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Abstract: This note provides new stability criteria for a class of uncertain singular systems with multiple-state
delays. By introducing the state transformation, the study of the robust stability for original systems is changed
into this study for the equivalent systems. Based on the Lyapunov-Krasovskii functional combination with LMI
techniques, a delay-dependent robust stability criterion for the nominal systems of a class of uncertain singular systems
is established, which ensures the nominal systems are asymptotically stable. Furthermore, the delay-dependent robust
stability criterion for a class of uncertain singular systems with multiple-state delays is presented, which ensures the
class of uncertain singular systems is asymptotically stable. Finally, two numerical examples are given to illustrate the

effectiveness of the obtained results.
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1. Introduction

Time delays are frequently encountered in many dy-
namical systems, such as manufacturing systems, eco-
nomic systems, biological systems, networked sys-
tems, etc. They are generally regarded as a main source
of instability and poor performance in such systems.
One of the main purposes to analysize linear differen-
tial systems is to analyze the stability of the system:s,
especially the certain and uncertain linear differential
control systems with time delay, which is important
not only in theory but also in practice and arouses a
lot of interests. Some results are obtained [1-5]. A
delay-dependent criterion for determining the stabil-
ity of systems with time-varying delays is obtained
by combing a new approach for linear time delay sys-
tems based on a descriptor representation with a re-
sult on bounding of cross products of vectors in [1].
In [4], the system with single state delay and uncer-
tainty is considered, and non-conservative results are

obtained by using new Lyapunov-krasovskii function-
als. The stability of regular systems with multiple-
state delay and uncertainty is considered in [6], and
based on Lyapunov-Krasovskii functionals combined
with LMI techniques. Thus delay-dependent robust
stability criteria are given.

It should be pointed out that the problem for singu-
lar systems is more complicated than that for regular
systems, and singular systems better describe physi-
cal systems than regular ones, so the singular systems
have been extensively studied in the past years [7-10].

Study of singular systems with time delay is of re-
curring interest [8, 10]. The robust stability and ro-
bust stabilization of uncertain singular systems with
single state delay are considered in [8]. The delay-
dependent robust stability criteria for two classes of
singular time-delay systems with norm-bounded un-
certainties are proposed in [11], which ensure that the
systems are regular, impulse free and asymptotically
stable for all admissible uncertainties. A great num-
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ber of results based on the theory of regular systems
have been extended to the area of singular systems
[9, 10]. Generally speaking, the existing results of
stability and stabilization for singular delay systems
can be classified into two types: delay-independent
conditions and delay-dependent conditions, and the
delay- independent case is more conservative than the
delay-dependent case, especially when the time delay
is comparatively small. The delay-independent case
has been extensively studied [13, 14]. Recently, the
problem of delay-dependent robust stability for un-
certain discrete singular time-delay systems has been
considered. In [15], the delay-dependent robust stabi-
lization result is proposed by transforming the system
into a standard state-space system.

This paper considers the robust stability of a class
of uncertain singular systems with multiple-state de-
lays. We obtain the transforming uncertain singular
systems which are called the equivalent system with
multiple-state delays via state transformation matrix,
so the research of the original system is changed into
the research of equivalent system. First, this brief con-
structs Lyapunov-Krasovskii functionals, which are ap-
plied to the equivalent nominal systems and equiva-
lent systems respectively. Then we present the delay-

dependent stability criteria, which ensure that the equiv-

alent systems are asymptotical stable. It ensures that
the original systems are asymptotically stable at the
same time.

Notations: R denotes the set of real numbers, R"
denotes the n-dimensional Euclidean space over the
real and R"*™ denotes the set of all n x m real ma-
trices. For a real symmetric matrix X, the notation
X > 0(X > 0) means that the matrix X is positive-
semidefinite (positive-definite), and Ay (X ) (Aax (X))
denotes the minimum (maximum) eigenvalues of X.
Cp,z :=C([—7,0],R") denotes the Banach space of con-
tinuous vector functions mapping the interval [—7,0]
into R", x, :=x(t+60), 0 € [—7,0],# > 0 denotes the
function family defined on [—t,0] which is generated
by n-dimensional real vector valued continuous func-
tion x(¢).t € [—T,00|. ||.|| refers to the Euclidean vector
norm or spectral matrix norm,

