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Abstract: This paper discusses about the issue of ”soft control” for swarms system in Euclidean space, which
coordinates the collective behavior of the group by adding a few controlled intelligent agents under the condition
of keeping the local rules of the existing agents in the system. It shows that the swarm center will be effectively
transferred into an expectant position by putting a few controlled intelligent agents and controlling their initial position
or controlling their position for a short time, and the swarm members will converge to a bounded region around the
expectant position in a finite time. This paper gives a controlled law for controlled intelligent agents. Simulation
testing shows the feasibility of soft control for swarm system.
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1. Introduction

For a long time, it has been observed that certain liv-
ing beings tend to perform swarming behavior. Exam-
ples of swarms include flocks of birds, schools of fish,
herds of animals, and colonies of bacteria. This col-
lective behavior has certain advantages, such as threat-
ening predators and increasing the chance of finding
food. Recently, many national and international schol-
ars have conducted wide and in-depth researches into
various behaviors of swarms, and have achieved many
satisfactory results [1-4]. Collective behavior is one
of the fundamental and difficult topics of the study of
complex systems. We classify the researches on col-
lective behavior into three categories [5].

Given the local rules of the agents, what is the col-
lective behavior of the overall system?

Given the desired collective behavior, what are the
local rules for agents?

Given the local rules of agents, how do we control

the collective behavior?

The third question is proposed and named “’soft con-
trol” by Han Jing who works at Institute of Systems
Science, Chinese Academy of Sciences, and it coor-
dinates the collective behavior of the group without
changing the local rule of the existed agents in the sys-
tem by increasing one or a few intelligent agents. In
some real applications, it is very difficult or even im-
possible to change the local of agents, such as the be-
havioral rules of people in panic and the flying strate-
gies of birds. Yet we need to control the system to
avoid danger or improve efficiency. Then soft control
may be the feasible way to intervene in the collective
behavior. Han Jing et al proposed the tactics of ”soft
control” in Boid model first [5], then Pan Fu-chen et al
proposed the tactics of ’soft control” in swam system
[6], which controlled the swarm center to an expect
position by controlling the original position of con-
trolled intelligent agents, given a control law and dis-
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cussed the optimization of convergence time by par-
ticle swarm optimization algorithm for several intelli-
gent agents.

This paper puts H controlled intelligent agents into a
swarm system with attraction and repulsion functions,
leads the swarm to the desired aim by controlling the
original position of controlled intelligent agents, gives
the different rules of the controlled intelligent agents,
and analyses of stability and proof. Furthermore, this

paper considers a more general attraction/repulsion func-

tion, and introduces a new control method, which can

choose the initial position of controlled intelligent agents

optionally, and then lead the center of the swarm to the
desired aim by regulating the position of controlled
intelligent agents gradually. Since swarm system is a
multi-agent system, adding one or a few agents will
not affect it. Simulation testing further shows the fea-
sibility of soft control for swarms system.

2. Model of Swarm Systems

We consider a swarm of M individuals (members) in
an N-dimensional Euclidean space and model the in-
dividuals as points and ignore their dimensions. The
position of member i of the swarm is described by
x' C R" . We assume synchronous motion and no time
delays, i.e., all the members move simultaneously and
know the exact position of all the other members. The
equation of motion of individual i is given by [1]

M . .
Y s'—x)i=12,..M (1)

=LA

where g(.) represents the function of attraction and
repulsion between the members. In other words, the
direction and magnitude of motion of each member
is determined as a weighted sum of the attraction and
repulsion of all the other members. The attraction/
repulsion function that we consider is

[hi]
=) @

8(y) = —yla—bexp—
Where a,b, and c¢ are positive constants such that
b > a, and ||y|| is the Euclidean norm given by ||y|| =
v/yTy. The parameter a represents the attraction and
the term bexp(—||y||/¢) represents the repulsion.

By equating —y(a — bexp — M ) = 0 it can be eas-
ily found that g(y) switches 51gn at the set of points

defined as ¥ = (y = Oor|ly|| = 8 = 1/cIn2) The dis-
tance is the distance where the attraction and repulsion
balance.

Definition 1 [1] The center of the swarm members
is

i
M:

><|
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Let g1 (x' —x/) = a—bexp(— M) then

1 M
Z X =g (X —=x)) =0
J=1i#

Ms

I
_

l

Hence the swarm center X is stationary for all 7.

