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Abstract: Neural networks have good learning and associative memory abilities and have been widely applied to var-
ious fields. We employed the Backpropagation Neural Network (BPNN) to replace the fuzzy methods of the Intelligent
Intrusion Detection, Decision, Response System (I2D2RS) [5] to decide the intrusion. Through this improvement the
processing of the system was simplified and the performance of the system was enhanced in the intrusion decision.
The effectivities of these improvements were confirmed with the experiments.
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1. Introduction

An intrusion detection system (IDS) generally de-
tects unwanted manipulations of computer systems,
mainly through the Internet. The manipulations may
take the form of attacks by crackers. Several types of
malicious behaviors include network attacks against
vulnerable services, data driven attacks on applica-
tions, host based attacks such as privilege escalation,
unauthorized logins and access to sensitive files, and
malware (viruses, trojan horses, and worms), which
can compromise the security and trust of a computer
system.

Over the years, there have been intelligent methods
and technologies widely applied to IDS, for exam-
ple the Self-Organizing Networks[1], the Intelligent
Agents[2], the Fuzzy Cognitive Maps[3], the Fuzzy
Logic Agent[4] etc. Through these methods, the per-
formance of the systems have been improved at some
extent. However, some problems still remain:

• each database must be built and updated by an
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administrator

• intrusive decisions and responses depend on the
administrator

• the system’s structures have become more com-
plicated and enlarged.

These aforementioned problems damage the celerity,
dynamicity, reliability and robustity of the systems
and limit the effectiveness of the systems. In the Ref-
erence [5], we proposed one novel intelligent intru-
sion detection, decision, response system (I2D2RS)
with fuzzy rule-base method. This I2D2RS utilizes the
two essential informations of the failed login’s users:
the failed login’s times and time, to decide automati-
cally who is a normal user and who is a intrusive user
from the failed login’s users using the fuzzy rules built
on the measures and skills of the experienced sys-
tem/security administrators. Figure 1 shows the pro-
cedure of the I2D2RS. The failed login surveillance
monitors the system’s log file to detect the failed lo-
gin event, and the data processing picks up the neces-
sary data: the failed login’s times and the periodicity
of time intervals, from the information of the failed
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Figure 1. Flowchart of processing

login. The fuzzy decision utilizes the fuzzy rules of
the times and the periodicity of time intervals to de-
cide the intrusion. And then the response makes the
accurate response to the intrusion.

Though the fuzzy decision perfectly decides the in-
trusion, the results of the decision aren’t used for rec-
ognizing the same or similar intrusions that occur again,
for the fuzzy logic is the lack of the abilities of learn-
ing and memory. So the performance of the system is
limited. Neural networks are the intelligent approaches
that have been successfully applied to solve the pat-
tern recognition and classificationproblems with their
learning and associative memory abilities. So that,
we replaced the fuzzy decision with the Backpropa-
gation Neural Network (BPNN) that was structured
with the Neural Network Toolbox of MATLAB [6].
With this approach, the procedure of the intrusive de-
cision was simplifiedand the efficiencywas the same
as the I2D2RS with fuzzy method, which was con-
firmedthrough experiments.

The rest of this paper is organized as follows. The
processing of the improvement I2D2RS with BPNN
is described in Section 2. Section 3 explains what is
the BPNN’s Syntax of MATLAB and how to select
the training function for the BPNN, the numbers of
layers and the numbers of neurons at each layer. Next
gives the results of intrusion decision using the trained
BPNN. A lot of experimental results are shown in Sec-
tion 4. The conclusion and the future study are given
in the last section.

2. Improvement

Figure 2 shows the flowchart of the processing of
the improvement I2D2RS with BPNN. While the an-
nouncement of the failed login comes from the failed
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BPNN decision

fuzzy decision

N1, N2, Tp

R

                  I2D2RS

Figure 2. Flowchart of the process with BPNN

login surveillance, the data processing picks up N1 –
the times of the failed login during the short specific
time, N2 – during the long time and Tp – the periodic-
ity of time intervals of the failed login’s user, and then
transfers these informations into the fuzzy decision for
deciding the intrusion. With the antecedent clauses
{N1,N2, Tp} of the fuzzy inference, the fuzzy deci-
sion utilizes the following fuzzy IF - THEN rules to
evaluate the fuzzy consequence – the danger degree
R.

IF N1 is Ai, N2 is Bi and Tp is Ci

THEN R is Di (i = 1, 2, ..., n) (1)

As the mentioned shortcomings of fuzzy method in
Section 1, the BPNN decision is employed to replace
the fuzzy decision to decide the intrusions. In order
to train the BPNN decision the inputs of the training
patterns (N1,N2, Tp) are obtained from the data pro-
cessing and the target output R of the training pat-
terns is get from the fuzzy decision of the original
I2D2RS with fuzzy method. When the training BPNN
is finished the fuzzy decision will be replaced with
the trained BPNN decision, which will be illustrated
with the thin real line of the Figure 2. Through the
improvement the procedure of the intrusion decision
is simplifiedand the performance of data processing
ability is enhanced.

