ(t) is a smooth vector-valued
initial function in −h≤ t ≤ 0.

In the following, for simplicity, we denote4A j(x, t)=
4A j(t).

The aim of this paper is to develop delay-dependent
conditions for robust stability of the uncertain time-
delay system (1).

The following lemma is needed in the proof of this
paper.

Lemma 1[12] Let D,E and F be real matrices of
appropriate dimensions with ‖F‖ ≤ 1, then for any
scalar ε > 0, we have the following inequality:

DFE +ET FT DT ≤ ε−1DDT + εET E (4)

Lemma 2[16] (Schur complement) Given constant
symmetric matrices S1,S2,S3, where S1 = ST

1 ,0 < S2 =
ST

2 , then S1 +S3S−1
2 S3 < 0 if and only if

[
S1 ST

3
S3 −S2

]
< 0,or

[ −S2 S3
ST

3 S1

]
< 0,
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3. Main Results

Let

z(t) = eαtx(t), t > 0 (5)

where α > 0 is stability degree. Differentiating z(t)
with respect to t, we have

ż(t) = αeαtx(t)+ eαt ẋ(t) = αz(t)+ eαt ẋ(t) (6)

Then, from (1), (5) and (6), we have

Eż(t) = αEz(t)+ eαtEẋ(t)
= (αE +A0 +4A0)z(t) (7)

+
k

∑
i=1

(Ai +4Ai)eαhiz(t−hi)

Z(t) = eαtφ(t),∀t ∈ [−h,0]

So the research for the system (1) is changed into the
research for the system (7).

The nominal singular delay system of (1) can be
written as

{
EẊ(t) = A0x(t)+∑i=1

k Aix(t−hi)
x(t) = φ(t)∀t ∈ [−h,0]

(8)

Throughout this paper we shall use the following
concept of robust stability for uncertain systems (7).

Definition 1[7] The singular system (7) is said to be
robust stable if for any ε > 0, there exist a δ (ε) > 0
such that for all continuous eαtφ(t), with eαtφ(t) sat-
isfying the solution to (7) satisfying sup

−τ≤r≤0
‖eαtφ(t)‖≤

δ (ε) , the solution z(t) to (7) satisfying ‖z(t)‖ ≤ ε
for all t ≥ 0 The solution of (7) is said to be robust
asymptotically stable if it is stable and furthermore
z(t)→ 0,when t → ∞.

Remark 1 Because x(t) = e−αtz(t), where α > 0,
the asymptotical stability of the system (7) ensures
the asymptotically stability of the system (1), and we
transform the research for the system (1) into the re-
search for the system (7).

First of all, we will investigate the nominal system
stability of system (7).

The nominal singular delay system of (7) can be
written as

EẊ(t) = αEz(r)+ eαt(A0x(t)+
k

∑
i=1

Aox(t−hi))

= (A0 +αE)z(t)+
k

∑
i=1

Aieαhiz(t−hi) (9)

z(t) = eαtφ(t),∀t ∈ [−h,0]

Remark 2 If A022 is non-singular, then the system
(9) is regular and impulse free [17]. In this case, the
compatible initial condition is

0 = A021φ1(0)+A022φ2(0)+
k

∑
i=1

eαhiAi21z1(t−hi)

+
k

∑
i=1

eαhiAi22z2(t−hi)

Define the difference operator D : Cn−r,r → Rn−r

D(z2t) = z2(t)+
k

∑
i=1

eαhiA−1
022Ai22z2(t−hi)

That the operator is stable means that the equation
Dz2t = 0 is asymptotically stable.

We need the following lemma.
Lemma 3 [10] If the operator D is stable and there

exist positive number α,β ,γ and a continuous func-
tional V : Cn,τ → R such that

α‖Z1(t)‖ ≤V (zt)≤ β‖zt‖2
c

V̇ (zt)≤−γ‖z(t)‖2 (10)

and the function V̄ (t) =V (zt) is absolutely continuous
for zt satisfying (9), then (9) is asymptotically stable.

In the following, we give the asymptotically stable
condition of the system (8).

