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ABSTRACT

In recent years, it has become consumedly clear that changing of epigenetic modification
is essential during both early and late oogenesis and spermatogenesis. Also epigenetic
modifications are involved in some cases such as embryo development and growth,
diseases and responsible for X-chromosome inactivation and genomic imprinting.
Epigenetic reprogramming can be explained as any mitotic or meiotic changing which
does not result any alteration in DNA sequence but will have important effect on the
normal embryonic development. Germline epigenetic reprogramming in addition to
requiring epigenetic modification to compose the germline, the primordial germ cells
uniquely undergo striking wave of epigenetic reprogramming that most other lineage do
not undergo. Epigenetic modification is affected by both internal factors and environ-
mental factors during pre- and post-natal development. Because all of the epigenetic
modification steps are not clear, by means of understanding epigenetic modification,
misreprogramming of these steps can be modified with the aid of drugs and nutrients.
Moreover, epigenetic regulation is essential to obtain the biological intricacy of multi-
cellular organisms, cloning and producing of offspring by assisted reproductive tech-
nology (ART).
The objective of this review is to provide comprehensive summary of the current

knowledge in the field of epigenetic modification in relation to male and female germline
development and reproduction.
1. Introduction

Epigenetic modification such as DNA methylation, histon
modification and non-coding RNA (ncRNA), plays important
roles in the regulation of chromatic structure and gene expres-
sion [1,2]. Epigenetic is the study of transmittable alterations in
gene expression that occur without changing the DNA
sequence [3]. Each cell in the human body has the same
genomes. Although each cell has one of many epigenomes,
unique collection of epigenetic instructions for founding and
protecting lineage-specific expression profiles [4].

In spite of the genetic information that is exceedingly stable,
epigenetic occurrences are reversible and responsible to internal
and external stimuli by changing the properties of proteins [5].
Epigenetic steps are involved in development, health, disease,
aging, and responsible to phenomena such as X-chromosome
inactivation and genomic imprinting [6]. Genomic imprinting is
an epigenetic mechanism which uses suppressive modifications
to reticence one parental allele, while activating modifications
on the other parental allele enable expression [7].

Some imprinted genes show paternal expression while others
show maternal expression. The best specified known mark of
gene imprinting is DNA methylation and unmethylation [8].

2. Epigenetic modification process

2.1. DNA methylation

DNA methylation is accomplished by DNA methyl-
transferases enzyme (DNMTs), which adds methyl groups
from S-adenosyl-methionine as a methyl donor to the 5-prime
carbon of a cytosine residues of CpG dinucleotides [9]. DNA
methyltransferase-1 (DNMT1) is the main human DNA meth-
ylating enzyme liable for the renovation of hemi-methylated
sites to full methylation, termed maintenance methylation that
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occurs after DNA replication. DNMT3A and DNMT3B are
principally involved in the methylation of new sites, known as
de novo methylation [10].

Methylation of DNA plays an important role in the epigenetic
control mechanism as genomic imprinting, suppression of ret-
rotransposons that threaten genome integrity, the maintenance of
genome stability, X-chromosome inactivation, and also gene
expression regulation [11,12]. In 98% of the genome, CpGs are
present around once per 80 dinucleotides. By comparison,
CpG islands that comprise 1–2% of the genome, are around
200 base pairs (bp) to several kb in length and have a
frequency of CpGs around five times larger than the genome
as a whole [13].

2.2. Histone modification

Histone modification is an epigenetic determinant of chro-
matin structure and this mechanism plays an important role in
epigenetic regulation of gene expression, DNA replication,
recombination, repairs and genome integrity. Furthermore, they
contribute in the formation of either condensed heterochromatic
states or open euchromatic states [14,15].

Epigenetic modification at the N-terminal tail of histones can be
post-translationally modified by methylation, acetylation, phos-
phorylation sumoylation and ubiquitinylation at lysine, arginine,
serine and threonine amino acids. Such a modification plays sig-
nificant roles in both structural and functional states of the chro-
matin [16]. These modifications are completed by a range of
enzymes including histone methyltransferases, acetyltransferases,
kinases and ubiquitylases. Histone demethylases, deacetylases,
phosphatases and deubiquitylases are able to eliminate the mark
from the histone tail and subsequently proteins can distinguish
and bind to these specific modifications and utilize an effect on
gene activity [17].

Altogether about 40 histone residues can be modified. Each
modification seems to have unique influence on the transcrip-
tional activity of the associated gene as acetylation of lysine
residues is connected with the relaxation of chromatin, permit-
ting access to the transcription factors and active transcription,
deacetylation leads to contraction of the chromatin, inhibiting
access of transcription factors and silencing the loci. Similarly,
methylation or phosphorylation can be connected to gene acti-
vation or gene silencing depending on the position of the amino
acid modified [18].