3. Soft Control for Swarm Systems

Considering that we add H controlled intelligent agents

in model (1), whose position is optionally control-
lable, and the guise of controlled intelligent agents is
the same as ordinary agents in the swarm, the existing
agents thus still treat the controlled intelligent agent
as an ordinary agent.

The position of controlled intelligent agent s is de-
scribed by M+ € R"(s=1,2,...,H), and x) ** € R"(s =
1,2,...,H) represents the initial position of controlled
intelligent agents.

To control the swarm system and make the center
of the swarm members to converge at the expectant
position , we adopt the following rule to controlled
intelligent agents

2s
s _ = M+ H)x — Mx
s=1,2,..H 3)

where x° is the expectant center, Xy = ﬁ YHY X s
the initial center of the swarm system (barring con-
trolled intelligent agents).

Hence, swarm model (1) is considered as

. M+H
X = Z glx'—=x),i=12,..,
=Tt

M~+H 4)

Note: The rules to controlled intelligent agents are
not the only one. Some other rules please see [6].

Theorem 1 For any original agents of swarm sys-
tem, adopt the rule (3) to controlled intelligent agents.
The center of system will be transferred to the expec-
tant position x¢, and the swarm center is stationary for
all z.

Proof Considerring the model (4) which is added H
controlled intelligent agent, the center of M+H swarm
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members is

1 R
= — i LJW—Q—S
XM+H M+H(l;x+s;0 )
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which proves the theorem.

Theorem 1 shows that center of swarm can be trans-
ferred effectively by adding H controlled intelligent
agents and adopting the soft control rule (3). It is to
say that we can have the group collect any expectant
position.

Definition 2 [1] A swarm member i is called a free
agent at time t if

l's)

where S =1,2, ...,
swarm.

Theorem 2 Let ¢/ = x' — x¢, and assume that a mem-
ber i of the swarm described by the model in (4) is a
free agent at time t and that its distance to the center x°
of the swarm is greater than &, i.e., ||| = ||x' —x¢|| >
0, then, at time 7, its motion is toward the center x°.

Proof From the definition of the center of the swarm,
we have

—x(t)|| > 8,Vj€S, j#i

M + H is the set of members of the

M+H

L=

M—l—H xM—i—H = (M—l—H)

Subtracting from both sides (M + H)x', we obtain

M+H

Y (@ —xl) =

J=1

(M+H)(x'—x°) = (M+H)é
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Then, the motion of member i can be represented as

) M+H ) ) Hxi_xjH2
i=— ) (-2 a—bexp(————)
|t c

J=1i#
= —a(M+H)e' +
M+H i 12
x'—x ‘ -
T S el TN
j=L i ¢

Choosing the Lyapunov function candidate for mem-
1 lT

beriasV;, = e', then
=7 [—a(M—l—H)ei—i—
M+H i
+b Y exp(— =0y gs)
ot c
j=1#
< —a(M+H)|le'|*+
M+H H iy ||2 ) ) )
+b Y exp(————)[lx" —x'[|[|¢']
=L ¢
Since ||x' —x/|| > 8,V € S, j # i, it should be noted

that for that range the function exp(— M)||x

x/|| is a decreasing function of the distance with the

. 2 . . . .
maximum 6 exp(— ‘%) occurring at ||x' —x/|| = 6. With
these facts, we have

Vi < —alé'|*~
) 52
— (M +H —1)[alle'|| —b5eXP(—7)H|€’H

. 2
Because ||¢'|| > & and Zexp(—‘%) =1, the second
term is not positive, therefore, we have

Vi < —all |’ = —av,

which proves the theorem.

