

A Multi-Robots Task Allocation Algorithm Based on Relevance and Ability With

Group Collaboration

Yanyan Han, Deshi Li, Jian Chen, Xiangguo Yang, Yuxi Hu, Guangmin Zhang
School of Electronic Information , Wuhan University

Wuhan, China
E-mail: hanyan4981@163.com, dsli@whu.edu.cn, cj@eis.whu.edu.cn,

yangxiangguo123@163.com, hyxwhu@163.com, zgmszxzj@yahoo.com.cn

Abstract：Multi-Robot Task Allocation is a crucial issue before performing a certain task. This paper deals with a
distributed task allocation method based on some special relation defined according to the performance of history
cooperation between two robots. The algorithm we propose here is named TARARC—a Task Allocation algorithm based
on Robot Ability and Relevance with group Collaboration, where robot ability is weighed by reliability, relevance
represents a fresh concept of “history relevance” between every two robots to establish reasonable groups for better
collaboration, and the group collaboration includes inter and inner group help strategy that are adopted when different
nodes failures happen in unknown environment. TARARC emphasizes the role of “agent node” in each group that is
responsible for task competition, group leadership, formation maintenance as well as task execution with changing agents.
Simulation on Player/Stage shows that our mechanism is feasible and valid.
Keywords：Mobile Robots Team; Task Allocation; Group Collaboration; Mobile Agent; Multi –Robots

1. Introduction
Nowadays, research and application of multi-robot

system is drawing more and more attention all over the
world due to its alterable network structure, universal
application, convenient manual control and monitoring,
accessibility of various circumstances..

Multi-robot task allocation is a crucial issue in a
multi-robot system, which concerns the strategy of
matching tasks and robots to get higher performance
efficiency according to certain principles. Whether
task assignment is proper has a great influence on the
ultimate performance of the whole multi-robot system.
What is more, it has a close relation with ways to es-
tablish groups and a formation, because in most circu-
mstances tasks are performed by group collaboration
rather than individual robots. With increasing com-

plexity and scale of the task to be executed, the sig-
nificance of validity and efficiency of task allocation
method in a robot team becomes more distinct.

Generally speaking, Multi-robot team can be app-

lied in many situations, such as salvaging in emergent
and hazardous situations, goods transit, exploration of
an unknown environment, environmental monitoring,
etc. In this paper, we mainly discuss its application in
exploration.

The rest of paper will be organized as following:
part 2 will introduce some related works concerning
MRTA(Multi-Robot Task Allocation), part 3 will
demonstrate the main idea of our algorithm, part 4 is a
detailed explanation of this algorithm, part 5 is
concerned about the simulation result, and part 6 is the
conclusion and guide for future work.

2. Related Works
At present, there are two primary kinds of

solutions to MRTA problem: reactive and delibera-
tive[1]. The advantage of the first type is fast deci-
sion-making, while the second is more efficient in
collaboration. More specifically speaking, algorithms,
based on swarm-type coordination, includes ant colony
algorithm[2] and contract net, belonging to the first

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 33

type, while most collaborative algorithms belong to
the second type, which is based on target topology[3],
vacant chain[4], emotion[5], market[6] and so on. Ant
colony constructs an environmentally embedded,
pheromone based solution to the Task Allocation (TA)
problem, but it assumes independent task completion
time[4]; target topology is based on the geometric
toplogy of target, defined impact and suffering factor
to form a random allocation model, but it is merely
applicable to certain special tasks without much
universality. Vacant chain imitates the structure of
society and contract net[7] to make full use of available
resources and use reinforcement learning to generate
vacant chain, but the requirement of vacant resources
is rather high. Emotion endows robots with emotions
that like humans to assign different tasks in different
emotion states for better performance. This is a new
concept and needs more research; Market-it utilizes
the mechanism of market[8] to design a solution to
incompact cooperative task, but it is merely available
to tasks that can be completed by single robot without
much manifest cooperation. Local eligibility[9]-task
allocation is based on the local ability of a robot, and
the most efficient robot directly inhibits other robots
around it and performs the task.

