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ABSTRACT

Sulfur mustard (SM) is a cytotoxic and chemical agent that targets different tissues such
as reproductive system. SM causes a wide variety of pathological effects on reproductive
system such as disturbance in reproductive hormones, testis atrophy, spermatogenesis
deficiency, low quality of sperm and fertility problem. However, molecular and cellular
mechanisms of its adverse effects are still not well known. General events such as tissue
damage, inflammation, DNA alkylation, cell membrane defects, apoptosis and cell death
are observed frequently in SM-exposed subjects. Oxidative stress (OS) and antioxidants
depletion induced by SM seem to be one of the main factors that lead to low sperm
quality and male infertility among exposed patients. It is believed that SM can trigger
several molecular and cellular pathways linked to OS and inflammation in reproductive
system that can cause impaired spermatogenesis, sperm apoptosis and poor sperm quality
as well as loss of tissue structure and function. Identification of these signaling pathways
and molecules gives us valuable information regarding the mechanisms of SM effect on
reproductive dysfunction and the way for developing a better clinical treatment. There-
fore, in this review we aimed to discuss the proposed cellular and molecular mechanisms
of SM effect on reproductive system, the significance of oxidative stress and the mech-
anisms by which SM induces OS and antioxidants depletion in SM exposed men.
1. Introduction

2,20-Dichlorodiethyl sulfide, commonly known as sulfur
mustard (SM), is an oily lipophilic liquid which has been used as
a chemical warfare agent. It is one of the major chemical warfare
agents developed and used during World War I (1914–1919) [1].
But the highest unconventional application of SM occurred in
Iran–Iraq war (1980–1988). During that period, it injured more
than one hundred thousand Iranians, one-third of whom are
still suffering from late effects [2,3]. This gas has several
pathological consequences on various organs and systems of
the victims which has previously been reported [4]. Eyes, skin
and respiratory system are the main target organs of SM
toxicity [5–7]. Other major acute pathological findings of SM
exposure in humans include immunological and
neuropsychiatric changes, gastrointestinal (GI) effects,
hematological effects, sleep disorders and cancer [2,8–11].
Finally, it can induce a wide variety of genetic mutations,
genetic damage and particularly lead to increased rates of
cancer [12–15].

Reproductive system is one of the main targets of SM
toxicity following exposure. Prevalence of infertility among SM
exposed men has been reported from 2.5% to 35% [16–18].
Increased follicle stimulating hormone (FSH) levels along with
decreased levels of testosterone and reduced semen quality
were reported as the major effects after SM exposure [19–22].
An increased rate of fetal death and altered sex ratio were also
reported in progenies of Iranian survivors of chemical attacks
that included SM [16,19]. Although several studies have shown
the negative effects of SM on reproductive function and male
infertility, cellular and molecular mechanisms by which SM
affects spermatozoa and induces poor sperm quality are still
not well known. Therefore, there is a need for further detailed
studies with focus on underlying mechanisms by which SM
induces reproductive dysfunction and male infertility. One of
these mechanisms is likely related to increased seminal plasma
oxidative stress (OS) induced by reactive oxidative species
(ROS). Recent studies have shown that pathological effects of
SM are primarily due to its ability to form adducts with a
variety of macromolecules such as DNA, lipids and proteins
[23]. This can lead to inhibition of nucleic acid and protein
biosynthesis, as well as ATP production which disruption of
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intracellular energy metabolism. It is well documented that SM
accelerates oxidative stress through either an increase ROS
generation from endogenous or a decrease in antioxidant
capabilities and oxidative DNA repair [24]. This oxidative
stress then, in turn, may damage DNA resulting in
chromosome instability, modify gene expression, genetic
mutation or modulation of cell growth that may result in cell
death [25,26]. Therefore, toxicity from SM on cells may be the
result of the direct damage induced by alkylating cellular
components or SM-induced ROS production and oxidative
stress.