191 := sup—z<i<ol|¢(1)]]

stands for the norm of a function ¢(z) € C, ;. The
symbol * will be used in some matrix expressions to
induce a symmetric structure, for example,

Mt

2. System Description

Consider the following uncertain time-delay singu-
lar systems described by

{ EX(1) = (Ao + DAo(x,1))x(r) + LN (A + DA (x,1))x(r — Iy) n

x(t) = ¢(¢r)Vr €[-h,0]

where x(t) € R" is the state vector, Aj,j =0,1,...,k,
are known constant matrices with appropriate dimen-
sion, AAj(x,t),j=0,1,...k are matrix functions rep-

resenting the uncertainties in the matrices A, j=0,1,...k.

E is a singular matrix. Without the lose of generality,
we can assume that

I, 0
=5 o]
A A rxr o
A= |:Ai21 Ao :| JAjnn ER™Ti=0,1, ..k, o
EG G
K= [ 0 (1) } 0= [ o201 ]

x1(t),01(t) € R,
AA.,'()C,Z‘) :Dij(x,t)Ej,j = 0, 1, 7k

where Fj(x,t) € R%*8i are unknown real time-varying
matrices bounded by

F/ (x,0)Fj(x,t) <I,V1,j=0,1,..k (3)
D; and E; are known real constant matrices, h;,i =
0,1,...,k, are the unknown constant delay terms, but
bounded 0 < h; < h. ¢(t) is a smooth vector-valued
initial function in —h <t <0.

In the following, for simplicity, we denote AA (x,1) =
AA(t).

The aim of this paper is to develop delay-dependent
conditions for robust stability of the uncertain time-
delay system (1).

The following lemma is needed in the proof of this
paper.

Lemma 1[12] Let D,E and F be real matrices of
appropriate dimensions with ||F|| < 1, then for any
scalar € > 0, we have the following inequality:

DFE+ETF'D" <& 'DD" +¢ETE 4)

Lemma 2[16] (Schur complement) Given constant
symmetric matrices S1,5,,53, where S| = SIT, 0<S =
ST, then Sy + $3S5 'S5 < 0 if and only if

]<0,0r[ 52 5 ] <0,

[ Sy ST
sEoS

S3 =5
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3. Main Results
Let

z(t) = e¥x(t),t > 0 (5)

where o > 0 is stability degree. Differentiating z(¢)
with respect to #, we have

2(t) = e x(t) + e x(t) = az(r) + e*%(r) (6)
Then, from (1), (5) and (6), we have

E#(t) = aEz(t) + e EX(1)
= (QE + Ao+ DAo)z(t) 7
k
+ Y (Ai+ AA)e™iz(t — Iy)
i=1

Z(t) = ¥ ¢(1),¥1 € [~h,0]

So the research for the system (1) is changed into the
research for the system (7).

The nominal singular delay system of (1) can be
written as

{ EX(t) = Aox(t) + Z};:l Aix(t —hy)

x(t) = ¢(t)Vt € [=h,0] (8)

Throughout this paper we shall use the following
concept of robust stability for uncertain systems (7).

Definition 1[7] The singular system (7) is said to be
robust stable if for any € > 0, there exist a 6(€) > 0
such that for all continuous e™ ¢(r), with e ¢(z) sat-

isfying the solution to (7) satisfying sup |[[e¥ ¢ (r)]| <
—1<r<0

O(€) , the solution z(7) to (7) satisfying ||z(¢)| < €
for all t > 0 The solution of (7) is said to be robust
asymptotically stable if it is stable and furthermore
z(t) — 0,when t — oo,

Remark 1 Because x(t) = e~ %z(¢), where a > 0,
the asymptotical stability of the system (7) ensures
the asymptotically stability of the system (1), and we
transform the research for the system (1) into the re-
search for the system (7).

First of all, we will investigate the nominal system
stability of system (7).