Most of the above algorithms treat each robot as an
individual with own certain task to be completed and
once determined, they play almost the same role in the
subsequent process. In this paper, we divide robots
into two basic kinds: agent node and common node.
The agent node plays critical roles while common
node is an assistant to agent node. Based on this
division, we propose a new concept that the formation
could be restricted not to all nodes but to agent nodes
only, while member nodes move around them. This
may not only reduce communication traffic between
nodes, but also decrease the complexity of
computation, which results in less energy usage.

3. Main Idea
The algorithm we put forward is named TARARC

(Task Allocation algorithm based on Robot Ability
and Relevance with group Collaboration), which is
used for task competing, group building, inter and
inner group cooperation. The main idea of TARARC is
following: an initialized relevance array R is used to
group the robots in order to make the robots in a group
have better collaboration ability when executing a task.
Then belief degree of each robot will be calculated to
choose an agent node to represent the whole group.

After that all the agents will compete for the subtasks
by comparing their efficiency functions, and agent
with the largest value will win this task. Then certain
formation will be established in which agents move to
the exact position as expected, with in-group nodes
staying around them. In the process of movement,
some robots may fail due to energy exhaustion or
unexpected collision. At this time, rescue strategy will
be employed according to different conditions as Fig.1
shows. At last, when arriving at the destination, robots
will encircle the target around them as a group. If tasks
are finished, all the relevant arrays used in this
algorithm will be updated for the next task.

The flow chart of proposed TARARC is
demonstrated as Fig.1.

Figure 1. Flow chart of TARARC

4. Model Setup
4.1 Model Assumption

Here，we assume：
a) The number of robots is supposed to be less than 50.
b) All robots are homogeneous, that is all robots are
mounted with the same sensors and their initial energy
are also the same.
c) Task allocation happens before formation estab-
lishment.
d) Tasks are separable and can be sorted with priority.

4.2 Definitions
Def.1 - assume r is the abbreviation of robots, the total
number of robots is represented as Nr, constituting a
set {Ri};
Def.2 - after the decomposition of one task, the
number of subtasks is represented as Ng;

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 34

Def.3 - assume k and j are two nodes, then the
geometrical distance between them is represented as
dkj;
Def.4 - assume node i has cooperated with j, then the
incremental belief degree is represented as Fij;
Def.5 - assume node i competes for task j, than the
function of benefit of i to j is denoted as Bij , and the
cost of node i to task j is denoted as Cij;
Def.6 - assume i and j has cooperated before, then the
history relevant degree between node i and j is denoted
as Rij;
Def.7 - assume node i and j has cooperated before,
then the probability of successful collaboration
between two robots is denoted as Sij ;
Def.8 - the residual energy of robot j is denoted as Sj,
the threshold value of belief degree is denoted as Fthres,
and the order of node j in a group used in belief degree
is denoted as jord.

4.3 Algorithm Description of TARARC
1) Task decomposion

The divided task set can be demonstrated by N
subtasks as: {T0, T1,…, TN-1} satisfying Ttotal= T0∪T1

∪…∪TN-1.Here it is assumed that current tasks in
right order in terms of priority, and they will match
different groups correspondingly. The attributes of a
task Ti include: position--(x,y) ,difficulty--dt, group
number--grnum and the order of task in the task set
demonstrating its priority.
2) Robots Grouping

If N>Nr, we should re-combine the tasks.
Assuming the regulated number of sub-task is N’, the
average difficulty of tasks N 1

0
'() /i

aver i Ndt Tdt −

=
=∑ ’ , and

the mean variation N 1

0

2[] '() /itd i aver Ndt T dtδ −

=
= −∑ ’ . The

principle of re-division is that the complexities of each
task should tend to be equal—that isδdt should be
minimized. After that, do as follows:

The task should be partitioned by the ratio of Nr
and N, then the number of every group is n or n+1(If
the relevance got by looking up the relevance matrix is
small, allocate the residual nodes to groups with n
nodes by random).

The principle of grouping is: firstly, calculate the
history relevance of all robots to constitute a relevance
matrix R=[Rij]. Then robots with higher relevance may
be grouped into the same group and those with lower
relevance will be divided into different groups. It can
be formulated like as:

if Rij>Rik,

P(nod[i].grnum=nod[j].grnum)>P(nod[i].grnum=
nod[k].grnum).

