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Abstract：Multi-Robot Task Allocation is a crucial issue before performing a certain task. This paper deals with a 
distributed task allocation method based on some special relation defined according to the performance of history 
cooperation between two robots. The algorithm we propose here is named TARARC—a Task Allocation algorithm based 
on Robot Ability and Relevance with group Collaboration, where robot ability is weighed by reliability, relevance 
represents a fresh concept of “history relevance” between every two robots to establish reasonable groups for better 
collaboration, and the group collaboration includes inter and inner group help strategy that are adopted when different 
nodes failures happen in unknown environment. TARARC emphasizes the role of “agent node” in each group that is 
responsible for task competition, group leadership, formation maintenance as well as task execution with changing agents. 
Simulation on Player/Stage shows that our mechanism is feasible and valid.  
Keywords：Mobile Robots Team; Task Allocation; Group Collaboration; Mobile Agent; Multi –Robots 

 
 

1. Introduction  
Nowadays, research and application of multi-robot 

system is drawing more and more attention all over the 
world due to its alterable network structure, universal 
application, convenient manual control and monitoring, 
accessibility of various circumstances.. 

Multi-robot task allocation is a crucial issue in a 
multi-robot system, which concerns the strategy of 
matching tasks and robots to get higher performance 
efficiency according to certain principles. Whether 
task assignment is proper has a great influence on the 
ultimate performance of the whole multi-robot system. 
What is more, it has a close relation with ways to es- 
tablish groups and a formation, because in most circu- 
mstances tasks are performed by group collaboration 
rather than individual robots. With increasing com- 

plexity and scale of the task to be executed, the sig- 
nificance of validity and efficiency of task allocation 
method in a robot team becomes more distinct.  

Generally speaking, Multi-robot team can be app- 

lied in many situations, such as salvaging in emergent 
and hazardous situations, goods transit, exploration of 
an unknown environment, environmental monitoring, 
etc. In this paper, we mainly discuss its application in 
exploration. 

The rest of paper will be organized as following: 
part 2 will introduce some related works concerning 
MRTA(Multi-Robot Task Allocation), part 3 will 
demonstrate the main idea of our algorithm, part 4 is a 
detailed explanation of this algorithm, part 5 is 
concerned about the simulation result, and part 6 is the 
conclusion and guide for future work. 

2. Related Works 
At present, there are two primary kinds of 

solutions to MRTA problem: reactive and delibera- 
tive[1]. The advantage of the first type is fast deci- 
sion-making, while the second is more efficient in 
collaboration. More specifically speaking, algorithms, 
based on swarm-type coordination, includes ant colony 
algorithm[2] and contract net, belonging to the first 
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type, while most collaborative algorithms belong to 
the second type, which is based on target topology[3], 
vacant chain[4], emotion[5], market[6] and so on. Ant 
colony constructs an environmentally embedded, 
pheromone based solution to the Task Allocation (TA) 
problem, but it assumes independent task completion 
time[4]; target topology is based on the geometric 
toplogy of target, defined impact and suffering factor 
to form a random allocation model, but it is merely 
applicable to certain special tasks without much 
universality. Vacant chain imitates the structure of 
society and contract net[7] to make full use of available 
resources and use reinforcement learning to generate 
vacant chain, but the requirement of vacant resources 
is rather high. Emotion endows robots with emotions 
that like humans to assign different tasks in different 
emotion states for better performance. This is a new 
concept and needs more research; Market-it utilizes 
the mechanism of market[8] to design a solution to 
incompact cooperative task, but it is merely available 
to tasks that can be completed by single robot without 
much manifest cooperation. Local eligibility[9]-task 
allocation is based on the local ability of a robot, and 
the most efficient robot directly inhibits other robots 
around it and performs the task.  

Most of the above algorithms treat each robot as an 
individual with own certain task to be completed and 
once determined, they play almost the same role in the 
subsequent process. In this paper, we divide robots 
into two basic kinds: agent node and common node. 
The agent node plays critical roles while common 
node is an assistant to agent node. Based on this 
division, we propose a new concept that the formation 
could be restricted not to all nodes but to agent nodes 
only, while member nodes move around them. This 
may not only reduce communication traffic between 
nodes, but also decrease the complexity of 
computation, which results in less energy usage.  

3. Main Idea    
The algorithm we put forward is named TARARC 

(Task Allocation algorithm based on Robot Ability 
and Relevance with group Collaboration), which is 
used for task competing, group building, inter and 
inner group cooperation. The main idea of TARARC is 
following: an initialized relevance array R is used to 
group the robots in order to make the robots in a group 
have better collaboration ability when executing a task. 
Then belief degree of each robot will be calculated to 
choose an agent node to represent the whole group. 