In contrast with other cells, human spermatozoa are partic-
ularly susceptible to oxidative stress induced ROS. So, they are
the major candidates for pathological and cytotoxic effects of
SM [27]. In the following sections, we will discuss general
reproductive effects of SM as well as significance of oxidative
stress and mechanisms by which SM induces oxidative stress
and antioxidants depletion in reproductive organs.
2. Reproductive effects

Although a small number of studies have considered the
adverse effects of SM on reproductive function over the past few
years, data addressing the negative effects of SM on sperm
quality and male infertility are increasing. Several clinical in-
vestigations and animal experiments suggest that SM causes a
wide variety of structural and functional defects in reproductive
system including disturbances in the levels of reproductive
hormones, testicular damages, sexual dysfunction, genital le-
sions, impaired spermatogenesis, poor sperm quality, and
Table 1

Toxic effects of SM on male reproductive system.

Study model Dose Duration

SM victims – Several years

SM victims – 1st week after exposure

SM victims – 5th week after exposure

SM victims – 3rd and 5th week after exposure
SM victims – 3 years after exposure

SM victims – 20 years after exposure
SM victims – 3 months after exposure
SM victims – 4 years after exposure
SM victims – 10 years after exposure

SM victims – 15 years after exposure
SM victims – 20 years after exposure

SM victims – 20 years after exposure
SM victims – 8 years after exposure

SM victims – Few hours or few days after exposure
Male rats 0.5 mg/kg 10 days

Male rats 5 mg/kg
10 mg/kg

10 days
reduced fertility [19]. Some evidences addressing toxic effects of
SM on reproductive function are summarized in Table 1.

Several studies have shown that SM exposure causes poor
sperm quality, suggesting spermatozoa are particularly suscep-
tible to toxic effects of SM. Azoospermia and severe oligo-
spermia have been reported in 42.5% and 57.5% of patients with
a history of exposure to SM, respectively [32]. Abnormal
morphology of sperm (53.8%), decreased sperm motility
(48.4%), reduced sperm count (23.1%) as well as abnormal
semen viscosity (17.6%) and decreased semen volume (16.5%)
have been reported as the most common semen abnormalities
in patients exposed to SM [18]. In a study, semen analysis was
considered among patients who had been exposed to SM
during the Iran–Iraq war. The results of this analysis indicated
the sperm abnormalities in 38% of the SM victims [18]. In
another study, long-term toxic effects of SM on the testis and
male fertility were investigated two decades after exposure.
Male factor infertility was diagnosed in 23% of exposed patients
and all semen indices were significantly decreased in the SM
exposed men [21].

Several studies have revealed that SM can also disturb levels
of reproductive hormones, which are essential for the regulation
and initiation of spermatogenesis. Moreover, it has been found
to interfere with the hypothalamus-hypophysis-testis axis, which
is associated with impaired spermatogenesis and low quality of
sperm. Gonadotropins (FSH, LH) and testosterone are the main
regulators of germ cell development and spermatogenesis.
Therefore, abnormal spermatogenesis is often associated with
altered levels of serum gonadotropins and testosterone. Recent
studies have revealed significant changes in plasma gonadotro-
pins and testosterone concentrations among SM exposed
Effects References

↓ Infertility (23.3%); ↓ Sperm quality (38.7%);
↑ Abortion (13.6%); ↑ Sexual dysfunction (9%);
↓ Libido (30%); ↑ Premature ejaculation (23.6%);
↑ FSH (57.6%); ↑ LH (66.3%)

[28,29]

↓ Free serum testosterone;
↓ Dehydroepiandrosterone (DHES)

[30,31]

↓ Free serum testosterone;
↓ Dehydroepiandrosterone (DHES)

[20]

↑ Serum FSH; ↑ Serum LH [20]

Y Free serum Testosterone; ↑ Testicular atrophy;
Y Spermatogenesis; ↑ Sertoli cell only pattern

[20,32,33]

Normal LH, FSH and Testosterone [21]

↑ Oligozoospermia (33.3%) [20]

↑ Sperm counts (172 × 106) [21]

↑ Abnormal sperm (38%);
↑ Abnormal morphology of sperm (54%);
↓ Sperm motility (48%)

