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Abstract: The integration of uncertain information from different time sources is a crucial issue in various 
applications. In this paper, we propose an integration method of multiple Temporal Qualitative Probabilistic 
Networks (TQPNs) in time series environments. First, we present the method for learning TQPN from time series 
data. The TQPN’s structure is constructed using Dynamic Bayesian Networks learning based on Markov Chain 
Monte Carlo. Furthermore, the corresponding qualitative influences are obtained by the conditional probabilities. 
Secondly, based on rough set theory, we integrate multiple TQPNs into a single QPN that preserves as much 
information as possible. Specifically, we take the rough-set-based dependency degree as the strength of qualitative 
influence, and then make the rules to solve the ambiguities reduction and cycles deletion problems which arise from 
the integration of different TQPNs. Finally, we verify the feasibility of the integration method by the simulation 
experiments. 
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1. Introduction 

Temporal Qualitative Probabilistic Network 
(TQPN) is an important knowledge representing 
method in Artificial Intelligence. Sometimes, the 
knowledge-based systems need not only to be 
learned from the time series data, but also to be 
integrated into a single network for representing the 
consensus probabilistic knowledge in the whole time 
series environments. 

There are many kinds of networks which can be 
used to represent the probabilistic knowledge, such 
as Bayesian Networks (BNs) [1], Dynamic Bayesian 
Networks (DBNs) [2,3], Qualitative Probabilistic 
Networks (QPNs) [4] and Temporal Qualitative 
Probabilistic Networks (TQPNs) [5]. 

BN has been established as a framework for 
representing uncertain probabilistic knowledge. The 

general methods for learning BN from data have 
been studied [6,7], including the corresponding 
analysis and evaluation. Li and Liu [8] have 
integrated multiple dependency structures of BNs 
based on the generalized relation model and 
constructed a large BN that preserves as much 
information as possible. Sagrado et al. [9] have 
obtained the consensus BN model by combining two 
graphs and applying the union and intersection of 
their independencies. However, the qualitative and 
temporal nature in time series environments can not 
be represented by these methods.  

In order to describe the temporal information in 
practice, DBN, as the extension of BN in the 
discrete time and discrete state of stochastic 
processes, is used to represent the system states by 
time slices. The strictly numeric representations of 
BN and DBN are inappropriately for many 
applications. In many cases, we only need to know 
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the qualitative probabilistic knowledge.  
Considering the trade-off between efficiency and 

precision to some extent, QPN was proposed by 
Wellman [4], as the qualitative abstraction of a BN. 
However, it can not represent the temporal nature of 
probabilistic knowledge.  

Based on these ideas, Liu and Yue [5] have 
proposed TQPN and implemented the qualitative 
and temporal knowledge representation. They 
construct TQPN's structure by considering the 
relationships between variables existing not only in 
each time slice, but also in adjacent time slices. 
However, in some cases, since the relationships 
always follow the time flow, only the relationships 
existing in adjacent time slices need to be 
considered. Yue et al. [10] have also investigated the 
qualitative representation and integration of 
probabilistic causalities in multiple time slices, they 
only considered to delete the cycles between two 
variables. In fact, the cycle formed by more than two 
variables may exist in the integration process. 

Therefore, it is a worthy effort to learn TQPNs 
from data, and then to integrate multiple TQPNs into 
a single QPN. In this paper, we first present the 
method for learning each TQPN from each group 
time series data. Secondly, we integrate the multiple 
TQPNs into a QPN that preserves as much 
information as possible in the whole time series 
environment. 

The rest of this paper is organized as follows. In 
the following section, we introduce the preliminaries 
on QPN and TQPN. Section 3 proposes the method 
for learning TQPN from time series data and 
integrating multiple TQPNs based on rough set 
theory. Section 4 shows the experimental results and 
the corresponding analysis. Finally, Section 5 
concludes this paper. 

2. Preliminaries 

In this section, we will review several basic 
concepts of QPN and TQPN. 

2.1 Qualitative Probabilistic Networks 

A Qualitative probabilistic network (QPN) encodes 
variables by the directed acyclic graph (DAG) like a 
BN, and summarizes the probabilistic relationships 
between variables by qualitative influences on the 
directed edges [4]. For abbreviation, all variables are 
assumed to be binary and ordered, writing  for 

(or ) and
a

A True=   1A = a for (or  A Fals= e 0A = ), 
in which a a>  (or 1 ). A simple example of 

QPN abstracted from a BN is shown in Figure 1. 