Theorem 3 Considering the swarm described by
the model in (4) as time progresses, all the members
of the swarm will converge to a hyperball

Be(x) =x:|x—x°|| <&

where

6—é Cex (—1)
4\ 2P

Moreover, the convergence will occur in finite time
bounded by

1 €

f=max— -1
max =2 "Gy o)
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Proof Choose any swarm member i. Let V; = 1 eTel

be the corresponding Lyapunov function. From theo-
rem 2, we have

Vi < —a(M+H)|le'||+

R ”xi_xjHZ I ITITOR
b ), exp(————) ¥ =[] (©
R c
J=1j#
Note that each of the functions exp(— M) [|lxi —

x/|| is a bounded function,

X —xI? : c 1
By <\ [Eenol-)

whose maximum occurs at ||x' —x/|| = /5. Substi-
tuting this in the equation (6), we obtain

Vi < —a(M+H)||e'|* +

M+H
+b Y exp(—— \[Helu
j= 11#1

= —a(M+H)||*+

L, e, ;
—I—b(M—I—H—l)exp(—z)\/;He’H
b(M+H-1)
Ta(M+H) \[CXP

Deﬁne g=2t f exp( % and note that

8>b(M—|—H—l) €. ( 1)
e —— — X _—
am+H) \29P72
This implies that as 1 — oo, €' converges within the
b(M+H-1)
AR f exp(—
Since € > Mﬂj}le \fexp ) we have ¢! — Bs
Since member iwas an arbltrary one, the result holds

for all the members. To prove the finite-time conver-
gence, note that ||¢'|| > €, we have

If ||| > ) then we have V; <

ball around x¢ defined by

Vi < —alle'|)* = ~2aV;

Therefore, the solution of V; satisfies
Vi(r) < Vi(0)e >

which can be shown by crossing the ||¢’|| = & bound-
ary in a time bounded by

&2

2vi(0)

1
ti < ——In(

- 2a )

and this proves the theorem.

Theorem 3 shows only the region where the swarm
members will converge and provide a bound on the
size of the swarm. It does not, however, say anything
about whether the swarm members will stop their mo-
tion or start an oscillatory motion within the region-
sothis issue needs to be investigated further. We first
define the state x of the system as the vector of the po-
sitions of the swarm members x = [x'7, x*7, ...,
Let the invariant set of equilibrium points be

Q,={x:x=0}

We will prove that as r — oo the state x(7) converges
to Q., i.e., the configuration of the swarm members
converges to a constant arrangement.

Definition 3 [4] The swarm system (4) is completely
stable if every solution to it converges to an equilib-
rium point of the system.

Theorem 4 The swarm system (4) is completely sta-
ble.

Proof We choose the Lyapunov function

1 M+H-1 M+H

Y X

i=1 j=i+l

[al|x" —x7|*+

2 — 7|2

+bcexp(— )

c

which is an artificial potential function. Then, one can
show that the gradient of J(x) with respect to each x!
is given by V,.J(x) = —i!. Now, we take the time
derivative of the Lyapunov function along the motion
of the system and obtain

M+H

Y, VI ()]

i=1

M+H M+H
= Z [—xl]xl - —
i=1

), KPP <0
i=1

for all ¢. Then, using the LaSalle’s Invariance Princi-
ple we conclude that as t — oo the state x converges to
the largest invariant subset of the set defined as

J(x) = [V () =

Q={x:J(x)=0}={x:x=0} =Q

Since each point in €, is an equilibrium, Q. is an
invariant set and this proves the result.

4. Further Explorations

In Sections 2 and 3, we considered a specific attrac-
tion/repulsion function g(y) as defined in (2), put H
controlled intelligent agents into the swarm system
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and led the center of swarm to the desired aim by
controlling the initial position of controlled intelligent
agents. However, due to the complexity of the inter-
actions among agents, sometimes, we can not obtain
its explicit expression; furthermore, it is very difficult
to control the initial position of controlled intelligent
agents when we put it into the swarm system.

In this section, we will consider a more general at-
traction/repulsion function g(y), and introduce a new
control method, which can choose the initial position
of controlled intelligent agents optionally, and then
lead the center of the swarm to the desired aim by
regulating the position of controlled intelligent agents
gradually.

Following [3,4], we have the assumptions listed be-
low:

Assumption 1 The attraction/repulsion function g(y)
is the form

8() = —vlga(llyll) —&-(Il¥I)].y € R (7)

where g, : R™ — R represents (the magnitude of) the
attraction term, whereas g, : R™ — R represents (the
magnitude of) the repulsion term, and ||y|| is the Eu-
clidean norm given by ||y|| = v/yTy.

Assumption 2 There are some finite positive con-
stants a, b, for any y € R",

ga(II¥ll) = a,andg,(|Iyll) < (3)

b
[yl

That is, we assume a linearly bounded from below
attraction and a bounded repulsion.