3. Backpropagation Neural Network

The backpropagation (BP) algorithm is utilized to
train multilayer networks on the basis of computing

International Journal of Intelligent Engineering and Systems 2 (2008) 32-39 33



the derivatives of the squared error with respect to the
weights and biases in the hidden layers. It is called
backpropagation because the derivatives are computed
first at the layer – the output layer of the network,
and then propagated backward through the network
to compute the derivatives in the hidden layers. The
structure of BPNN is shown in Figure 3.
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input

layer
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 layers
output

 layer
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Figure 3. Structure of BPNN

3.1 BPNN of MATLAB

With the structure of Figure 3 the BPNN’s Syntax[6]
that is the rules governing construction of neural net-
work, of MATLAB is represented in the following.

Syntax:

net = newff(P,T, [S1S2...Sn], TF1TF2...TFn,

BTF,BLF,PF ) (2)

where
newff : Function for creating a feedforward

backpropagation neural network
P : R × Q matrix of Q sample R-element

input vectors
T : M × N matrix of N sample M-element

target vectors
Si : Size (the number of neurons) of the i-th

layer for n layers
TFi : Transfer Function of the i-th layer
BTF : Backpropagation Training Function of

neural network
BLF : Backpropagation weight/bias Learning

Function of neural network
PF : Performance Function of neural network

3.1.1 Experiments’ Environments

On the above mentioned Syntax, BTF and Si are
selected for structuring BPNN with a lot of experi-
ments that of environments are shown in Table 1.

Table 1. Experiments’ environments

CPU Intel D950(3.4GHz)
RAM 2GB
OS Fedora Core 6
PR 0.00∼1.00

Epochs 5000
Goal 0.0001
TFi logsig

PR : the range of input P
Epochs : maximum loops number of training
Goal : error goal of neural network
logsig : Log-Sigmoid transfer function

3.1.2 Select BT F

The training function (BTF ) trains the network to
eventually converge to a solution. For the origin BP
algorithm is too slow in converging, some accelera-
tion of convergence methods are used for MATLAB’s
training functions. With some decision experiments in
the different BTF (see Table 2), the function trainlm
was finallydecided.

Table 2. Results of various BTF

BTF C E interpretation

traingd × 6.50 steepest descent BP
trainbfg × 0.43 Quasi-Newton algorithms
trainrp × 0.82 resilient back-PROPagation
trainscg × 19.33 scaled conjugate gradient
trainlm g 0.43 levenberg-marquardt

E : network error C : convergence
× : no convergence g: convergence

3.1.3 Select S �

A lot of experiments for selecting Si were done and
the results of the 3-layers’ BPNN are shown in Table
3 and the 4-layers’ BPNN are shown in Table 4. The
Table 3 and 4 indicate that the increase of the num-
bers of the neurons can not improve the performance
of network. The 3-layers’ network wasn’t converged
to a solution without the large numbers of neurons,
so the 4-layers’ network with the small neurons was
chosen. The 4-layers’ 3-21-7-1 (the number of neu-
rons for each layer), which has the smaller network
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Table 3. 3-layers’ BPNN

S0 3 3 3 3 3
S1 20 40 60 80 100
S2 1 1 1 1 1
E 1.0693 0.5915 0.4840 0.4480 0.4266
C × × × × g

Table 4. 4-layers’ BPNN
S0 3 3 3 3 3
S1 15 18 21 24 27
S2 5 6 7 8 9
S3 1 1 1 1 1
E 0.2997 0.3008 0.2854 0.3014 0.3015
C × g g g g

error, is employed for deciding the intrusions in our
system.

Base on the probability theory and statistics, the to-
tal number of the input-output instances {(N1,N2, Tp),
R} that the training patterns are picked up from, are
computed as the following equation.

(C1
n1

× C1
n2

−
n1−1∑

i=1

i) × C1
tp (3)

(n2 ≥ n1)

In this paper, the n1 is set into 10, n2 is 50 and the
tp is 4 respectively, so the total numbers is 1820. The
results for the different numbers of training patterns
are shown in Table 5. From that Table, it is seen that

Table 5. Results of intrusion decision
S0 S1 S2 S3 NP T (%) R(%)

3 21 7 1

1214 66.7 96.20
910 50.0 96.81
606 33.3 94.81
455 25.0 92.09
364 20.0 94.64
182 10.0 84.98

NP : the numbers of input P
T : the percentage of the total numbers of instances
R : the percentage of correct decision

though the numbers of training patterns are increased
largely, the change of the percent of the correct deci-
sion rate is a little. So one BPNN with high correct
decision rate would be taken by the small number of
training patterns.