0>

A qualitative influence between variables 
expresses how the values of one variables A 
influence the probabilities of the values of the other 
variable B , denoted by , ( , )S A Bδ }{ , ,0,?δ ∈ + − . 

X1

X2 X3

X4

p(x1) = 0.5

p(x2|x1) = 0.1
p(x2|x̄1) = 0.5

p(x3|x1) = 0.8
p(x3|x̄1) = 0.2

p(x4|x2, x3) = 0.99
p(x4|x̄2, x3) = 0.90

p(x4|x2, x̄3) = 0.90
p(x4|x̄2, x̄3) = 0.00

(a) BN

X1

X2 X3

X4

− +

+ +

(b) QPN

=⇒

 
Figure 1. An example of QPN abstracted from BN. 

Definition 1 [4] positively influencesA B , denoted 
by , iff for all( , )S A B+ ( ) \{ }x B Aπ∈  such  

( | ) ( | ) 0,P b ax P b ax− ≥  
where ( ) \ { }B Aπ is the parents set of B other than . A

The definition expresses the fact that observing a 
high value for makes the higher value forA B more 
likely, regardless of any other direct influences on B . 
A negative influence, denoted by , and a zero 
influence, denoted by , are defined analogously, 
just substituting

S −

0S
≤ and = for  respectively. If the 

influence of on
≥

A B is positive for one combination 
of x and negative for another combination, the 
influence is called ambiguous influence, denoted 
by . ?S

The set of qualitative influences exhibits the 
properties of symmetry, transitivity and 
composition:  

 The property of symmetry guarantees that, if 
a network includes the influence ( , )S A Bδ , it 
also includes ( , )S B Aδ with the same sign. 
That is,  

( , ) ( , ).S A B S B Aδ δ⇔  
 The property of transitivity asserts that 

qualitative influences along an active trail 
without nodes with two incoming arcs         
combine into an indirect influence whose sign 
is determined by ⊗− operator from Table 1. 
This is, 

  1 2 1 2( , ) ( , ) ( , ).S A B S B C S A Cδ δ δ δ⊗⊗ ⇒
 The property of composition asserts that 

multiple qualitative influences between two 
variables along parallel active trails         
combine into a composite influence whose 

 
                 
                                                     
International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 10



sign is determined by ⊕− operator from 
Table 1. That is, 
    1 2 1 2( , ) ( , ) ( , ).S A C S A C S A Cδ δ δ δ⊕⊕ ⇒

Table 1. The  and operators ⊗− ⊕−

⊗  +  -  0  ?  ⊕  +  -  0  ?

+ 

- 

0 

? 

+  -  0  ? 

-  +  0  ? 

0  0  0  0 

?  ?  0  ? 

 

+ 

- 

0 

? 

+  ?  +  ?

?  -  -  ?

+  -  0  ?

?  ?  ?  ?

2.2 Temporal Qualitative Probabilistic Networks 

Definition 2 [5] A temporal qualitative probabilistic 
network (TQPN) is a directed acyclic graph 

, describing the causal relationships of 
variables in time , and , denoted by , 

and respectively, where 

, 1 ( , )t tG V+ =

1tG + 1t tG → +

Q

tT 1tT + ( 1)t tT → + tG

 1t t is the set of variables in  
and 1tT + ; 
V V V += U tT

 }{ , ,0,?Q = + − is the set of qualitative 
influences on the directed edges in , 1t tG + . 

Analogously, TQPN is the qualitative abstraction 
of DBN. Let }{[ ] [ ] [ ] [ ]

1 2, ,...,t t t
nX X X X= t denote the 

random variables in X at time . Figure 2 
displays a simple example of TQPN. There are six 
variables in the adjacent time slices and . 

{1,2,...}t∈

t t 1+

Xt
1

Xt
2

Xt
3

Xt+1
1

Xt+1
2

Xt+1
3

−

+

−

+

−

+ +

−

+
 

Figure 2. A simple example of TQPN between two 
adjacent time slices. 

3. Integration of multiple TQPNs 

In this section, we first learn each TQPN from 
the corresponding time series data of each group, 
and then integrate the multiple TQPNs into a single 
QPN, namely the integrated QPN (IQPN) which can 
preserve as much information as possible in the 
whole time series environment. The integration 

framework of multiple TQPNs is shown in Figure 3. 