2.3. Non-coding RNAs (ncRNAs)

Sections of mammalian genome which transcribed mainly
consist of non-coding (nc) RNAs. ncRNAs are classified ac-
cording to their function or length [19]. ncRNAs are transcripts
without a clean open reading frame; so they do not code
proteins, but regulate the expression of other genes in cis and
trans. These ncRNAs are involved in essential functions such as
genomic imprinting, X-chromosome inactivation, transposon,
virus silencing, developmental designing and differentiation
[20,21]. When ncRNAs act to form the cis, they are able to
regulate the expression of one or more genes on the same
chromosome. On the other side, when ncRNAs act to form the
trans, they are able to regulate the expression of one or more
genes on the different chromosomes or regulate mature RNAs
in the cytoplasm [22].
3. Epigenetic in germline

Epigenetic programming in the germline such as DNA
methylation, histon modification and chromatin remodeling oc-
curs during the primordial germ cell specification, gametogen-
esis and pre-implantation development [23].

During development, germ cells undergo a series of specific
events that allow them to distinct from other cell types. Major
alterations in cellular specification must occur through differ-
entiation and reprogramming events. Overall this stage epige-
netic modification, undergo extensive changes [24]. After
fertilization in mammals, the genomes inherited from both
sperm and oocytes combine and the first of two major
reprogramming events during the life cycle occurs, which
leads to the production of a totipotent zygote [25]. First,
comprehensive alterations in DNA methylation and chromatin
remodeling occurs in developing germ cells and in the pre-
implantation embryo, rendering these “embryonic cells” espe-
cially susceptible to environmentally induced epigenetic modi-
fications. Second, the accurate timing of de novo DNA
methylation during gametogenesis is poorly understood [26].

In the case of imprinted genes, the timing of de novo DNA
methylation varies between the male and female germlines [27].
DNA methylation plays an essential role in embryonic
development such as in regulating gene expression. A
differential pattern of DNA methylation not merely is present
on paternal and maternal genomes, but also helps distinguish
germ cells and somatic cells. The differential DNA
methylation pattern of imprinting genes is determined in male
and female germ cells during gametogenesis [28,29].

4. Epigenetics and environmental effects

Existence evidence suggests that the environmental factors
during pre- and post-natal development can increase the risk of
chronic diseases such as cancer, diabetes, cardiovascular disease,
obesity and behavioral disorders like schizophrenia by altering
epigenetic programming [1]. Furthermore other environmental
factors like chemical pollutants, tobacco smoke, alcohol,
radiation, dietary components, temperature changes and other
external stresses can indeed have effects on development,
metabolism and health, sometimes even in subsequent
generations [30]. These environmental factors could interrupt
DNA methylation and DNA fragmentation like infertile men
which is found to have greater DNA fragmentation and higher
reactive oxygen species levels than fertile men. These results
indicate that DNA damage caused by oxidative stress may
facilitate aberrant global DNA methylation [31].

Several studies accomplished in relation to effect of envi-
ronmental factors and change of epigenetic modification such an
assessment performed by Oakes et al. showed that 5-aza-20-
deoxycytidine, an anticancer agent, causes a decrease in global
DNA methylation that leads to altered sperm morphology,
decreased sperm motility, decreased fertilization capacity and
decreased embryo survival [32].

5. Epigenetics in assisted reproductive technologies
(ART)

Several studies that accomplished in evaluating pregnancy
outcomes following ART in humans are frequently challenged
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by the confusing factors of increased maternal age and male/
female infertility, each which of these are recognized indepen-
dent risk factors associated with pregnancy loss, perinatal
deaths, and subsequent complications [33]. In the epigenetics in
assisted reproductive technologies, the DNA of spermatozoa is
differentially methylated at several paternal and maternal
imprinting regions in addition to shows unique globular
methylation patterns. Reprogramming of the epigenome and
imprinted loci during gametogenesis and pre-implantation pe-
riods is very essential for maintaining proper pattern of inheri-
tance, particularly at imprinted loci [34].

Use of the assisted reproductive technologies such as
intracyto-plasmic sperm injection (ICSI), round spermatid in-
jection (ROSI) and IVF may increase the incidence of imprinting
disorders and contrarily affect embryonic development by using
immature spermatozoa that may not have proper imprints or
global methylation established or using older oocytes which
frequently remain acetylated during meiosis that suggesting that
an age-related deficiency in the mechanisms regulating histone
deacetylation contributes to the promote frequency of aneu-
ploidy in older females. Absolutely it has been shown that some
genes associated with chromatin organization and DNA
methylation are downregulated in oocytes from aged mice.
Although there is a slightly dispute association between ART
and abnormal genomic imprinting in humans, now only three of
nine recognized human imprinting syndromes have been
implicated and their incidence is far low and this deregulation of
imprinted genes lead to methylation defects at the DMRs of
SNRPN (Angelman Syndrome), KCNQ1OT1 (Beckwith–Wie-
demann Syndrome) and PEG1/MEST (Silver–Russell Syn-
drome) [35,36].

6. Conclusion

Epigenetic modification has an important role during embryo
development, health, oogenesis and spermatogenesis. Restric-
tion and specific epigenetic changing in the gene imprinting
status and DNA methylation can be lead to specific human
diseases. In addition to epigenetic modification changing with
internal factors, it is affected by environmental factors and these
epigenetic alterations may be inherited and passed onto next
generation.
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