3.2 Training Time

Training time is the point that the fuzzy decision is
replaced with the trained BPNN decision at. Figure 4
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Figure 4. Number of access unwanted (one-sided) and
number of access source/monitoring point/day

shows the number of access unwanted (one-side) and
of access source for one monitoring point at one day
during August 2007 – January 2008, which are from
the Internet Monitoring (called TALOT2) of the IPA
(Information - technology Promotion Agency, Japan)
[23] and the average of the 10 monitoring points. Ac-
cording to the report of IPA, since each monitoring
environment for the TALOT2 is nearly equal to the
general connection environment used for the Internet,
it can be considered that the same amount of access
unwanted (one-sided) can be monitored for the gen-
eral Internet users’ connection environment. In an-
other word, your computer is being accessed from 227
unknown source addresses in average at one day or
you are being accessed about 3 times from one source
address unauthorized. From the Figure 4, the least
number of access unwanted is over 700 at one day, so
the training time can be estimated with the percent of
updated training patterns at one day. For example, if
the percentage of updated is 5% then the new training
patterns are 35 at the 700 access unwanted of one day,
the training time of obtaining 364 training patterns is
about 11 days. The training time is estimated with the
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following equation.

Days =
NP

n% × NA
(4)

where NA is the number of access unwanted and n%
is the percentage of updated training patterns at one
day. With the equation the training times for the dif-
ferent number of training patterns were estimated and
the results are shown in Table 6.

Table 6. Training time

NP
Percentage of update

1% 3% 5% 7% 9% 11% 13%
Days

910 130 44 26 19 15 12 10
364 52 18 11 8 6 5 4

From the table it is seen that:

• with the increase of the number of training pat-
terns the training time becomes long.

• with the increase of the percentage of updated
training patterns at one day the training time be-
comes short.

4. Experiment

With the same experiment environments as that of
the Reference [5], the two kinds of the experiments
were done and are shown in Table 7.

Table 7. Two kinds of experiment

Name N1 N2 Tp

Exp1
old

1∼N2max 1∼N2max PG1∼PG4
new

Exp2
old

1∼N1max 1∼N2max PG1∼PG4
new

where ”Exp1-old” and ”Exp2-old” are the experiments
with the fuzzy method, ”Exp1-new” and ”Exp2-new”
are the experiments with the BPNN approach, ”1∼
N2max” is the N1 taking value from 1 to N2’s max-
imum that was fivetimes N1max, ”1∼N1max” is the
N1 taking value from 1 to N1’s maximum that was
taken as 10 and being reset at N1 = N1max in our
experiments, ”PG1∼PG4” are four grades of peri-
odicity of fivetime intervals. The short specifictime
and the long specifictime were set into the 24 hours
and 30 days respectively. The responses were divided
into four level corresponding to the different degrees
of danger as following[5]:

Level 1 : corresponding to the degrees 1∼3 where
the accident is neglected by the system

Level 2 : corresponding to the degrees 4∼5 where
the user receives the warning alarm

Level 3 : corresponding to the degrees 6∼7 where
the system gives the prohibition for the user-
name

Level 4 : corresponding the degree 8 and over where
the system passes the user’s machine IP address
to the firewall

Figure 5 ∼ 12 show the experiments’ results of the
NP being 910 and Figure 13 ∼ 20 show the experi-
ments’ results of the NP being 364. From these re-
sults the following things are seen:

• the results of intrusion decision for the two meth-
ods completely match at the above mentioned
dangerous degree levels.

• the results of intrusion decision for the 910 and
364 training patterns are stupendously similar.

5. Conclusion

In this paper one Backpropagation Neural Network
was utilized to replace the fuzzy decision of the I2D2RS
for deciding whether the failed login user is an intru-
sion or not. From the results of experiments the de-
cision of the both methods was wonderfully similar
and the processing was simplifiedwith the BPNN de-
cision. The future studies are to enhance the perfor-
mance of the system to decide the various intrusions.
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Figure 7. Results of Exp1
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Figure 8. Results of Exp1
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Figure 9. Results of Exp2 with reset
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Figure 10. Results of Exp2 with reset
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Figure 11. Results of Exp2 with reset
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Figure 12. Results of Exp2 with reset
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Figure 13. Results of Exp1
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Figure 14. Results of Exp1
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Figure 15. Results of Exp1
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Figure 16. Results of Exp1
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Figure 17. Results of Exp2 with reset
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Figure 18. Results of Exp2 with reset
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Figure 19. Results of Exp2 with reset
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Figure 20. Results of Exp2 with reset
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