Hereinto, history relevance is determined by two
factors: if nodes i and j ever collaborated, Cij=1,
otherwise Cij=0 ; the probability of successful
collaboration in history Sij.

The definition of the relevance function is:
(1)ij ij ijR C S β= ⋅

Rij=Rji, Rii=0, β=1/ns and ns is the number of
successful collaborations.

(2)
s

ij
s f

nS
n n+

=

nf is the number of failed collaboration.
The process of grouping by relevance is as following:

Grouping begins after the relevance matrix R is
obtained. Obviously, R is a symmetric matrix, whose
elements in line i denote the relevance of node i and
other nodes. Firstly, calculate the sum of elements in
every line

1 ijj

Nr
R=∑ , sort the sums in decreasing order.

The largest sum
1

r
ijj

N
R=∑ denotes that node i has the

largest relevance with other nodes. In line i, select the
first n-1 nodes that make Rij largest, then node i and
the n-1 nodes make up a group. Secondly, set the
relevance between nodes already in a group as 0, and
continue until the residual nodes are too few to form a
group. At this time, the result obtained is not complete,
for instance, a group with expected n+1 nodes perhaps
only has n nodes. Thus we should mark up groups with
expected number of nodes. Then, after agents[9] have
been selected, determine the ultimate groups by
comparing the distance between those ungrouped
nodes and every agent as illustrated in part (4) .
3) Agent Determination

Compare the belief degree (defined as (3)) of all
nodes in a group and choose the one with the largest
value as the agent, which represents the whole group
to compete for task[10], establishes and maintains the
formation in the process of moving and serves as the
main executor of a task. Other nodes assist the agent to
complete a task, especially when the agent fails, then
they may become a new agent. Consequently, each
agent 1…k can be obtained.
4) Match the ungrouped nodes to suitable groups

Assuming that the number of ungrouped nodes is x,
the last x groups in Ng will receive one respectively.
Calculating the distance between these nodes and
every agent, choose the node with the smallest value in
the corresponding group and make a mark. In this way,
a complete group is fixed--{k , i , j…}. At last, there

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 35

will be x groups with n+1 nodes and Ng-x groups with
n nodes. It should be pointed out that all the
information is obtained by mutual communication,
most of which occurs between agents and member
nodes. Robots form an ad-hoc network with self-
organized ability and dynamic topology to unknown
environment.

For example, there are 50 nodes, 20 subtasks, thus
robots should be divided into 20 groups, in which
there are 2 nodes, and 10 groups, with 3 nodes.
Definition of belief degree:

Belief degree denotes self-evaluation of a node.
The larger it is, the more believable the node is, and
the more it is likely to succeed in a task. It is an innate
attribute of each node, marked as F={Fij}, which is
decided by Pj, dt, St , jord and formulated as :

1 2 3 4

5
1

. . .
(3)t t

ij

ord

jpk k k d k SF
jk

β+ + +
=

⋅ +

Where k1… k5 are constant coefficients. The
different influence owns by every factor can be
realized by controlling the coefficients. Before the
implementation of the first task, an initial value is
given to every belief degree. Every time a task is
completed, if the implementation is successful, Fi will
increase and vice versa.
5) Sub-Tasks Allocation

The definition of the efficiency function is:
/itit itFB C= (4)

In the process of competing[11] for the tasks, for
each subtask, the agent with the highest B will get the
task. The belief degree is the benefit for node i
completing task j. Cost function is defined as

1 2it it tC l d l d= + , where dt is one attribute of task Tt in
range of (0,1), t denotes the order of task or priority, dit
is the distance of node i to task t.