3.1 Learning TQPN from Time Series Data 

The main goal of learning the structure of TQPN 
or DBN is to find a model M that best fits the 
data D . The scoring metric is the posterior 
probability . According to the Bayes rule, 
the posterior probability can be written as  

( | )P M D

   ( | ) ( )( | ) ,              (1)
( )

P D M P MP M D
P D

=  

where  is a constant that does not depend on ( )P D
M . Therefore, taking logarithm, a scoring function 
for a model M  can be built as  

  ( ) log ( | ) log ( ).        (2)S M P D M P M= +  
Given the scoring criteria, a common approach is 

to find the highest scoring network. However, the 
appropriateness of searching for only the highest 
scoring network may be questionable, at least in a 
small sample dataset. So the full posterior 
distribution over network models can be considered 
in this case. 

3.1.1 Markov Chain Monte Carlo Method  

The idea of Markov Chain Monte Carlo (MCMC) 
method [2,3] is to construct a Markov chain in 
which a new model *M  is generated only in terms 
of the previous one M . It will produce a chain of 
models that converge to the target distribution 
eventually. 

Metropolis-Hastings (MH) algorithm is one of the 
most important MCMC methods. For each run, the 
algorithm will sample a new candidate model from 
the jumping distribution ( * | )J M M , given the 
candidate model *M , the acceptance probability can 
be computed as 

( * | ) ( | *)min{ 1, }.       (3)
( | ) ( * | )

P M D J M MAc
P M D J M M

= ×  

3.1.2 Learning the Structure of TQPN  

Given groups of time series data , 
we find each model

n 1 2,  ,  ...,  nD D D
, )(M G Q

G
=

Q

from the 
corresponding data of each group, where denotes 
the structure of TQPN and is the qualitative 
influences between variables.  

Since the relationship between variables always 
follows the time flow, it’s unnecessary to consider 
the qualitative influences in the same time slice  
and

tG

1tG + , so the directed arcs are only permitted 
between the adjacent time slices as Figure 4(a). 1t tG → +
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Figure 4(b) expresses no unrolling TQPN followed by time point, so it is a directed cyclic graph. 
time series data1 time series data2 time series datan

TQPN1 TQPN2 TQPNn

The Integrated QPN

...

...

Learning each TQPN

Integrating multiple TQPNs

{
{

 

Figure 3. The integration framework of multiple TQPNs in the whole time series environment. 

Xt
1

Xt
2

Xt
3

Xt+1
1

Xt+1
2

Xt+1
3

−

+ +

−

+

(a)

X1

X2 X3

− −

+

+

+

(b)

=⇒

 
                 
                                                     

Q
 

Figure 4. TQPN without considering the relationships 
between variables in the same time slices. (a) The 
corresponding TQPN by unrolling the right network 
followed by time point. (b) A simple TQPN, where 2X  
and 3X form a multi-node loop, and 3X  has a self-loop. 

In this paper, we use the approach to learn DBN 
based on MCMC method [2,3] to construct the 
structure of TQPN. Similarly, we also assume to be 
first order Markov and discrete model. Here we 
obtain the last sample model in the chain of models, 
and regard it as the convergence of the target 
distribution. According to the global and local 
parameter independence assumptions, the scoring 
function in Equation (2) can be decomposed as 

1
( ) ( ),                                         (4)

n

i
i

M M
=

=∑S S i  

where is the number of variables. The BDe 
criterion [3] can be obtained as 

n

 

1 1

( ) log ( )
( ) ( )

                   ,    (5)
( ) ( )

                    

BDe i i

q r
i j i jk i jk

j ki j i j i jk

M P G
N

N
α α

α α= =

= +
Γ Γ +

Γ + Γ∏ ∏

S

 

where is the total number of discrete state of,r q iX  
and its parents node , respectively.iPa ijkN  is the 
sufficient statistics, i kX x=

ij

with occurs 

over all time slices,

i pa= jPa

ijk1

r

k
N N

=∑= . ijkα  is the 

hyperparameter of the Dirichlet distribution, 

1
.r

ij ijkk
α α

=
=∑  ( )Γ ⋅  is Gamma function.  

3.1.3 Learning Qualitative Signs  

Since the precise numbers are not relevant for the 
ordering task, the reasoning in terms of frequencies 
is generally perceived as less demanding than the 
reasoning in terms of probabilities [11]. 