[18]

↑ Oligozoospermia (10%) [16]

↓ Semen volume; ↓ Sperm counts;
↓ Sperm motility; ↓ Normal morphology of sperm

[21,28,34]

↑ Sperm DNA damages [35]

↓ Libido (33.3%);
↑ Erectile dysfunction (9%);
↑ Premature ejaculation (23.6%)

[29]

↑ Genital lesions; ↑ Hypopigmentation [3,36]

↑ Abnormal sperm; Y Sperm counts;
Y Sperm motility

[37]

↑ Abnormal sperm; Y Sperm counts;
Y Sperm motility;
↓ Free serum testosterone; ↓ Testis weight

[38]
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patients [30–32]. For example, increased level of FSH was found
in plasma of patients with a history of SM exposure [20,21]. A
long-term study by Azizi et al., demonstrated that exposure to
SM results in very low androgen levels and hypo-responsiveness
to GnRH. Serum total and free testosterone (FT) and dehydro-
epiandrosterone were markedly decreased after exposure to SM
[20]. A significantly lower frequency of serum FT was found
among SM induced patients (32.6%) [39]. In addition, sperm
counts are positively correlated with the testosterone level. A
marked reduction in intratesticular testosterone concentrations
seems to be an important initiator of germ cell apoptosis in
the seminiferous epithelium [33,40]. Therefore, any reduction of
testosterone level by SM would be expected to interfere with
the initiation of spermatogenesis, and lead to an increase of
germ cell apoptosis and low quality of sperm. Furthermore,
low sperm counts and the percentage of sperm abnormality are
shown to be significantly associated with a high FSH level.
An elevated FSH level is indicative of abnormal
spermatogenesis and may indicate primary testicular failure.
These findings suggest that reduced sperm count in SM
exposed patients is attributable to primary testicular injury; a
proof supporting the idea of SM gonadotoxicity [21].
Nevertheless, it seems that serum levels of the reproductive
hormones are within the normal range in SM-exposed men
several years after the injury, which is dose dependent.

Several studies on testicular biopsies in SM exposed patients
revealed complete or relative arrest of spermatogenesis, atrophy
of the germinal epithelium, intact Sertoli cells, and normal-
appearing Leydig cells [20,21,32,34]. Therefore, spermatogenesis
seems to be the main target of gonadal injury caused by SM.
Arrest of spermatogenesis in testicular biopsies of SM-exposed
subjects provides some other pathologic effects such as low
semen volume because of ejaculatory duct obstruction, as well
as poor sperm quality. Sexual dysfunction is also reported
among SM victims. In a study of 800 Iranian men exposed to
SM, 35% of them reported decreased libido [28]. Erectile
dysfunction and premature ejaculation were also observed in
9% and 23.3% of patients, respectively [29]. These
complications can be related to the decreased level of serum
testosterone. Genital lesions such as hyperpigmentation,
xerosis, and scars were also observed at the sites SM-induced
injuries [41–43].

Effects of SM exposure on the reproductive hormones and
sperm quality have been also studied in animal models. For
example, increase in the percentage of abnormal sperm and
defects in spermatogenesis were detected in male rats exposed to
0.50 mg kg−1 SM [37,38]. Alterations in testicular tissue integrity
and decrease in the testis weight were observed in male rates
after intraperitoneal injection of SM [44,45]. In another study,
intravenous injection of SM in male mice resulted in damage
to the testes with inhibition of spermatogenesis [19,44].
Increased distance between the seminiferous tubules, presence
of necrotic forms of spermatocytes, and necrotic cells in the
lumen were detected eight weeks after SM-treated rats [19].

Although experimental and human studies have shown the
negative effects of SM, cellular and molecular mechanisms by
which SM affects reproductive function and male infertility are
poorly understood yet. Spermatogenesis seems to be the major
target in reproductive system which can be influenced by
exposure to SM. Following SM exposure, intense cellular and
molecular alterations occur in reproductive tissue. After the
exposure, innate immunity induces adaptive immune system
with pro-inflammatory mediators. If the apoptosis and necrosis
rate increase, cell contents will be released into the extra cellular
matrix and immune cells will be activated. Thus, it is essential to
identify the cellular and molecular mechanisms by which SM
leads to reproductive damage and then find effective strategies to
mitigate its toxicity.