Then match the partitioned groups with the
sequenced task--task allocation. And the priority of
tasks decided in step 1) will determine the order of
matching tasks with groups.
6) Formation Establishment

It must be satisfied that the agents are at the
expected position and the common nodes are
distributed around the agent. Then, the whole troop
begins to move towards the target. Owing to the
dynamic change of the formation, maintaining
formation means that the agents should be at desired
position and common nodes should move within
effective range around agents. It can be formulated as:

Agent.coordinate ∈ [desiredcoordinate- △ ,
desiredcoordinate+△], where △ is the deviation of
coordinate and its value is smaller than the minimum
distance between two nodes.
7) Help strategy on node failure

a). The remaining energy of the agent node is not
enough to continue the task. When Sj<SThres, agent M
should declare its state to subordinate nodes and
choose another node M’ as the new agent to maintain
the task. The node with max belief degree will become
the new agent. The remaining energy can be reflected
by battery voltage through inner sensors fixed on
robots. At this time, M must be deleted from the robot
list and replaced by M’, and the node matrix must be
upgraded at the same time. What’s more, the new
agent M’ should move to the position where former
agent M was to maintain the basic formation. After
one execution of a task, new agent will compete for
new task, and evaluate the belief degree of member
nodes in a group.

The energy of a node includes three parts: tim--the
times a node reads data denoting the communication
traffic occurs on this node; dist--the distance between
current position and initial position; sped--the average
speed from the beginning to the end. The mathematical
formula is defined:

1 2 3() () () (5)m n t
jS k k ktim dist sped= + +× × ×

In order to ensure Sj to belong to [0, 1], restrict
k1+k2+k3=1, and m, n, t are all negatives, thus Sj is the
decreasing function of tim, dist and sped.

b). If more than one node fails in a group, that is,
the available nodes n<nthres, it is time to resort to
another group. The distance between two nodes DAij
can be obtained by mutual communication. Choose
group with smallest DAij and group j will send one of
its subordinate nodes to the failed group i, and then
choose the second least DAij. Repeat this process until
in group i, n≥nthres.

5. Simulation
5.1 The result of task allocation

TARARC is implemented by C++ client in
Player/Stage[12]. Here, 10 robots are taken as an
example to justify TARARC. The initialization section
includes node array, task array, relevance array, agent
array, and group array. The coefficients k1… k5 in Fij
are set 0.2, l1,l2 in Cij are set to be 0.05. After running,
each array is updated. In Player, the initial scene is as
Fig.2, and after grouping section, Fig.3 is obtained.

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 36

Figure 2. Initial scene

Figure 3. Establish groups

In initial state, 10 robots are distributed around in
the simulation environment stage. After the algorithm
of grouping, 3 groups are formed with several robots
lying around the agents. The blue, grey and yellow
nodes denote the agent of each group respectively,
while the red ones are common nodes. By changing
the values of coefficients in Fij and Cij, different agents
can be obtained. When arriving at the destination,
robots move to enclose the object “invader” as Fig.4.

Figure 4. Enclose the target

Fig.5 shows the relation between the time from
group state (as Fig.3) to enclosing the target and the
density of robots. The horizontal coordinates are ratios
of the area robots occupied to the area robots occupied
in Fig.2, which reflects the relative density of robots.
From 0.6 to 1.4 on the horizontal axis, the variations of
convergence time are not obvious, but when density is
larger than 1.4, time consumed increases sharply. This
is because when robots get too close to each other,
there is not enough space left to avoid each other, so it
becomes much easier to collide with others. But when
the density is smaller, robots can be free to move at
optimal path with no collision.

Figure 5. Influence of density of robots

Fig.6 shows the relation between the time from the
initial state to forming groups and the number of
robots. With the increase of robots, although the time
single robot consumes arriving at the destination is
almost similar, total time will increase as a linear line,
movement becomes discontinuous and the occupancy
ratio of CPU increases.

Figure 6. Influence of number of robots

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 37

Fig.7 shows the time from grouped state to
enclosing the target and the speed of robots. When the
speed is smaller than 1.0, running time becomes
shorter with the increase of speed, and when the speed
is larger than 1, running time becomes long with the
increase of speed. This is because if the speed is more
than a certain value as 1.6 m/s in the figure, the ability
of avoiding obstacle of robots decreases because the
larger of the speed is, the smaller is the sensitivity of
robots’ rotation, so there is not enough time for robots
to change direction in order to avoid collision. As a
result, it is more difficult to arrive at the destination
due to mutual collision.

Figure 7. Influence of robot speed

Table 1 shows the influence of different priorities
of 3 tasks on the convergence time from the state as
Fig.3. Three tasks with different priorities have six
combinations shown in Table 1. When it is the 6th
combination, due to collision, robots can’t complete
tasks, and when it is the 3th combination, robots can
enclose the target in the shortest time. This is because
the priorities of tasks determining the order of
allocating tasks, and influents ultimate allocation of
tasks. Different tasks decide different paths of
movement, so there may be possibility of collision
occurred resulting in more time consumed.