We can use the frequencies format for 
representing the conditional probabilities. Thus, by 
statistical computations on the given sample data, 
and Definition 1, we can easily obtain the 
probability orderings, and then conclude the 
corresponding qualitative relationships. 

3.1.4 Learning Algorithm  

The algorithm for learning TQPN from time 
series data is described as Algorithm 1.  

Algorithm 1 Learning TQPN from Time Series Data

Input: ( time series data);D N (number of sampling)

Output: A TQPN=  ( , )G Q

1: Set initial model 0M ; 

2: for 0i = to N  do 
3:   sample a new model * ( * | i )M J M M ; 

4:   compute the acceptance probability Ac ;  
5:   sample ; [0,u U 1]

6:   if Ac > u

1

 then 
7:      *iM M←+ ; 

8:   else 
9:      M 1i iM←+ ; 

10:  end if 
11:  M 1iM +← ; 

12: end for 

13: Select the last sampling model M as G ; 

14: Compute the qualitative signs  in ; Q G

International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 12



15: return A TQPN= . ( , )G Q

Where ( * | )J M M  is based on the neighborhood 
concept of a given network M , named ( )MN  
that can be obtained from M  with a single edge 
removal or addition [12], i.e., for all * ( )M MN∈ , 

( * | ) 1 / ( )J M M M= N . For TQPN, we have 
2( )M n=N , regardless of M . 

For TQPN, in this paper, edges are only allowed 
between the adjacent time slices, so there is no 
acyclic and equivalence problems. In addition, the 
restriction on the number of fan-ins and the cost of 
computation for TQPN can be considerably 
alleviated. 

3.2 Integrating Multiple TQPNs Based on Rough 
Set Theory 

The integration of multiple TQPNs includes the 
structure integration and qualitative sign integration. 
Let {TQPN1, TQPN2, …, TQPNn } be  TQPNs. 
In this subsection, we will show how to integrate  
TQPNs into a single QPN, namely a integrated QPN 
(IQPN) which can preserve the information as much 
as possible in the whole time series environment. 

n
n

3.2.1 Rough Set Theory  

The rough set theory has been proposed by 
Pawlak [13,14] and widely applied to model 
imprecise or incomplete knowledge. According to 
Pawlak’s rough set theory, the zero dependency 
degree can be associated with the qualitative 
influence whose strength should not be zero actually 
[15], so Yue et al. [15] adopted the probabilistic 
rough set theory to obtain dependency degree as the 
strength between the associated variables.  

Let  be the universe of discourse and U R  be 
an equivalence relation over U . The equivalence 
relation R  partitions the set U  into disjoint 
subsets. This partition of the universe is called a 
quotient set induced by R , denoted by U . It 
represents a very special type of similarity between 
elements of the universe. According to [13-15], we 
redescribe the following three definitions. 

/ R

Definition 3 Let X  be a set of objects in U and 
R be an equivalence relation over . Let U

(0.5 1)β β< ≤  be a given threshold value. Let  
be the probabilistic measure defined on U . The 
probabilistic lower approximation of 

P

X with 
respect to R  is defined as 

}{ | ( / [ ] ) ,RR X x U P X xβ β= ∈ ≥  

where | [ ]( / [ ] )
[ ]

|R
R

R

X xP X x
x

=
I , denotes the 

amount of elements, and 

| |⋅

[ ]Rx  represents the set of 
objects in  that are equivalent to U x  with respect 
to R . 

Definition 4 Given two families of equivalence 
relations  and A B , and the threshold value 

(0.5 )1β β< ≤ , /POS ( )A X U BB A X
β β∈= U is called 

the positive domain of B  with respect to . A
Actually, POS ( )A B

β

/U B

is the set of objects in  

that are also in . 

/U A

Definition 5 Let A( ) | POS ( ) | | |A B B U
β β

γ = . γ  is 

called the degree that B  depends on  not less 
than probability

A
β , written (0 1)A Bγβ γ⇒ ≤

OS ( ) |A

≤ . The 
amount of elements in | P B

β
 and that in  

are denoted by |

U

| POSA ( )B
β

 and | . |U

3.2.2 The Qualitative Signs Integration  

We observe that combining multiple 
non-ambiguous qualitative signs along parallel 
active trails in the same QPN, can yield an 
ambiguous result, i.e., such an ambiguity arises 
when parallel influences with opposite signs are 
combined with ⊕− operator in Table 1. To reduce 
the ambiguities, Yue et al. [15] introduced the 
rough-set-based dependency degree as the strength 
of qualitative influence. We use the following 
Example 1 to illustrate the rough-set-based 
dependency degree. 