3. Cellular and molecular mechanisms of SM toxicity

Due to great lipophilic property, SM can enter into the body
easily and quickly through the eyes, skin and respiratory systems
[41]. Afterward, it can distribute systemically via circulation and
affect other tissues and organs such as reproductive system.
When SM is absorbed, it undergoes intramolecular cyclization
to form a sulphonium ion, which in turn alkylates DNA, lipids
and proteins, leading to DNA strand breaks and eventually
cell death [36,46]. Subsequently, tissue responses such as
synthesis and release of inflammatory mediators and tissue
damage began to emerge [47]. Although SM alkylates
numerous physiological molecules in cells and tissues, SM-
induced DNA damage is the primary initiator of the cellular
responses that leads to the clinical injuries [9]. SM induces
structural changes in cellular DNA since it contains one
alkylation site which can immediately attack unsaturated
nitrogen groups of DNA [48]. Toxic effects of SM have been
attributed to DNA modification, uncoiling in part with the
formation of N7-(2-hydroxyethylthioethyl) guanine (7-HETE-
G), 3-hydroxyethylthioethyl adenine and the cross-link, di-(2-
guanin-7-yl-ethyl) sulfide. Therefore, direct interaction of SM
with DNA not only leads to DNA strands breaks, genotoxic
stresses, proteins or genome modifications, but also it causes
modifications in DNA replication and transcription, cell cycle
arrest and apoptosis or cell death [23]. Furthermore, SM can
directly interact with proteins and interfere with their natural
function via miss folding, oxidation, cross-linking and enzyme
disability. Lipids are also per oxidized when being exposed to
SM, and then free radicals will be released as byproducts of lipid
peroxidation. It is supposed that oxidative stress induced by free
radicals is one of the first and direct effects of SM exposure,
which is followed by arrest of cell signaling pathways, cell
membrane collapse and cell death.

Another mechanism that may be involved in tissue damage is
nicotinamide adenine dinucleotide (NAD) depletion. After SM-
induced DNA damage, several DNA repair pathways including
poly (ADP-ribose) polymerase (PARP) pathway, base excision
repair, nucleotide excision repair, non-homologous and joining
will be activated. Recently, studies have shown that DNA
strand breaks induce PARP activation that lead to NAD+ or
ATP depletion and stimulation of the NADP+ dependent hex-
osemonophosphate shunt, which in turn enhances synthesis and
release of proteases [49]. Increased protease expression and
activation is associated with cell death and tissue injuries [50].
Some studies have proposed that after SM-DNA interaction,
PARP synthesizes poly (ADP-ribose) chain that is recruitment
signal for other repair enzymes. It is proposed that PARP may be
a switcher between apoptosis and necrosis and may have regu-
latory function over apoptosis. If damage is not repairable,
apoptosis will be followed and PARP will be cleaved. But if cell
losses its energy sources due to high demands for ATP during
repairing process, it will be necrotic. Cellular ATP depletion
blocks cleavage of PARP by caspase-3 and then PARP con-
tinues its activity. Recent studies have demonstrated that PARP
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also produces poly (ADP-ribose) (PAR) alone that induces
signals for apoptosis and cell death (Figure 1) [51].