Table 1. Influence of combination of priorities

Figure 8. Relation between group ability and task difficulty
Fig.8 shows the relation between task difficulty (or

priority) and the ability of a robot group which is
demonstrated by the efficient function Bit. The
horizontal coordinate denotes the values of efficient
function of three groups, and the vertical coordinate
denotes the relative difficulty of 3 tasks. The result is
derived from continuous 4 task allocations which are
differentiated by 4 marks in Fig.8. We can see that the
ability of the same group is changing after a task has
been completed, and it could increase or decrease
according to the performance of one task. Clearly,
group 2 is always of most ability, so it always obtains
the most difficult task with difficulty coefficient-0.9.
And the ability of group 1 is also keeping increasing,
so group 1 sometimes obtains the second difficult task.
From the curve of group 0, it is obvious that its ability
decreases sharply after it completes task 3, because it
implements the task very poorly, even fully fails. So at
the forth completion of the task, it only obtains the
easiest task.

Therefore, it can be inferred that the method we
use to allocate tasks to different groups is valid and
reasonable. Although relative scenes are assumed, it is
still convincing that the performance of the whole
team can be improved greatly with the above
allocation mechanism.

From above analysis, it is obvious that reasonable
groups can be easily obtained from relevance array
and distance array. Using the belief degree array,
agents of each group can be obtained to lead their
group to build the formation, move to the destination
and execute task (here refers to enclose target).
However, in simulation, to avoid collision among
robots, the speed is quite small, so the time is
sometimes quite large.

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 38

5.2 The result of formation establishing and
maintaining

Fig.9-1 shows the initial state of 3 groups after
making groups in the third stage of Part 4 where they
are differentiated by blue, yellow and red. At this time,
the general shape is a triangle in regard to the three
agents and the agents have not started moving. When
the agents finish competing for subtasks, the team
begins to move. Here we want to see the formation
transition from a triangle to a vertical line. Therefore,
the agent marked as blue on the left side first heads on
with its member nodes keeping along with it. When it
comes to the horizontal coordinate of the agent
marked as red, the two agents begin to move side by
side.

Fig.9-2 shows the state after 5 seconds, we can see
that the three agents have been on the same vertical
line, and this implies that the formation of the team
has transmitted from a triangle to a vertical line.

 Figure 9-1.Initial scene of 3 groups

Figure 9-2. After 5 seconds

Figure 9-3.After 23 seconds

Figure 9-4. The time arriving at the destination

Fig.9-2 shows the state after 5 seconds, we can see

that the three agents have been on the same vertical
line, and this implies that the formation of the team has
transmitted from a triangle to a vertical line.

Fig.9-3 to Fig.9-4 reflects the process of
maintaining a vertical line formation. By means of
mutual communication periodically, agent nodes can
adjust their speed and positions to the requirement of a
vertical line. From Fig.9-4, it can be deduced that the
vertical line has always been maintained until robots
arrive at the position of the target.

5.3 Simulation Platform
Player/Stage is a special simulation environment

for multi-robots. The interface to access to those
sensors is the same regardless of the underlying
hardware platform [13].

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 39

Figure 10. The working mode of Player
When Player is running on the mobile robot, it

connects to the controlling software of the client by
standard TCP Socket[14]. Any robot client can obtain
sensor data from other robots’ Player and even send
control instructions, which is one of Player’s advan-
tages[15].

There are still some disadvantages of Player, one
of which is that it is not suitable for large number of
robots concurrently running in a PC. When the number
is increased to 50, the running speed of the team will
decrease sharply, and possibly lead to a computer
crash.

5.4 Communication Mechanism between Robots
Traditionally, surrounding circumstances of the

robots are always acquired by the sensors fixed on the
robots, for example, laser sensor used for obstacle
detection and avoidance, speed sensor used for speed
controlling, angle sensor used for direction controlling,
and so on.