After that all the agents will compete for the subtasks 
by comparing their efficiency functions, and agent 
with the largest value will win this task. Then certain 
formation will be established in which agents move to 
the exact position as expected, with in-group nodes 
staying around them. In the process of movement, 
some robots may fail due to energy exhaustion or 
unexpected collision. At this time, rescue strategy will 
be employed according to different conditions as Fig.1 
shows. At last, when arriving at the destination, robots 
will encircle the target around them as a group. If tasks 
are finished, all the relevant arrays used in this 
algorithm will be updated for the next task. 

The flow chart of proposed TARARC is 
demonstrated as Fig.1.  

 
Figure 1. Flow chart of TARARC 

4. Model Setup 
4.1 Model Assumption 

Here，we assume： 
a) The number of robots is supposed to be less than 50. 
b) All robots are homogeneous, that is all robots are 
mounted with the same sensors and their initial energy 
are also the same. 
c) Task allocation happens before formation estab- 
lishment. 
d) Tasks are separable and can be sorted with priority. 

4.2 Definitions 
Def.1 - assume r is the abbreviation of robots, the total 
number of robots is represented as Nr, constituting a 
set {Ri}; 
Def.2 - after the decomposition of one task, the 
number of subtasks is represented as Ng; 
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Def.3 - assume k and j are two nodes, then the 
geometrical distance between them is represented as 
dkj; 
Def.4 - assume node i has cooperated with j, then the 
incremental belief degree is represented as Fij; 
Def.5 - assume node i competes for task j, than the 
function of benefit of i to j is denoted as Bij , and the 
cost of node i to task j is denoted as Cij; 
Def.6 - assume i and j has cooperated before, then the 
history relevant degree between node i and j is denoted 
as Rij; 
Def.7 - assume node i and j has cooperated before, 
then the probability of successful collaboration 
between two robots is denoted as Sij ; 
Def.8 - the residual energy of robot j is denoted as Sj, 
the threshold value of belief degree is denoted as Fthres, 
and the order of node j in a group used in belief degree 
is denoted as jord. 

4.3  Algorithm Description of TARARC 
1) Task decomposion  

The divided task set can be demonstrated by N 
subtasks as: {T0, T1,…, TN-1} satisfying Ttotal= T0∪T1

∪…∪TN-1.Here it is assumed that current tasks in 
right order in terms of priority, and they will match 
different groups correspondingly. The attributes of a 
task Ti include: position--(x,y) ,difficulty--dt, group 
number--grnum and the order of task in the task set 
demonstrating its priority. 
2) Robots Grouping  

If N>Nr, we should re-combine the tasks. 
Assuming the regulated number of sub-task is N’, the 
average difficulty of tasks N 1

0
'( ) /i

aver i Ndt Tdt −

=
=∑ ’ , and 

the mean variation N 1

0

2[ ] '( ) /itd i aver Ndt T dtδ −

=
= −∑ ’ . The 

principle of re-division is that the complexities of each 
task should tend to be equal—that isδdt should be 
minimized. After that, do as follows: 

The task should be partitioned by the ratio of Nr 
and N, then the number of every group is n or n+1(If 
the relevance got by looking up the relevance matrix is 
small, allocate the residual nodes to groups with n 
nodes by random).            

The principle of grouping is: firstly, calculate the 
history relevance of all robots to constitute a relevance 
matrix R=[Rij]. Then robots with higher relevance may 
be grouped into the same group and those with lower 
relevance will be divided into different groups. It can 
be formulated like as:  

if Rij>Rik,  

P(nod[i].grnum=nod[j].grnum)>P(nod[i].grnum=
nod[k].grnum).  

Hereinto, history relevance is determined by two 
factors: if nodes i and j ever collaborated, Cij=1, 
otherwise Cij=0 ; the probability of successful 
collaboration in history Sij.  

The definition of the relevance function is: 
(1)ij ij ijR C S β= ⋅                   

Rij=Rji, Rii=0, β=1/ns and ns is the number of 
successful collaborations. 

(2)
s

ij
s f

nS
n n+

=                   

nf  is the number of failed collaboration. 
The process of grouping by relevance is as following: 

Grouping begins after the relevance matrix R is 
obtained. Obviously, R is a symmetric matrix, whose 
elements in line i denote the relevance of node i and 
other nodes. Firstly, calculate the sum of elements in 
every line

1 ijj

Nr
R=∑ , sort the sums in decreasing order. 