In addition to PARP activation and direct effects of SM on
DNA, lipids and proteins, experimental evidences reported the
roles of NF-kB, p53, p38, Fas, calcium and calmodulin in the
molecular mechanisms of SM-induced cell death, inflammation,
and injury [11,52]. Several studies have considered calmodulin
and increases in intracellular Ca2+ levels as one the most well-
known signaling molecules induced by SM exposure [53].
Calmodulin and increased Ca2+ are proposed to play a critical
role in apoptosis and cell death (Figure 1). Cellular Ca2+ can
be increased by protein kinase signaling pathways that leads to
activation of phospholipase C (PLC) and generation of inositol
triphosphate (IP3), which acts on Ca2+ channels to release it
from intracellular stores [54]. The other mechanism involves
oxidative stress in which reactive oxygen species (ROS)
generated by SM exposure, react with Ca2+ transport channels
in the endoplasmic reticulum, mitochondria, and cell
membrane. These reactions damage the Ca2+ transport
channels, which results in an influx of Ca2+ into the cytosol
[55]. High levels of cytosolic Ca2+ not only induce proteases
activity (such as Caspase 3, 7 and 9), but also it induces
Phospholipases and Endonucleases activity which in turn
degrade cellular proteins, lipids and DNA [56] (Figure 1).

Earlier studies showed that SM induces upregulation of FasL
and Fas, as an apoptotic signaling, in injured cells [57]. It is stated
that FasL and Fas induce the process of Caspase activation
(Caspase 3, 7–9), which in turn leads to protein degradations
and apoptosis. The other signaling molecules such as NF-kB,
p38, and p53 are mediator factors that mediate numerous
cellular responses such as inflammation, apoptosis,
proliferation, differentiation, and tumorigenesis [58,59]. Several
Figure 1. Mechanisms for the cellular and molecular effects of SM on cells d
studies implicated that SM induces these mediators and leads
to inflammation, apoptosis or cell death among exposed cells.
The other potential mechanism of SM-induced cell death is
related to rapid inactivation of sulfhydryl-containing proteins
and peptides, such as glutathione. These sulfhydryl compounds
are critical in maintaining appropriate oxidation–reduction state
of cellular components. Glutathione is also thought to be critical
in reducing ROS in the cell and preventing peroxidation and loss
of membrane integrity [60] (Figure 1).

4. Role of oxidative stress in male infertility

Oxidative stress can be defined as the imbalance between
bioavailability of ROS and cellular antioxidant systems that can
lead to critical failure of biological functions and ultimately cell
death [61]. ROS, especially superoxide anion (O2

�), and hydroxyl
radicals (OH�) are highly reactive molecules that belong to the
class of free radicals and produced by living organisms as a
result of normal cellular metabolism [61,62]. They are unstable
molecules with short half-life that can adversely affect certain
cellular processes and modifies cell components, such as lipids,
proteins, and DNA in high concentrations [63]. Nevertheless,
small amounts of ROS are required for normal sperm function
such as acrosome induction and sperm capacitation. Therefore,
they exhibit a double edged sword role in cells.

Oxidative stress induced by ROS has recently been proposed
as one of the major causes for poor sperm quality, sperm
dysfunction and male infertility [64–66]. Indeed, spermatozoa
were the first cell type reported to show potential susceptibility
to OS [67]. Excessive ROS can be produced by immature
spermatozoa and leukocyte cells originate from the prostate
and seminal vesicles [68]. They can attack sperm membrane
eath.
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lipids, DNA and proteins; alter enzymatic systems; produce
irreparable alterations; cause cell death; and ultimately, lead to
decline in the semen parameters associated with male
infertility [67].

ROS attacks the fluidity of sperm plasma membrane, with
subsequent loss of the ability for oocyte fusion and fertilization
[68]. Due to the high concentration of polyunsaturated fatty acids
(PUFA) in the membrane of human spermatozoa, they are
particularly susceptible to OS [69]. PUFA are responsible for
the fluidity of sperm membrane, ion transport and the changes
that occur during capacitation in female reproductive tract.
Therefore, oxidation of PUFA by ROS causes to deficiency in
membrane function and sperm death. Furthermore, decrease in
fluidity could affect membrane transport activity and affect
surviving of spermatozoa. A number of studies have shown
that lipid peroxidation affects sperm concentration, motility,
and normal morphology. Some studies have suggested that
ROS attacks the integrity of DNA in sperm nucleus by
causing base modification, DNA strand breaks, DNA
fragmentation, deletions, frame-shift mutations, and chromatin
cross-linking [70–74]. DNA damage included by excessive levels
of ROS could accelerate process of germ cell apoptosis, leading
to decline in sperm counts associated with male infertility [75].
Studies have found that the levels of ROS correlate with the
motility of spermatozoa. Peroxidative damage to the sperm
membrane and axonemal proteins seems to be the cause of
permanent impairment in sperm motility because excessive
ROS depletes ATP rapidly resulting in decreased
phosphorylation of axonemal proteins and cause transient
impairment of motility as well as decreased sperm viability
[67]. Lipid peroxidation has also a deleterious effect on the
ultramorphological status of the sperm cells and thereby on
the male fertilization potential [74].