The nominal singular delay system of (7) can be
written as

EX(t) = aEz(r) +e* (Aox(t) + ion(t—h[))
=

1

k
= (Ao+aE)z(t)+ Y Ae™iz(t—h;)  (9)
i=1

z(t) = €™ (t),Vr € [—h,0]

Remark 2 If Ay, is non-singular, then the system
(9) is regular and impulse free [17]. In this case, the
compatible initial condition is

k
0 = A02191(0) +Ao2292(0) + Y ™A1z (t — )
i=1

eiApnzy(t —hy)

k
+

i=1

Define the difference operator D : C,—,., — R"™"

k
D(Zzz) =2 (l‘) + Z eahiA(;Z]zAizzzz (t — hi)
i=1
That the operator is stable means that the equation
D, = 0 is asymptotically stable.
We need the following lemma.
Lemma 3 [10] If the operator D is stable and there
exist positive number «, 3,7 and a continuous func-
tional V : C, : — R such that

al|Zi(1) || < V(z) < Bllzl2

V() < =Yz (10)

and the function V () = V(z;) is absolutely continuous
for z, satisfying (9), then (9) is asymptotically stable.

In the following, we give the asymptotically stable
condition of the system (8).

Theorem 1 Consider the singular delay system (8)
with all constant delays h; € [0,h],i =0, 1,...,k. Then
the system (8) is asymptotically stable if there ex-
istO<RER"i=1,.. k,P= [ A0 ] € R,

P p3
with 0 < P € R™", and a constant & > 0, such that
the following LMI holds:

[ X M (11

ur | <o

where

k

X; = PTAg+AjP+aP"E+EP+ ) R
i=1

M1 = [eahIPTAl...eahkPTAl]

N = diagRl,...,Rk

Proof Let z(1) = e™ x(t) then the system (8) is trans-
formed into the system (9). From (11), we get . (12)

X; <0 (12)
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From (2) and (12), we have

Ty PlAoi + Pl Agon + AL Ps+ Y5 Rin

<0
oy Pl Ap2 + AL Ps+ Y5 R

where

Ty = PlAoi + Pl Apat + AL Py + AL P+ aPy

k
+aP{ +Y R
i=1

k
Iy = Al P 4+ AL,y + Pl Agyy + ZRﬁz
i=1

Hence, it is yielded that

k
P3TA()22 +A522P3 + ZRizz <0

i=1

Noticing {‘, Rz > 0 we get PI Aoy +Al,,P5 <0,
which implileslthat Aqpo is non-singular. Therefore, the
system (9) is regular and impulse free [17]. According
to Lemma 2 in [7], we know that the operator D is
stable.

Constructing the Lyapunov-Krasovskii functionals
for the system (9) as follows:

V(Z(t)vz(t_hl)’ "'7Z(t_hk)) = ZT(t)EPZ(f)'f‘
k

L[, @raordo

i

we get

t>hi(i=1,2,..k),|zllc= sup |z(t+6)] (13)
]

6c[—1,0
Because
%(ZT(t)EPZ(I)) = 2z (1)Pi21 (1)
— 2" 4]

the time derivative of along the trajectory of (9) is
given by

V<Z(Z)7Z(f—h1), ezt —hy)) = 2ZT(Z)PT |:Zl(§t):|

(=" ()Riz(t) — 2" (t — hi)Riz(t — hy))

gl

+
i=1
= 2T (P [(Ao + AE)2(r) + Y At — )
i=1

+ i(ZT(f)RiZ(f) — 2 (t — hi)Riz(t — hy))
i=1

=7 (t)(2P"Ag+2aP"E + f Ri)z(t)

i=1

k
+ZT (t) (ZPT ZAieahi)Z(t — h,)
i=1
k

=Y (e —hi)Riz(t — i)

i=1

We get

V(z(t),z2(t —hy),....z2(t — hy)) = ETSE

where

§ = WV(z(t),2(t =), szt — )]

X M
S = {MIT —Nl] (14)

M;,X,,N; are defined in (11)

From condition (11), we have . Thus, from the sta-
bility of operator , Lemma 3 and (13), it follows that
system (9) is asymptotically stable. So the system (8)
is asymptotically stable. This completes the proof.