The largest sum 
1

r
ijj

N
R=∑ denotes that node i has the 

largest relevance with other nodes. In line i, select the 
first n-1 nodes that make Rij largest, then node i and 
the n-1 nodes make up a group. Secondly, set the 
relevance between nodes already in a group as 0, and 
continue until the residual nodes are too few to form a 
group. At this time, the result obtained is not complete, 
for instance, a group with expected n+1 nodes perhaps 
only has n nodes. Thus we should mark up groups with 
expected number of nodes. Then, after agents[9] have 
been selected, determine the ultimate groups by 
comparing the distance between those ungrouped 
nodes and every agent as illustrated in part  (4) . 
3) Agent Determination 

Compare the belief degree (defined as (3)) of all 
nodes in a group and choose the one with the largest 
value as the agent, which represents the whole group 
to compete for task[10], establishes and maintains the 
formation in the process of moving and serves as the 
main executor of a task. Other nodes assist the agent to 
complete a task, especially when the agent fails, then 
they may become a new agent. Consequently, each 
agent 1…k can be obtained. 
4) Match the ungrouped nodes to suitable groups 

Assuming that the number of ungrouped nodes is x, 
the last x groups in Ng will receive one respectively. 
Calculating the distance between these nodes and 
every agent, choose the node with the smallest value in 
the corresponding group and make a mark. In this way, 
a complete group is fixed--{k , i , j…}. At last, there 
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will be x groups with n+1 nodes and Ng-x groups with 
n nodes. It should be pointed out that all the 
information is obtained by mutual communication, 
most of which occurs between agents and member 
nodes. Robots form an ad-hoc network with self- 
organized ability and dynamic topology to unknown 
environment.  

For example, there are 50 nodes, 20 subtasks, thus 
robots should be divided into 20 groups, in which 
there are 2 nodes, and 10 groups, with 3 nodes. 
Definition of belief degree: 

Belief degree denotes self-evaluation of a node. 
The larger it is, the more believable the node is, and 
the more it is likely to succeed in a task. It is an innate 
attribute of each node, marked as F={Fij}, which is 
decided by Pj, dt, St , jord and formulated as : 

 
1 2 3 4

5
1

. . .
(3)t t

ij

ord

jpk k k d k SF
jk

β+ + +
=

⋅ +
              

Where k1… k5 are constant coefficients. The 
different influence owns by every factor can be 
realized by controlling the coefficients. Before the 
implementation of the first task, an initial value is 
given to every belief degree. Every time a task is 
completed, if the implementation is successful, Fi will 
increase and vice versa.  
5) Sub-Tasks Allocation 

The definition of the efficiency function is: 
/itit itFB C=                               (4)                                                           

In the process of competing[11] for the tasks, for 
each subtask, the agent with the highest B will get the 
task. The belief degree is the benefit for node i 
completing task j. Cost function is defined as 

1 2it it tC l d l d= + , where dt is one attribute of task Tt in 
range of (0,1), t denotes the order of task or priority, dit 
is the distance of node i to task t. 

Then match the partitioned groups with the 
sequenced task--task allocation. And the priority of 
tasks decided in step 1) will determine the order of 
matching tasks with groups.  
6) Formation Establishment 

It must be satisfied that the agents are at the 
expected position and the common nodes are 
distributed around the agent. Then, the whole troop 
begins to move towards the target. Owing to the 
dynamic change of the formation, maintaining 
formation means that the agents should be at desired 
position and common nodes should move within 
effective range around agents. It can be formulated as:  

Agent.coordinate ∈ [desiredcoordinate- △ , 
desiredcoordinate+△], where △ is the deviation of 
coordinate and its value is smaller than the minimum 
distance between two nodes. 
7) Help strategy on node failure 

a). The remaining energy of the agent node is not 
enough to continue the task. When Sj<SThres, agent M 
should declare its state to subordinate nodes and 
choose another node M’ as the new agent to maintain 
the task. The node with max belief degree will become 
the new agent. The remaining energy can be reflected 
by battery voltage through inner sensors fixed on 
robots. At this time, M must be deleted from the robot 
list and replaced by M’, and the node matrix must be 
upgraded at the same time. What’s more, the new 
agent M’ should move to the position where former 
agent M was to maintain the basic formation. After 
one execution of a task, new agent will compete for 
new task, and evaluate the belief degree of member 
nodes in a group. 