In order to counteract the toxic effects of ROS, human
spermatozoa are equipped with antioxidant defense mechanisms
and are likely to quench ROS, thereby protecting gonadal cells
and mature spermatozoa from oxidative damage [67].
Furthermore, human seminal plasma contains enzymatic and
low molecular weight antioxidants which make it able to as a
free radical scavenger and hence it protects spermatozoa
against ROS. This defense mechanism compensates the loss of
sperm cytoplasmic enzymes when the cytoplasm is extruded
during maturation [76]. Nevertheless, increased ROS in
reproductive system can decrease the effective concentration
of essential antioxidants, increasing the harmful effects of
ROS on spermatozoa that are associated with abnormal sperm
parameters [77]. Hence, seminal plasma is extremely sensitive
to decrease in body levels of antioxidants.

5. SM induces oxidative stress

It is now proposed that oxidative stress induced by free
radicals is one the major mechanisms for direct effects of SM
exposure in human body. It appeared that oxidative stress
induced with ROS is one reason for low sperm quality and male
infertility among SM exposed patients. SM may increase ROS
production in the testes, negatively impacting the sperm struc-
ture and function. A lot of studies have demonstrated that SM
induces the process of oxidative damages in mustarded subjects
[78–80]. SM leads to increased rate of oxidative stress in
reproductive system with several mechanisms. One of these
major mechanisms is related to high levels ROS that has
destructive effect on normal cells and their functions. Over the
past few years, extensive research has been carried out to
establish a link between presence of leukocytes in the
ejaculate and a male factor as the cause of infertility. Various
studies point to a correlation between decreased sperm
function and seminal plasma with abnormally elevated levels
of ROS, IL-6, IL-8, and tumor necrosis factor, all of which
result in increased sperm cell membrane LPO [81–83]. Recent
studies have reported that exposure to SM is associated with
inflammatory reactions and oxidative injury at the site of
damaged tissues [80,84,85]. Experimental studies revealed that
SM induces secretion of proinflammatory cytokines,
chemokines and growth factors, including TNFa, IL-a, IL-b,
IL-6, IL-8, IL-13, IL-15, INF-g, macrophage chemotactic pro-
tein (MCP)-1, matrix metalloproteinases (MMPs) in damaged
tissues [86–88]. SM can accumulate inflammatory cells including
macrophages and neutrophils with a subsequent release of
chemical mediators of inflammation such as interleukins and
cytokines that can recruit and activate other leukocytes in
reproductive system. Activated leukocytes can generate high
levels of ROS in a respiratory burst, which may overwhelm
the antioxidant strategies, resulting in oxidative stress in
seminal plasma. ROS produced by SM-induced phagocyte
cells cause oxidative damage to sperm DNA, protein and
membrane PUFA, which may be closely related to in-
flammations, impaired spermatogenesis, apoptosis and low
quality of sperm [35]. Several studies have shown that SM
induces mitochondrial dysfunction, a process associated with
increased ROS production, DNA oxidation and decrease in
intracellular antioxidants [77,89]. Sperm cells are rich in
mitochondria because a constant supply of ATP is required for
their motility. Therefore, presence of abnormal and immature
spermatozoa in the semen significantly elevates production of
ROS, which in turn affects its mitochondrial function and
subsequently, sperm function such as motility [67,90]. SM has
been found to impair spermatogenesis and induces sperm
DNA damage. In a recent study, association between SM
exposure and sperm DNA fragmentation has been investigated
two decades after SM injury. A significant increase in sperm
DNA fragmentation index was observed in SM patients,
suggesting the risk of congenital abnormalities and genetic
defects in SM-exposed veterans' offspring created by intra-
cytoplasmic sperm injection (ICSI) technique [34,35].