Example 1 Suppose 1 2( , )X X  be a directed edge in 
the QPN and each variable value be binary. The 
given sample data is shown in Table 2. Let us 
consider the dependency degree between variable 

1X and 2X . We set 0.6β = , since 
2 1 2 1

1 1

2 1 2 1

1 1

| 0 0 | | 0 1|0.5 ,  0.29 ,
| 0 | | 1|

| 1 0 | | 1 1|0.5 ,  0.71 ,
| 0 | | 1|

X X X X
X X

X X X X
X X

β β

β β

= = = =
= < =

= =
= = = =

= < = >
= =

I I

I I

<

 

thus 1 1{ 1} { 1,3,4,6,8,9,15}X X X Ns= = = = . According to 
Definition 4 and Definition 5, we have  

1

1

2
2 1 2

|POS ( ) |
( ) ( , ) 0.47.

| |
X

X

X
X X X

Ns
γ γ= = =  

Similarly, 
2

2

1
1

|POS ( ) |
( ) 0.4.

| |
X

X

X
X

Ns
γ = =  

  
International Journal of Intelligent Engineering and Systems, Vol.3, No.2,2010 13



Table 2. The given sample data. denotes the variables V
1X and 2X ,  denotes the sample number. Ns

\V Ns  1-5 6-10 11-15 
1X  

2X  
1 0 1 1 0 
1 1 1 1 1 

1 0 1 1 0 
0 0 1 0 1 

0 0 0 0 1 
0 1 0 0 1 

 
                 
                                                     

 
X1

X2 X3

− ?

?

+

(a) TQPN1

X1

X2 X3

+ −

?

?
+

(b) TQPN2

X1

X2 X3

+ −

?

+

(c) TQPN3  
Figure 5. The parallel active trails and the corresponding 
qualitative signs in three TQPNs. 

  Similarly, we can also introduce it to reduce 
ambiguities in integrating the qualitative signs of 
multiple TQPNs, and regard the same nodes and the 
directed edge in two graphs as the parallel active 
trail, i.e., edge 1 2( , )X X  in Figure 5 is the parallel 
active trail when we integrate TQPN1 and TQPN2. 
  Obviously, combining multiple non-ambiguous 
qualitative signs with operator, along parallel 
active trails in the different TQPNs, can also yield 
an ambiguous result, i.e., combining two signs of 

⊕−

1 2( , )X X in TQPN1 and TQPN2 in Figure 5, the 
ambiguity, , arises. In addition, 
combining the ambiguous qualitative signs, or, 
combining the signs of edge 

" ?−⊕+ = "

3 1( , )X X , 2 3( , )X X  , 

3 2( , )X X

"? ?"⊕− =

 in Figure 5(a) and 5(b) respectively, can 
yield the ambiguous results too. The results are 

," ," . In this paper, we 
still use Definition 6 [15] to reduce these 
ambiguities. 

? ? ?"⊕ = ?+⊕ ?"=

Definition 6 (Parallel Active Trails Combination)  
1 1 2 2[ ] [ ][ ]

1 2 1 2 1 2( , ) ( , ) ( , )S X X S X X S X Xδ γ δ γδ γ = U

1 2(0 , 1)γ γ< ≤ , where δ  and γ  are defined as 
follows: 

 If 1 2δ δ= , then  

1 2δ δ δ= =  and 1 2 1 2γ γ γ γ γ= + − ⋅ . 
 If 1 2δ δ≠  and 1 2γ γ> , then  

1δ δ=  and 1 2 1 2γ γ γ γ γ= − + ⋅ . 
 If 1 2δ δ≠  and 1 2γ γ< , then  

2δ δ=  and 2 1 1 2γ γ γ γ γ= − + ⋅ . 
 If 1 2δ δ≠ , and 1 2γ γ= , then  

1

3.2.3 The Structure Integration  

We know, a QPN is a directed acyclic graph and 
each TQPN without unrolling followed by time 
point is directed cyclic graph. The topological 
integration is based on the union of graph structure 
[9,10]. In this paper, we combine the structure of 
multiple TQPNs based on the graph union, too, 
which will generate more cycles. Therefore, we need 
to deal with the cycles problem in the process of the 
structure integration. 

The more edges the IQPN has, the more 
information it preserves. According to the 
integration goal, we make the following rules for 
deleting the cycles in the graph union of multiple 
TQPNs (UTQPN). 