The energy of a node includes three parts: tim--the 
times a node reads data denoting the communication 
traffic occurs on this node; dist--the distance between 
current position and initial position; sped--the average 
speed from the beginning to the end. The mathematical 
formula is defined: 

1 2 3( ) ( ) ( ) (5)m n t
jS k k ktim dist sped= + +× × ×       

In order to ensure Sj to belong to [0, 1], restrict 
k1+k2+k3=1, and m, n, t are all negatives, thus Sj is the 
decreasing function of tim, dist and sped. 

b). If more than one node fails in a group, that is, 
the available nodes n<nthres, it is time to resort to 
another group. The distance between two nodes DAij 
can be obtained by mutual communication. Choose 
group with smallest DAij and group j will send one of 
its subordinate nodes to the failed group i, and then 
choose the second least DAij. Repeat this process until 
in group i, n≥nthres. 

5. Simulation  
5.1  The result of task allocation 

TARARC is implemented by C++ client in 
Player/Stage[12]. Here, 10 robots are taken as an 
example to justify TARARC. The initialization section 
includes node array, task array, relevance array, agent 
array, and group array. The coefficients k1… k5 in Fij 
are set 0.2, l1,l2 in Cij are set to be 0.05. After running, 
each array is updated. In Player, the initial scene is as 
Fig.2, and after grouping section, Fig.3 is obtained. 
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Figure 2. Initial scene 

 
Figure 3. Establish groups 

In initial state, 10 robots are distributed around in 
the simulation environment stage. After the algorithm 
of grouping, 3 groups are formed with several robots 
lying around the agents. The blue, grey and yellow 
nodes denote the agent of each group respectively, 
while the red ones are common nodes. By changing 
the values of coefficients in Fij and Cij, different agents 
can be obtained. When arriving at the destination, 
robots move to enclose the object “invader” as Fig.4.   

 

 
Figure 4. Enclose the target 

 

Fig.5 shows the relation between the time from 
group state (as Fig.3) to enclosing the target and the 
density of robots. The horizontal coordinates are ratios 
of the area robots occupied to the area robots occupied 
in Fig.2, which reflects the relative density of robots. 
From 0.6 to 1.4 on the horizontal axis, the variations of 
convergence time are not obvious, but when density is 
larger than 1.4, time consumed increases sharply. This 
is because when robots get too close to each other, 
there is not enough space left to avoid each other, so it 
becomes much easier to collide with others. But when 
the density is smaller, robots can be free to move at 
optimal path with no collision.     

 
Figure 5. Influence of density of robots 

Fig.6 shows the relation between the time from the 
initial state to forming groups and the number of 
robots. With the increase of robots, although the time 
single robot consumes arriving at the destination is 
almost similar, total time will increase as a linear line, 
movement becomes discontinuous and the occupancy 
ratio of CPU increases. 

 
Figure 6. Influence of number of robots 

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 37



 

 

Fig.7 shows the time from grouped state to 
enclosing the target and the speed of robots. When the 
speed is smaller than 1.0, running time becomes 
shorter with the increase of speed, and when the speed 
is larger than 1, running time becomes long with the 
increase of speed. This is because if the speed is more 
than a certain value as 1.6 m/s in the figure, the ability 
of avoiding obstacle of robots decreases because the 
larger of the speed is, the smaller is the sensitivity of 
robots’ rotation, so there is not enough time for robots 
to change direction in order to avoid collision. As a 
result, it is more difficult to arrive at the destination 
due to mutual collision.  

 
Figure 7. Influence of robot speed 

Table 1 shows the influence of different priorities 
of 3 tasks on the convergence time from the state as 
Fig.3. Three tasks with different priorities have six 
combinations shown in Table 1. When it is the 6th 
combination, due to collision, robots can’t complete 
tasks, and when it is the 3th combination, robots can 
enclose the target in the shortest time. This is because 
the priorities of tasks determining the order of 
allocating tasks, and influents ultimate allocation of 
tasks. Different tasks decide different paths of 
movement, so there may be possibility of collision 
occurred resulting in more time consumed. 

 
Table 1.  Influence of combination of priorities 

 
 

 
Figure 8. Relation between group ability and task difficulty 
Fig.8 shows the relation between task difficulty (or 

priority) and the ability of a robot group which is 
demonstrated by the efficient function Bit. The 
horizontal coordinate denotes the values of efficient 
function of three groups, and the vertical coordinate 
denotes the relative difficulty of 3 tasks. The result is 
derived from continuous 4 task allocations which are 
differentiated by 4 marks in Fig.8. We can see that the 
ability of the same group is changing after a task has 
been completed, and it could increase or decrease 
according to the performance of one task. Clearly, 
group 2 is always of most ability, so it always obtains 
the most difficult task with difficulty coefficient-0.9. 
And the ability of group 1 is also keeping increasing, 
so group 1 sometimes obtains the second difficult task. 
From the curve of group 0, it is obvious that its ability 
decreases sharply after it completes task 3, because it 
implements the task very poorly, even fully fails. So at 
the forth completion of the task, it only obtains the 
easiest task. 