Theorem 2 Consider the singular delay system (1)
with AA](I) = Dij(l)Ej,j =0,1,.. .k, ”FH < 1 For
all delays given h; € [0,h],i = 1,2,...k, the system (1)
is robust asymptotically stable if there exist 0 < R €
RV i=1,.. kP= [ B0 } € R™" with 0 <

P p3
P; € R™" and scalars €; > 0, j = 1,...,k, such that the
following LMI holds:

X, My K M
<0 (15)

where

X =PTAg+Al P+ aP"E + aEP+

+ Zi'(:l R+ SoEOTE
K = PTD, PT'D,
T = diage **M g1},
M3 = P"Dy,N3 = g,
M1 — [e—ZOchIPTA1 e—ZOchkPTAk]
N, = diagRl — 81E1TE1,....,Rk — SkEkTEk

e—Zahkgkak (16)

Proof Using we transform (1) into the system (7).
Similar to the proof in theorem 1, we get that the
operator D is stable.
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Constructing the Lyapunov-Krasovskii functional for
system (7) as follows:

V(z(t),2(t = ), . (t—hk)) ! ()EPz(1)+

Y hZT(Q) 2(0)d6
V(z(t),z2(t —h1), .o 2(t — i) = 227 (1) PT é) ]

+ Y0 (T (0)Riz(1) — 2" (1 — hi)Riz (1 — i)
=27 (l‘)PT[(OCE +Ao+ AA())Z(t)

+ Y0 (A4 DA eiz (1 — hy)]

+ X0 (27 ()Riz(t) — 2 (t — hi)Riz(t — hy))

Hence we have

Vi(z(t),z(t —hy),....z(t —h)) = ET(S+8)E  (17)
where
< | T M
> [ M 0 ]
(18)
=Pl AAy+ AATP
My = [e*M PT NAY, ..., e""" PT AAY]
and § is given by (14).
Since
S+S =S+ wFE0+ (0FZ0)"
k k
+Y WEEi+ Y (rFE)"
i=1 i=1
where

% = [D§PO...0)"
Zo = [Eo0...0]

= [e*DT0...0]
Z; = [0...0E0...0]

E; is the i-th column of E;. Using Lemma 1, we have

k k
S+S<S+Y &=+ ) & 'ny
i=0 i=0

Using Lemma 2, we know that

S+Z£,”T” +Ze "nyl <0 (19)
is equivalent to
X, My K M
M -~ 00
KT 0 -N, 0 <0 (20)
MI 0 0 -MD

where

Vi . —2ah —20h
N; = diag{e teily,,....e “erly, }

From (15) and (16), we know that (20) is true, so
S+8 < 0. Thus it is yielded that V < 0 whenever £ is
not zero. According to the stability of the operator D,
Lemma 3 and (13), it follows that the system (7) is ro-
bust asymptotically stable. So the system (1) is robust
asymptotically stable. This completes the proof.

Remark 3 Let k = 1, then the system (7) only has
one single state delay, and (15) can be transformed
into (21) as LMI problem on a single state delay.

0 1m IL M
o - 0 0
m o0 -B, 0
MY 0 0 -N;

<0 Q1)

where

I = P Ay+A{P+aPTE+aEP+R, +&EJE
II, = eahlPTAl, I, :PTD17 Bi =R, —ElElTEl
B, = 672“”8111(1, M3 = PrDgy, N3 = &l

4. Numerical Examples

Example 1 Consider the following uncertain linear
time-delay singular systems

BN €

2
—0.01 0 Odhi g 1
+§i{ 0 70.01}9 at—hi)  (22)

It is obvious that

10 -1 0
o=0.1, E_[O 0], Ao—[ 0 _1}

—0.01 0

Ai=E= [ 0 001

:|7 hléhalzlaz

Set

then
N1 = diagRl ,Rz

For simple, set

=[5 2]
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where ¢ and d are positive scalars and will be deter-
mined later. Noticing (11), we have

X, — [ —2c+2x%x0.1c+2 0 ]
0 —2d+2 |’
o [ —0.0lc 0 ]T !
My — 0 —0.01d )
1k [ —0.01c 0 ]
0 —0.01d

Using Lemma 2, (11) is equivalent to
X; +MN;'MT <0

It is obtained that

_ X 0
X1 +M N7 MT < [ o 5 ]

where

—2¢4+0.2¢+2+2x0.01%2%% 2
—2d +2+2x0.01%°.2hd?