Another important mechanism by which SM can increase
OS is modulated by its negative effects on seminal plasma
antioxidants or enzymes that reduce the other antioxidants.
Reduced glutathione (GSH) is thought to be a primary target
for SM because its level has been markedly reduced after SM
exposure [91]. Further evidences revealed that SM–GSH
metabolites deplete cellular GSH and increase intracellular
ROS as well as OS markers including DNA, lipid and
protein oxidations [91]. Several investigators have shown
that GSH treatment or N-acetylcysteine (NAC), as a GSH
prodrug, can reduce the OX and toxicity induced by SM
[60,92,93]. NADPH cytochrome p450 reductase is another
target for SM. It is a flavin-containing electron donor for
cytochrome p450, as a major enzyme that has a critical role in
mediating detoxification of SM and its metabolites [94].
Several investigators have demonstrated that SM not only
has an inhibitory effect on reduction of cytochrome-c, but it
also inhibits NADPH cytochrome p450 reductase activity and
stimulates ROS formation [94]. SM can also target other
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antioxidant enzymes such as thioredoxin reductase, catalases
(CAT), superoxide dismutase (SOD), glutathione reductase
(GR), glutathione peroxidase (GPX) and glutathione-S-
transferases, which are critical for controlling cellular anti-
oxidants balance [88,95]. Decrease in activity and effective
concentration of these enzymes can occur as a result of
SM-induced alkylation or changes in expression of
these enzymes.

Besides ROS, reactive nitrogen species (RNS) such as ni-
trogen oxide (NO) can contribute to oxidative damage and
toxicity when produced in excessive amounts. It is synthesized
from arginine and oxygen mediated by nitric oxide synthase;
however, its ability to damage cells is depended on local con-
centrations of NOS, metabolism into reactive intermediates, as
well as its detoxification in target tissues [96]. NO is a strong
oxidant which inhibits mast cell degranulation and histamine
release. Massive production of NO probably triggers
inflammation and apoptosis via increased regulation of iNOS
activity [96]. Despite NO being a strong oxidant, but ROS
derived O2

−� reacts with NO and forms a stable oxidant known
as peroxynitrite (ONOO−) [97]. This new molecule is not a
radical, but it is a strong and stable oxidant that can interact
with biomolecules and induces more damages [96,98]

(Figure 2). In several studies, SM has been reported to modu-
late expression and activity of NOS and nitric oxide production
in different tissues [98,99].

In conclusion, SM causes a wide variety of structural and
functional defects in reproductive system including disturbances
in the levels of sex hormones, testicular damage, sexual
dysfunction, genital lesions, impaired spermatogenesis, poor
sperm quality, and reduced fertility. It provides reproductive
dysfunction with several cellular and molecular mechanisms;
however, the majority of proposed roles for molecular and
cellular events in SM injury remain mostly theoretical. SM ex-
erts its toxicity through a number of pathogenic mechanisms
including DNA alkylation, NAD depletion, antioxidants deple-
tion, inflammation and cellular apoptosis. Oxidative stress
induced by SM is one of the main mechanisms by which SM
directly contributes to DNA fragmentation, lipid and protein
oxidation and as the result sperm apoptosis. It induces OS in
reproductive system with disruption of mitochondria, increases
activity of enzymes producing ROS and seminal plasma anti-
oxidants depletion including GSH and several antioxidant en-
zymes, accumulation of leukocytes at the site of reproductive
tissue, inflammation reactions and as a result imbalance in
production and detoxification of ROS. Therefore, treatments
with antioxidants can be valuable to protect reproductive func-
tion against SM-induced damage. However, successful therapy
for SM toxicity may depend on disease severity, antioxidants
dosage, development of new antioxidants effective against SM-
induced ROS and their improved delivery to target tissues.
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