Assumption 3 There exist corresponding functions
J,:R" —R"and J, : R" — R" forany y € R",

Vida([Iy[l) —yga(ll¥1)
Vo (IIy[1) = ver (vl

In other words, we assume that the attraction and
repulsion among the swarm members are governed
by potential fields J,(||y||) and J,(||y||). In this case,
the motion of the individuals moves toward each other
along the gradient of these fields.

Under Assumptions 1, 2 and 3, for controlling the
center of the swarm members to the expectant posi-
tion x°, we consider adding H controlled intelligent
agents in model (1), the position of controlled intelli-
gent agent s is described by x¥** € R", and its initial
position x*5 € R"(s = 1,2,...,H) is optional. Hence,
swarm model (1) is considered as model (4), but the
center of members may not be x°. To control the cen-
ter x° and avoid quick change of the position of con-
trolled intelligent agents, we adopt the following rules

)

to controlled intelligent agents from time O to time %

XM = [1 = L) 4 22O (M 4 H)xe

H(H+1) - (10)
M5y

s=1,2,....H

where A(t) is bounded, A(f) changes continuously
to 1 from O when time changes to #y from 0, and the
control rule is canceled when ¢ > #y. Then the con-
trolled swarm system is expressed as If r < 7, then

=yl e =x),  i=1.2,..M
XM = [1— A ()M s 4 25A (1) [(M+H)x® —

H(H+1)
—M3iy], s=1,2,...H
and r > 1y, then
. M+H . .
¥ = Z glx'—x7), i=12,...M+H (11)
J=1j#

Theorem 5 For any original agents of swarm sys-
tem (11), adopt the rule (10) to controlled intelligent
agents, the center of system will be transferred to the
expectant position x® when ¢ > t, and the swarm cen-
ter is stationary for all t (r > 1y).

Proof Because A(7) = 1 when ¢ = 1y, and the rule
(10) becomes

XM +s 2s

)|+ )X = M

(s =1,2,...,H) at this time. Having the method as
Theorem 1, we will prove that the center of members
gets to x°. When ¢ > g the model (11) becomes

M+H
¥ = Z gx' =x), i=12,..M+H
j=Lj#i
Under Assumption 1, the swarm center is stationary
for all + when ¢ > tj, because the time derivative of
center is given by

. 1 . .
= g T s (el =) -
. —gr([l = x7|)] (x' — x7)
=g o B lea( =)
=&l =] (&~ ) + [ga(ll —7]) -
—gr([lx’ —XJH)} (x/ —x’)] =0

Theorem 6 Considering the swarm described by the
model in (11), as time progresses from fg, all the mem-
bers of the swarm will enter and stay in the bounded
region

Qx°)=x:|x—x°|| <e
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where € = g. Moreover, the convergence will occur

in finite time bounded by
1 g2
= ——1
max (=5, "Gy o))

where S is the set of all individuals S=1,....M + H.

Proof Let ¢/ = x' — x°, we have

Choosing the Lyapunov function candidate for mem-
ber i as V; = 5 ||x'||> = e ¢'. Then note that

M+H

o M+H
Z (X' —x!) = Z (x' —x7)
Jj=Llj#i j=1
. M+H
= x — Z X/
i=1
= (M+H)X —(M+H)3x (12)
= (M+H)x'— (M+H)x*
= (M+H)é
we have
V, = éTe
M+H o o S
== Y [galllx = 2[]) = gr(Jl = 27 )] (¥ = x7)é!
J=1j#i
M+H
< —a Z (x’—xJ)Te’+
J=1,j#i
Y (X=X HE —x)e
J=1,j#i
= —a(M+ )]+
Y (I =) —x))e (13)
< —a(M+H)|le'||*[[|e']|—

1 MiH ) ] ) )
T gr([[x =) [|x" — /||
a(M+H) ;5

- . 1 MiH
< —aM+H)|e[lle'l = b]
a(M+H) ; 75
o (MAH=1)b
= —aM+H i2 i _(7
a(M+H)|e'[|[[l¢' OET) ]
which implies that V; < 0 as long as He’|| > %.