Rule 1: If there exists the cycles in the UTQPN         
and the only one edge can be deleted to make the 
UTQPN acyclic, we directly delete the edge.         
For example, while integrating TQPN1 and TQPN2 
in Figure 5 into a QPN, we must delete edge 

2 3( , )X X  rather than 3 2( , )X X , because the UTQPN 
has no cycle in this case and the IQPN preserves the 
information as much as possible. 

Rule 2: If the only one edge doesn't exist,         
let 1 2( , )N X X

1 2( , )
 be the occurrence number of edge 

X X  in all TQPNs, We will find the cycle with 
the biggest N and then delete the edge with the 
smallest N in the cycle. For example, while 
integrating TQPN1 and TQPN3 in Figure 5, since 

2 3 3 2

1 2 2 1

( , ) ( , ) 2
( , ) ( , ) 1,

N X X N X X
N X X N X X

,= =
= =

 

we would find the cycle that formed by 2 3( , )X X  
and 3 2( , )X X , and then delete 2 3( , )X X  or 

3 2 )( ,X X . 
Rule 3: If each N  in the cycle is equal,         

we delete the edge with the smallest dependence 
degree γ . For example, if 

2 33( ) ( )X X 2X X
β β

γ γ>

3 2( , )

         

in the example of Rule 2, we delete edge X X , 
or delete 2 3( , )X X . 

Rule 4: If there exists the self loop in the UTQPN,         
we can regard it as a particular case of Rule 2 and 3.          
For example, 3X  has a self loop in Figure 5(b),         
we can regard 3 3( , )N X X or 

3 3(X )X
β

γ as the 

smallest one in the cycle, so we can delete it.         
That is, we can directly delete the self loop in each 
TQPN, which does not change the final integration 
result. 

2δ δ δ= ⊕  and 1 2γ γ γ= = . 
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3.2.4 The Integration Algorithm 

The integration method of multiple TQPNs 
basically consists of three steps. 

1. Do preprocessing and delete the self loop in 
each TQPN by Rule 4; 

2. Add all edges and the qualitative signs into the 
UTQPN, and record the occurrence number N  
of each edge in all TQPNs, and integrate 
qualitative signs according to Definition 6. 

3. Delete the cycles in the UTQPN according to 
Rule 1, 2 and 3, and conclude a single QPN, or 
IQPN. 

Thus, the integration algorithm of multiple 
TQPNs is summarized as Algorithm 2. 

Algorithm 2  Multiple TQPNs Integration Algorithm 

Input: TQPN1, TQPN2, …, TQPNn ; all γ  

Output: A integrated QPN, or IQPN 

1: Delete all self loop in each TQPN;  

2: nodes number; m ←

3: for to do  1k = n

4:  for to do 1i = m

5:   for to do  1j = m

6:    Add edge and sign k
ijE k

ijδ to UTQPN; 

7:    if then k
ij ijE E=

4. Experiments 

4.1 Experiment Setup 

All the methods have been implemented in Matlab 
by making use of Markov chain Monte Carlo 
software [12] and Bayes net toolbox [16]. 

4.2 Time Series Data 

In the experiment, we will integrate two TQPNs 
into a single QPNa assuming all data to be binary 
and complete. Two groups time series data are 
generated by a predefined DBN and simulated using 
Matlab, and shown in Table 3 and 4. There are 8 
variables 

and 100 time 
points, respectively.  

[ ] [ ] [ ] [ ] [ 1] [ 1] [ 1] [ 1]( , , , , , , ,t t t t t t t tA B C D A B C D+ + + + )

U

8:      ; 1U U
ij ijE E

N N← +

9:      [ ] [ ] [ ]
U U kS S Sδ γ δ γ δ= U γ ; 

10:    end if 

11:   end for 

12:  end for 

13: end for  

14:while there exists the cycles in the UTQPN do 

15:  Delete the only one edge that makes the UTQPN acyclic; 

16:  if the edge doesn't exist then 

17:    Find the cycle with the biggest N ; 

18:    Delete the edge with the smallest N ; 

19:    if each N in the cycle is equal then 

         Delete the edge with the smallest γ ; 

21:    end if 

22:  end if 

23: end while 

24:IQPN UTQPN; ←

25:return IQPN. 