X
)

So if

{

then

—2¢+0.2c+2+2x0.012e02h¢2 < 0

—2d+2+2x0.012¢°.2hd? < 0 (23)

X)+M N "M <0
Solving (23), we get
1.8 — /A

2% 2x 0012020 =€
2N,

2 x 2 % 0.012¢0:2h

1.8 4V A

2 x 2 x0.012¢0-27
2+ \/Az

2 x 2 x0.01202h

(24)

where

A =1.82—-4x%x2x0.012%2" %2
Ny =22—-4%x2x%x0.012¢92" x 2

Solving the following inequalities:

{

we get h < 10/n45. Hence when /& < 10/n45 we have
A1 >0, Ay > 0. Take ¢ and d satisfying (24), then
the following inequality holds:

A1>0
A2>O

X)+MN;'MT <0

According to Theorem 1, the system (22) is asymptot-
ically stable.
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Example 2 Consider the uncertain time-delay sys-
tems

o o) [ =T O ren}]
+é{[ ol o ]+AAi}eo'1hiz(t—hi) 25)

and the uncertainties can be described by

AAJ'(X,Z‘) :D./‘Fj(x,l‘)Ej, j=0,1,2
with
V05 0 o1 0
Df_Ef[ o Vo5 |0 o

where 0] and 0, are unknown real parameters with
o1 < 1074, 05 < 107 Set

|

c 0
=[5 4]
where ¢ and d are positive scalars and will be deter-

mined later.
Noticing (11), we have

10

0 1}, i=1,2

and

5 0
X) = |: 0 24 :| )
T
Jai [ —0:01c+0.501¢ 0 ’
e — 0 —0.01d +0.60,d
0 Jan | —00lc+0.50;c 0 r
0 ~0.01d +0.60,d

Y3=2¢(—140.501)+2x0.1c+2
X4 =2d(71+0.662)+2

Using Lemma 2, (11) is equivalent to
Xo+MoN;'ME <0

It is obtained that

Xs

_ 0
Xo+MoN; ‘M < [ 0 % ]

where

Y5 =2c(—1+0.501)+0.2¢+2+2(0.01c — 507c)?e?"
Y6 =2d(—1+0.603) +2+2(0.01d — 0.60>d)?e""

39

22(

t

)

|



Noticing 67 < 1074, 67 < 10~ we get

Y5 =2(-0.01+0.501)%"?"c?+
+(—=1.54+01)c+2
<2x (—0.01 —0.5 x 1072)202h¢2
+(—=1.841072)c+2

T =2(—0.01+0.607)%e"?"d>+
+(—2+4+1.202)d +2
<2x(—=0.01 —0.6 x 1072)2¢%214% 12
+(—2+1.2x1072)d

(26)

Solving the following inequalities

2% (—0.01 —0.5 x 1072)2%21¢2
+(~1.84+1072)c+2<0

2% (—0.01 —0.6 x 1072)2¢02hq% -2
+(=2+1.2x1072)d <0

(27)

we get

1.79 — VA3

9% 10402

1.988 — /A4
1.024 x 103024

where

A3 =1.792—16 x 1.5% x 10~40-2h
Ay =1.9882—16x 1.6% x 1042

1794V A3

9 x 10402

1.024 4+ /A4
1.024 x 10302

(28)
<d<

we get h < IOZn%. So when 1 < 101n%, we have

N3 > 0,4 > 0. Take ¢ and d satisfy (28), then the
following inequality holds:

Xo+MoN;'ME <0

According to Theorem 1, system (25) is asymptoti-
cally stable for any

62 <107, o2<107*

5. Conclusion

This paper deals with the problem of robust stability
criteria for a class of uncertain linear time-delay sin-
gular systems. Firstly, we consider the equivalent sys-
tems of the original systems by introducing the state
transformation. The Lyapunov-Krasovskii functional
is constructed, and is applied to the equivalent sys-
tems and the nominal system of the equivalent sys-
tems. The delay-dependent robust stability criterion
for the equivalent systems is obtained, which also en-
sures the original system is asymptotically stable.
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