This, on the other hand, implies that as t — co asymp-
totically we have
M+H-1)b b

i WMTrH=)0 b
lefll < a(M+H) <a

which provides a bound on the maximum ultimate
swarm size. Moreover, it should be noted that for
||| > & we have V; < —al|é||*> = —2aV;; it can show
that we will have ||¢f|| < & for all i in a finite time
bounded by

1 e?

where S is the set of all individuals S =1,...,.M + H.
Theorem 7 The swarm system (11) is completely
stable.
Proof Under Assumption 3, the motion of each in-
dividual is given by

f =max(——
ieS< 2a

_ M+H o
==Y [Vada(lx' =)
j=1j#i
foralli=1,2,,M+H.
Now we choose the Lyapunov function as

= Vo (o =)

M+H M+H o o
Jo= Y Y Vol =2/[) = Vadp (|3 =27]])]
j=1,j#i j=i+]
(14)

Taking the gradient of J(x) with respect to the posi-
tion x' of individual i, we obtain

M+H ) ) ) )
Val(x) = Y [Vada(llx' =) = Vil (|| = 2/])]
J=1j#
= —x (15)

Now, taking the time derivative of the Lyapunov
function along with the motion of the system we ob-
tain

M+H

VI = Y [Vl ()]

i=1
+
=Y

Zi — 1M+H||XiH2 <0

for all > 9. Hence, J(x) decreases in ¢ unless x' =0
for all i. To conclude the complete stability of the
system, we recall that, by Theorem 6, every solution
x(t) of system (11) will converge to the compact set
Q(x¢). Thus all solutions of the system are bounded.
Therefore, by the LaSalle’s Invariance Principle we
conclude that as t — oo the solution x(¢) converges to
the largest positively invariant subset of the set defined
by E = {x:J(x) = 0}.

It is clear from the discussion above that £ = €,
and is positively invariant with respect to the system.
Thus, x(t) — Q, as t — oo,

J(x) =
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Figure 1. The trajectories of fifteen agents without con-
trolled intelligent agent

5. Simulation

In this section, we present some numerical simula-
tions for the soft control for swarm systems in order to
illustrate the theoretic results obtained in the previous
sections.

In these simulations, the attraction/repulsion func-
tion is taken in the form of (2) with parameters a =
3,b =38, and ¢ = 0.2. Choose 2-dimensional space as
the practical space, let M = 15,H = 3. The original
positions of swarm members are obtained randomly
by computer.

Fig. 1 shows the trajectories of the swarm members
without any controlled intelligent agent. Fig. 2 shows
the trajectories of the members with three controlled
intelligent agents in the swarm. Adopt the rule (3)
to controlled intelligent agents, the intention is trans-
ferring the center of system to the expectant position
(40,60). The red broken lines describe the motion of
controlled intelligent agent, and the sign “0” repre-
sents the original position of agents.

Fig. 3 shows the trajectories of the members with
three controlled intelligent agents in the swarm. The
initial positions of controlled intelligent agents are op-
tional. Then adopt the rule (10) to controlled intelli-
gent agents to transfer the center of system to the ex-
pectant position (40,60). Let A(¢) = 10t and 7y = 0.1.
Fig. 4 shows the trajectory of the center, it may be
different if one chooses different A (7).

The result of simulations shows: add 3 controlled
intelligent agents in swarm model, and adopt the rule
(3) or (10) to controlled intelligent agents, the cen-
ter of swarm members will be effectively transferred
to the expectant position (40,60), and the swarm sys-
tems tend to stability gradually after brief instability.

¥ (1T

50 40 =20 0 20 40 60 80 100
X (m

Figure 2. The trajectories of the swarm members with three
controlled intelligent agents

160

140 -
120

)«

100 }---~
a0

¥

60
40
20

Figure 3. The trajectories of the swarm members with three
controlled intelligent agents

70 T r r

Yoo

30 40 a0 &0 70
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Figure 4. The trajectory of the center
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6. Conclusion

This paper focuses on ”’soft control” for swarms sys-
tem, i.e., control the center of swarm members by
adding H controlled intelligent agents but without chang-
ing the local rule of the existing agents in the system.
Simulation testing shows the feasibility of soft control
for swarms system.

Soft control for swarms system is a new research di-
rection, and there are also lots of problems to be tack-
led, such as the optimization of number and position
of controlled intelligent agents, the expansion of con-
trol means, the design of controlled intelligent agent
and so on. Soft control, as a new control method, will
provide vaster foreground for the research of complex
systems.
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