However, the focus in this paper is not on the
ability and application of various sensors, but on the
communication efficiency between two robots or two
groups. Current position and residual energy are both
acquired through mutual communication periodically.
Since the period of communication can be controlled
manually, it reflects the accuracy and flexibility of the
movement of a robot in certain formation. Besides, as
communication consumes extra energy, it also
influences the efficiency of energy usage. We hope to
give more enthusiasm on the whole network robots
constitution and communication efficiency.

6. Conclusion and future work
In this paper, we propose a new algorithm-

TARARC. From the result of the simulation, it can
make robots complete simple tasks within a reasonable
time. We use group collaboration for inner and inter
help strategy, history relevance for forming groups,
robot ability defined by belief function for tasks

competition and task priorities for efficient allocation.
 At present, a simulation on larger scale network is

in progress; in future we will improve the algorithm at
the basis of increasing the number of robots to adapt to
larger scale of networks in real application such as
environment monitoring. Besides, more attention will
be devoted to applying distributed scheduling
architecture for higher calculation efficiency and
network designing as well as the maintenance which is
the foundation of a mobile robot team.

7. Acknowledgements
The authors would like to thank the reviewers for

their detailed comments that have helped improve the
quality of the paper. This research was funded in parts
by China National High Technology Plan grant
2007AA01Z225 and NSF China 60972044.

References
[1] Chen Zonghai,“Mechanism and Strategy of Multi-robot

Coordination for Exploring Unknown Environments”,
The Research and Development of Worldwide Tech-
nology, Vol.27, No.6, 2005.

[2] Yu Zhang, Shuhua Liu,“large-scale multi-robot task
allocation based on Ant Colony Algorithm”, IEEE，
2008

[3] Dandan Zhang, Long Wang, “Target Topology Based
Task Assignment for Multiple Mobile Robots in
Adversarial Environments”, Proc. the 46th IEEE
Conference on Decision and Control, 2007,
pp.5323-5328

[4] Torbjørn S. Dahl, Maja J. Matari´c and Gaurav S.
Sukhatme , “Multi-Robot Task-Allocation through Va-
cancy Chains”, Proc. IEEE International Conference
on Robotics and Automation, Vol.2,pp.2293- 2298,
2003.

[5] Sajal Chandra Banik, Keigo Watanabe and Kiyotaka
Izumi, “Task allocation with a cooperative plan for an
emotionally intelligent system of multi-robots”, Proc.
of SICE Annual Conference, pp. 1004-1010, 2007.

[6] Ashley Stroupe, Terry Huntsberger, Avi Okon, Hrand
Aghazarian and Matthew Robinson, “ Behavior-Based
Multi-Robot Collaboration for Autonomous Construc-
tion Tasks”, Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1495-1500,
2005.

[7] ZhangHaijun,ShiZhongzhi, “Dynamic Contract Net
Protocal”, Computer Engineer , Vol.30, No.21, 2004.

[8] Aaron Gage, “Multi-Robot Task allocation Using
Affect”, PhD thesis, University of South Florida,
August, 2004.

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 40

[9] Brian P. Gerkey, Maja J. Mataric, “Murdoch:
Publish/Subscribe Task Allocation for Heterogeneous
Agents”, Proc. International Conference on Autono-
mous Agents, 2000

[10] VIG Lovekesh, ADAMS Julie A, “Market-Based
Multi-robot Coalition Formation”, Proc. IEEE
transactions on robotics, Vol. 22, pp. 637-649 , 2006.

[11] Maria Gini, Richard Voyles, “A Distributed Multi-robot
Cooperation Framework for Real Time Task
achievement”, Distributed Autonomous Robotic
Systems, Vol.7, pp.187-196, 2006.

[12] Brian P. Gerkey, Richard T. Vaughan, Andrew Howard,
“The Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems”, Proceedings of the
International Conference on Advanced Robotics,
Coimbra, Portugal, pp. 317-323, 2003.

[13] Nils Tippenhauer, “Introduction to Player/Stage/
Gazebo”, http://pami.uwaterloo.ca/groups/asrtdd/psg.
pdf, 2005.

[14] Li Wenfeng, “Wireless Sensor Network and Mobile
Robot Control”, the Science Press, 2009.

[15] http://playerstage.sourceforge.net

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 41