Therefore, it can be inferred that the method we 
use to allocate tasks to different groups is valid and 
reasonable. Although relative scenes are assumed, it is 
still convincing that the performance of the whole 
team can be improved greatly with the above 
allocation mechanism. 

From above analysis, it is obvious that reasonable 
groups can be easily obtained from relevance array 
and distance array. Using the belief degree array, 
agents of each group can be obtained to lead their 
group to build the formation, move to the destination 
and execute task (here refers to enclose target). 
However, in simulation, to avoid collision among 
robots, the speed is quite small, so the time is 
sometimes quite large. 
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5.2 The result of formation establishing and 
maintaining 

Fig.9-1 shows the initial state of 3 groups after 
making groups in the third stage of Part 4 where they 
are differentiated by blue, yellow and red. At this time, 
the general shape is a triangle in regard to the three 
agents and the agents have not started moving. When 
the agents finish competing for subtasks, the team 
begins to move. Here we want to see the formation 
transition from a triangle to a vertical line. Therefore, 
the agent marked as blue on the left side first heads on 
with its member nodes keeping along with it. When it 
comes to the horizontal coordinate of the agent 
marked as red, the two agents begin to move side by 
side. 

Fig.9-2 shows the state after 5 seconds, we can see 
that the three agents have been on the same vertical 
line, and this implies that the formation of the team 
has transmitted from a triangle to a vertical line. 

 

 
 

    Figure 9-1.Initial scene of 3 groups 
 

 

Figure 9-2. After 5 seconds 
 

 
 

Figure 9-3.After 23 seconds 
 

 

Figure 9-4. The time arriving at the destination 
 
Fig.9-2 shows the state after 5 seconds, we can see 

that the three agents have been on the same vertical 
line, and this implies that the formation of the team has 
transmitted from a triangle to a vertical line.  

Fig.9-3 to Fig.9-4 reflects the process of 
maintaining a vertical line formation. By means of 
mutual communication periodically, agent nodes can 
adjust their speed and positions to the requirement of a 
vertical line. From Fig.9-4, it can be deduced that the 
vertical line has always been maintained until robots 
arrive at the position of the target. 

5.3  Simulation Platform  
Player/Stage is a special simulation environment 

for multi-robots. The interface to access to those 
sensors is the same regardless of the underlying 
hardware platform [13].  
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Figure 10. The working mode of Player 
When Player is running on the mobile robot, it 

connects to the controlling software of the client by 
standard TCP Socket[14]. Any robot client can obtain 
sensor data from other robots’ Player and even send 
control instructions, which is one of Player’s advan- 
tages[15].  

There are still some disadvantages of Player, one 
of which is that it is not suitable for large number of 
robots concurrently running in a PC. When the number 
is increased to 50, the running speed of the team will 
decrease sharply, and possibly lead to a computer 
crash. 

5.4 Communication Mechanism between Robots 
Traditionally, surrounding circumstances of the 

robots are always acquired by the sensors fixed on the 
robots, for example, laser sensor used for obstacle 
detection and avoidance, speed sensor used for speed 
controlling, angle sensor used for direction controlling, 
and so on.  

However, the focus in this paper is not on the 
ability and application of various sensors, but on the 
communication efficiency between two robots or two 
groups. Current position and residual energy are both 
acquired through mutual communication periodically. 
Since the period of communication can be controlled 
manually, it reflects the accuracy and flexibility of the 
movement of a robot in certain formation. Besides, as 
communication consumes extra energy, it also 
influences the efficiency of energy usage. We hope to 
give more enthusiasm on the whole network robots 
constitution and communication efficiency.   

6. Conclusion and future work 
In this paper, we propose a new algorithm- 

TARARC. From the result of the simulation, it can 
make robots complete simple tasks within a reasonable 
time. We use group collaboration for inner and inter 
help strategy, history relevance for forming groups, 
robot ability defined by belief function for tasks 

competition and task priorities for efficient allocation. 
 At present, a simulation on larger scale network is 

in progress; in future we will improve the algorithm at 
the basis of increasing the number of robots to adapt to 
larger scale of networks in real application such as 
environment monitoring. Besides, more attention will 
be devoted to applying distributed scheduling 
architecture for higher calculation efficiency and 
network designing as well as the maintenance which is 
the foundation of a mobile robot team. 
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