Theorem 1 Consider the singular delay system (8)
with all constant delays hi ∈ [0,h], i = 0,1, ...,k. Then
the system (8) is asymptotically stable if there ex-

ist 0 < R ∈ Rn×n, i = 1, ...,k,P =
[

P1 0
P2 p3

]
∈ Rn×n,

with 0 < P1 ∈ Rr×r, and a constant α > 0, such that
the following LMI holds:

[
X1 M1
MT

1 −N1

]
< 0 (11)

where

X1 = PT A0 +AT
0 P+αPT E +αEP+

k

∑
i=1

Ri

M1 = [eαh1PT A1 . . .eαhk PT A1]
N1 = diagR1, ...,Rk

Proof Let z(t) = eαtx(t) then the system (8) is trans-
formed into the system (9). From (11), we get . (12)

X1 < 0 (12)
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From (2) and (12), we have
[

Γ11 PT
1 A012 +PT

2 A022 +AT
021P3 +∑k

i=1 Ri12

Γ21 PT
3 A022 +AT

022P3 +∑k
i=1 Ri22

]
< 0

where

Γ11 = PT
1 A011 +PT

2 A021 +AT
011P2 +AT

021P2 +αP1

+αPT
1 +

k

∑
i=1

Ri11

Γ21 = AT
012P1 +AT

022P2 +PT
3 A021 +

k

∑
i=1

RT
i12

Hence, it is yielded that

PT
3 A022 +AT

022P3 +
k

∑
i=1

Ri22 < 0

Noticing
k
∑

i=1
Ri22 > 0 we get PT

3 A022 + AT
022P3 < 0,

which implies that A022 is non-singular. Therefore, the
system (9) is regular and impulse free [17]. According
to Lemma 2 in [7], we know that the operator D is
stable.

Constructing the Lyapunov-Krasovskii functionals
for the system (9) as follows:

V (z(t),z(t−h1), ...,z(t−hk)) = zT (t)EPz(t)+
k

∑
i=1

∫ t

t−hi

zT (θ)Riz(θ)dθ

we get

t ≥ hi(i = 1,2, ...k),‖zt‖c = sup
θ∈[−τ,0]

‖z(t +θ)‖ (13)

Because

d
dt

(zT (t)EPz(t)) = 2zT
1 (t)P1ż1(t)

= 2zT
1 (t)PT

[
ż1(t)

0

]

the time derivative of along the trajectory of (9) is
given by

V̇ (z(t),z(t−h1), ...,z(t−hk)) = 2zT (t)PT
[

ż1(t)
0

]

+
k

∑
i=1

(zT (t)Riz(t)− zT (t−hi)Riz(t−hi))

= 2zT (t)PT [(A0 +αE)z(t)+
k

∑
i=1

Aieαhoz(t−hi)]

+
k

∑
i=1

(zT (t)Riz(t)− zT (t−hi)Riz(t−hi))

= zT (t)(2PT A0 +2αPT E +
k

∑
i=1

Ri)z(t)

+zT (t)(2PT
k

∑
i=1

Aieαhi)z(t−hi)

−
k

∑
i=1

zT (t−hi)Riz(t−hi)

We get

V̇ (z(t),z(t−h1), ...,z(t−hk)) = ξ T Sξ

where

ξ = [V̇ (z(t),z(t−h1), ...,z(t−hk))]T

S =
[

X1 M1
MT

1 −N1

]
(14)

M1,X1,N1 are defined in (11)
From condition (11), we have . Thus, from the sta-

bility of operator , Lemma 3 and (13), it follows that
system (9) is asymptotically stable. So the system (8)
is asymptotically stable. This completes the proof.

Theorem 2 Consider the singular delay system (1)
with 4A j(t) = D jFj(t)E j, j = 0,1, ...k,‖F‖ ≤ 1 For
all delays given hi ∈ [0,h], i = 1,2, ...k, the system (1)
is robust asymptotically stable if there exist 0 < R ∈
Rn×n, i = 1, ...,k,P =

[
P1 0
P2 p3

]
∈ Rn×n, with 0 <

P1 ∈ Rr×r and scalars ε j > 0, j = 1, ...,k, such that the
following LMI holds:




X2 M1 K M3
MT

1 −N2 0 0
KT 0 −T 0
MT

3 0 0 −N3


 < 0 (15)

where

X2 = PT A0 +AT
0 P+αPT E +αEP+

+∑k
i=1 Ri + ε0ET

0 E
K = PT D1 ... PT Dk
T = diage−2αh1ε1Ik1 ... e−2αhk εkIkk

M3 = PT D0,N3 = ε0Ik0

M1 = [e−2αh1PT A1 ... e−2αhk PT Ak]
N2 = diagR1− ε1ET

1 E1, ....,Rk− εkET
k Ek

(16)

Proof Using we transform (1) into the system (7).
Similar to the proof in theorem 1, we get that the

operator D is stable.
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Constructing the Lyapunov-Krasovskii functional for
system (7) as follows:

V (z(t),z(t−h1), ...,z(t−hk)) = zT (t)EPz(t)+
∑k

i=1
∫ t

t−hi
zT (θ)Riz(θ)dθ

V̇ (z(t),z(t−h1), ...,z(t−hk)) = 2zT (t)PT
[

ż1(t)
0

]

+∑k
i=1(z

T (t)Riz(t)− zT (t−hi)Riz(t−hi))
= 2zT (t)PT [(αE +A0 +4A0)z(t)

+∑k
i=1(Ai +4Ai)eαhiz(t−hi)]

+∑k
i=1(z

T (t)Riz(t)− zT (t−hi)Riz(t−hi))

Hence we have

V̇ (z(t),z(t−h1), ...,z(t−hk)) = ξ T (S + S̄)ξ (17)

where

S̄ =
[

Γ M2
Mt

2 0

]

Γ = PT4A0 +4AT
0 P

M2 = [eαh1PT4A1, ...,eαhk PT4Ak]

(18)

and S is given by (14).
Since

S + S̄ = S + γ0F0Ξ0 +(γ0F0Ξ0)T

+
k

∑
i=1

γiFiΞi +
k

∑
i=1

(γiFiΞi)T

where

γ0 = [DT
0 P0 . . .0]T

Ξ0 = [E00 . . .0]
γi = [eαhiDT

i 0 . . .0]
Ξi = [0 . . .0Ei0 . . .0]

Ei is the i-th column of Ξi. Using Lemma 1, we have

S + S̄≤ S +
k

∑
i=0

εiΞT
i Ξi +

k

∑
i=0

ε−1
i γiγT

i

Using Lemma 2, we know that

S +
k

∑
i=0

εiΞT
i Ξi +

k

∑
i=0

ε−1
i γiγT

i < 0 (19)

is equivalent to



X2 M1 K M3
MT

1 −N2 0 0
KT 0 −N̄1 0
MT

3 0 0 −N3


 < 0 (20)

where

N̄1 = diag{e−2αh1ε1Ik1 , . . . ,e
−2αhk εkIkk}

From (15) and (16), we know that (20) is true, so
S+ S̄ < 0. Thus it is yielded that V̇ < 0 whenever ξ is
not zero. According to the stability of the operator D,
Lemma 3 and (13), it follows that the system (7) is ro-
bust asymptotically stable. So the system (1) is robust
asymptotically stable. This completes the proof.

Remark 3 Let k = 1, then the system (7) only has
one single state delay, and (15) can be transformed
into (21) as LMI problem on a single state delay.




Π Π1 Π2 M3
ΠT

1 −B1 0 0
ΠT

2 0 −B2 0
MT

3 0 0 −N3


 < 0 (21)

where

Π = PT A0 +AT
0 P+αPT E +αEP+R1 + ε0ET

0 E

Π1 = eαh1PT A1, Π2 = PT D1, B1 = R1− ε1ET
1 E1

B2 = e−2αhε1Ik1 , M3 = PT D0, N3 = ε0Ik0

4. Numerical Examples
Example 1 Consider the following uncertain linear

time-delay singular systems
[

1 0
0 0

][
ż1(t)
ż2(t)

]
=

[ −1+0.1 0
0 −1

][
z1(t)
z2(t)

]

+
2

∑
i=1

[ −0.01 0
0 −0.01

]
e0.1hi z(t−hi) (22)

It is obvious that

α = 0.1, E =
[

1 0
0 0

]
, A0 =

[ −1 0
0 −1

]

Ai = E =
[ −0.01 0

0 −0.01

]
, hi ≤ h, i = 1,2

Set

Ri =
[

1 0
0 1

]
, i = 1,2

then

N1 = diagR1,R2

For simple, set

P =
[

c 0
0 d

]
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where c and d are positive scalars and will be deter-
mined later. Noticing (11), we have

X1 =
[ −2c+2×0.1c+2 0

0 −2d +2

]
,

M1 =




e0.1h1

[ −0.01c 0
0 −0.01d

]T

e0.1h2

[ −0.01c 0
0 −0.01d

]T




T

Using Lemma 2, (11) is equivalent to

X1 +M1N−1
1 MT

1 < 0

It is obtained that

X1 +M1N−1
1 MT

1 <

[
Σ1 0
0 Σ2

]

where

Σ1 = −2c+0.2c+2+2×0.012e0.2hc2

Σ2 = −2d +2+2×0.012e0.2hd2

So if
{ −2c+0.2c+2+2×0.012e0.2hc2 < 0
−2d +2+2×0.012e0.2hd2 < 0

(23)

then

X1 +M1N−1
1 MT

1 < 0

Solving (23), we get

1.8−√41

2×2×0.012e0.2h < c <
1.8+

√41

2×2×0.012e0.2h

2−√42

2×2×0.012e0.2h < c <
2+

√42

2×2×0.012e0.2h

(24)

where

41 = 1.82−4×2×0.012e0.2h×2
42 = 22−4×2×0.012e0.2h×2

Solving the following inequalities:
{ 41 > 0
42 > 0

we get h < 10ln45. Hence when h < 10ln45 we have
41 > 0, 42 > 0. Take c and d satisfying (24), then
the following inequality holds:

X1 +M1N−1
1 MT

1 < 0

According to Theorem 1, the system (22) is asymptot-
ically stable.

Example 2 Consider the uncertain time-delay sys-
tems

[
1 0
0 0

][
ż1(t)
ż2(t)

]
=

{[ −1+0.1 0
0 −1

]
+4A0

}[
z1(t)
z2(t)

]

+
2

∑
i=1

{[ −1+0.1 0
0 −1

]
+4Ai

}
e0.1hiz(t−hi) (25)

and the uncertainties can be described by

4A j(x, t) = D jFj(x, t)E j, j = 0,1,2

with

D j = E j

[ √
0.5 0
0

√
0.5

]
,Fj =

[
σ1 0
0 σ2

]

where σ1 and σ2 are unknown real parameters with
σ1 < 10−4, σ2 < 10−4 Set

R j =
[

1 0
0 1

]
, i = 1,2

and

P =
[

c 0
0 d

]

where c and d are positive scalars and will be deter-
mined later.

Noticing (11), we have

X1 =
[

Σ3 0
0 Σ4

]
,

M0 =




eαh1

[ −0.01c+0.5σ1c 0
0 −0.01d +0.6σ2d

]T

eαh2

[ −0.01c+0.5σ1c 0
0 −0.01d +0.6σ2d

]T




T

Σ3 = 2c(−1+0.5σ1)+2×0.1c+2

Σ4 = 2d(−1+0.6σ2)+2

Using Lemma 2, (11) is equivalent to

X0 +M0N−1
1 MT

0 < 0

It is obtained that

X0 +M0N−1
1 MT

0 <

[
Σ5 0
0 Σ6

]

where

Σ5 = 2c(−1+0.5σ1)+0.2c+2+2(0.01c−5σ1c)2e0.2h

Σ6 = 2d(−1+0.6σ2)+2+2(0.01d−0.6σ2d)2e0.2h
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Noticing σ2
1 < 10−4,σ2

2 < 10−4 we get

Σ5 = 2(−0.01+0.5σ1)2e0.2hc2+
+(−1.5+σ1)c+2
< 2× (−0.01−0.5×10−2)2e0.2hc2

+(−1.8+10−2)c+2
Σ6 = 2(−0.01+0.6σ2)2e0.2hd2+

+(−2+1.2σ2)d +2
< 2× (−0.01−0.6×10−2)2e0.2hd2 +2
+(−2+1.2×10−2)d

(26)

Solving the following inequalities

2× (−0.01−0.5×10−2)2e0.2hc2

+(−1.8+10−2)c+2 < 0
2× (−0.01−0.6×10−2)2e0.2hd2 +2

+(−2+1.2×10−2)d < 0

(27)

we get

1.79−√43

9×10−4e0.2h < c <
1.79+

√43

9×10−4e0.2h

1.988−√44

1.024×10−3e0.2h < d <
1.024+

√44

1.024×10−3e0.2h

(28)

where

43 = 1.792−16×1.52×10−4e0.2h

44 = 1.9882−16×1.62×10−4e0.2h

we get h < 10ln 179
6 . So when h < 10ln 179

6 , we have
43 > 0,44 > 0. Take c and d satisfy (28), then the
following inequality holds:

X0 +M0N−1
1 MT

0 < 0

According to Theorem 1, system (25) is asymptoti-
cally stable for any

σ2
1 ≤ 10−4, σ2

2 ≤ 10−4

5. Conclusion

This paper deals with the problem of robust stability
criteria for a class of uncertain linear time-delay sin-
gular systems. Firstly, we consider the equivalent sys-
tems of the original systems by introducing the state
transformation. The Lyapunov-Krasovskii functional
is constructed, and is applied to the equivalent sys-
tems and the nominal system of the equivalent sys-
tems. The delay-dependent robust stability criterion
for the equivalent systems is obtained, which also en-
sures the original system is asymptotically stable.
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