Table 3. The first group of time series data. X denotes 
variables, denotes time points from 1 to 100. T

\X T 1   2   3   4   5   6  …  98  99  100 
[ ]tA  
… 

[ ]tD  
[ 1]tA +  
… 
[ 1]tD +

1   0   1   1   0   1  …  0   1   0 
…               …    

1   0   1   1   1   1  …  0   0   0 
0   0   0   1   0   1  …  1   1   0 

…               … 
0   0   0   1   0   1  …  1   0   0 

 
Table 4. The second group time series data. X denotes 
variables, denotes time points from 101 to 200. T

\X T 101  102   103   104   …  198  199  200 
[ ]tA  
… 

[ ]tD  
[ 1]tA +  
… 
[ 1]tD +

0     0     0     0    …   1    1    0 
…             …    

1     0     1     0    …   0    0    1 
0     1     1     1    …   1    0    1  

…             ... 
0     1     0     1    …   1    1    0   

 

4.3 Experimental Results and Analysis 

We first use Algorithm 1 to learn TQPN1 between 
two adjacent time slices from the first group data, 
and learn TQPN2 from the second group data, 
respectively. The number of sampling is 2000 and 
the max fan-in is 3. The structure graphs of two 
TQPNs with unrolling the network followed by time 
point are concluded as Figure 6 by Algorithm 1. 

According to the known data, we can learn the 
conditional probability orderings. Thus we obtain 
two corresponding TQPNs without unrolling Figure 
6 followed by time point, which are shown in Figure 
7. 
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Figure 6. The two structures of TQPN with unrolling the 
network followed by time point. 
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Figure 7. The two corresponding TQPNs without 
unrolling Figure 6 followed by time point. 

Further, we set 0.6β =  and compute the 
dependency degree of two variables on the directed 
edge in two TQPNs, and obtain the rough-set-based 
influence strength that is shown in Table 5. We 
integrate the two TQPNs into a single QPN by 
Algorithm 2, and then conclude the integrated QPN 
as Figure 8(a). 

Table 5. The qualitative influence strength in two TQPNs. 
γ denotes the influence strength on the corresponding 
edge. 

 γ  

TQPN1 
( , )  ( , )  ( , )  ( , )  ( , )  ( , )  ( , )B C C A C B C D D A B B D D
0.54  0.44   0.56   0.62   0.58    1     1 

TQPN2 
( , )  ( , )  ( , )  ( , )  ( , )  ( , )  ( , )A D B C B D C B C D D A D B
 0.2   0.49   0.51   0.43   0.43   0.9   0.89

 
                 
                                                     

In order to verify the feasibility of our methods, 
we use the general BN learning method, like K2 
Algorithm, to learn QPN from the whole dataset. We 

give the node order [B,C,D,A] according to Figure 
8(a). The max fan-in is set as 3. The final QPN that 
abstracted from the corresponding BN is shown in 
Figure 8(b). 

A
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C

D

?

+

+

−

−

(a) The integrated QPN

A

B

C

D

?

+

+

?

−

(b) The learned QPN by a BN method  
Figure 8. (a) The integrated QPN in the whole time series 
environments. (b) The learned QPN by a general BN 
method. 

Comparing two QPNs in Figure 8(a) and Figure 
8(b), we conclude that the two results are consistent 
with each other. The qualitative sign on edge 
( , )D A  is ' '−  in Figure 8(a), and that in Figure 8(b) 
is , which is not contradictory, because we use the 
rough-set-based influence strength to reduce the 
ambiguity in the integrated QPN. 

'?'

In addition, given two TQPNs and small sample 
data with 30 time points, we can also obtain the 
same integration result by Algorithm 2. Therefore, to 
some extent, our methods outperform K2 as follows. 

 Our methods show the temporal nature in time 
series environments. 

 K2 Algorithm needs to elicit the topological 
ordering, but our methods don't. 

 Given multiple TQPNs, we can directly 
integrate multiple TQPNs into a single QPN 
with the small dataset. For K2 Algorithm, a 
relatively large dataset is needed to learn a 
QPN. 

5 Conclusions and Further Research 

In this paper, in order to represent qualitative 
and temporal probabilistic knowledge coming from 
different time sources, we propose an integration 
method of multiple TQPNs and construct a single 
QPN that preserves as much information as possible. 

However, there are many important aspects 
deserving future attention, like how to integrate 
multiple QPNs that come from different information 
sources, and how to evaluate the integration result, it 
includes the integrated structure evaluation and the 
integrated qualitative signs evaluation. 
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