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1. Assisted reproductive technology (ART)

  Infertility affects approximately 10% of couples globally 
and has led to phenomenal growth in a series of clinical 
laboratory techniques designed to combat such conditions, 
collectively termed assisted reproductive technology 
(ART)[1,2], resulting in the birth of more than 4.6 million 
babies worldwide. Infertility may arise as a result of 
male or female factors, a combination of both factors, or 
may arise for unknown reasons (idiopathic infertility[2]. 
Female infertility often occurs as a result of mechanical 
factors such as endometriosis, uterine lining defects, 

anovulation, or cervical polyps and cysts[3], while male 
factor infertility is commonly associated with significant 
reductions in seminal sperm (azoospermia), reductions in 
sperm concentration (oligozoospermia), poor sperm motility 
(asthenozoospermia), or abnormal sperm morphology 
(teratozoospermia). Other major causative male factors 
include varicocele (anomalous enlargement of veins in the 
scrotum resulting in compromised blood drainage in the 
testicles), cryptorchidism (absence of one or both testes from 
the scrotum), or idiopathic factors[4]. 
  While the clinical and laboratory aspects of ART 
have evolved enormously since their first successful 
implementation in 1978, global pregnancy and live birth 
rates remain relatively low and rarely exceed 40%[5]. 
Pregnancy and delivery via routine conventional ART 
procedures such as in vitro fertilisation (IVF; whereby 
sperm and oocytes are co-incubated in culture media) or 
intracytoplasmic sperm injection (ICSI; whereby a single 

Human infertility is becoming increasingly prevalent and is now estimated to affect 10% of 
couples worldwide. Although phenomenal development in assisted reproductive technology (ART) 
has yielded a powerful and sophisticated discipline with which to combat many types of human 
infertility, success rates vary markedly and rarely exceed 40%. Mounting evidence suggests 
that laboratory techniques used routinely in ART may inadvertently impart detrimental effects 
upon gamete and embryo viability and competence. In this mini-review, we discuss how routine 
cryopreservation methods, commonly used in ART, may exert iatrogenic (clinician-induced) 
damage upon sperm structure, DNA integrity, and function. It is recommended that future 
research programmes aim to refine or replace current cryobiology protocols in order that the 
efficacy of ART can be optimised accordingly.  

Asian Pacific Journal of Reproduction 2012; 1(1): 69-75

Asian Pacific Journal of Reproduction

Journal homepage: www.elsevier.com/locate/apjr

Contents lists available at ScienceDirect



70 Suseela Yelumalai et al./Asian Pacific Journal of Reproduction (2012)69-75

sperm is microinjected into the ooplasm) remain as low as 
22.4% and 23.3% respectively[5]. As the number of couples 
seeking infertility treatment increases, it is essential to 
further develop ART success rates to improve chances of 
successful conception[6].
  Over recent years, the unpredictable success rate of ART 
has drawn much attention, particularly in terms of the 
potential for ART to promote clinician-induced (iatrogenic) 
damage to gametes and embryos. Characterising the extent 
of such damage and identifying potential sources would 
provide an opportunity to upgrade, modify, develop and 
improve routine protocols[7]. ART procedures such as IVF 
and ICSI are performed on pre-treated/manipulated gametes 
outside of their natural environment, mainly to enhance and 
facilitate the fertilisation process. For example, oocytes are 
normally exposed to the enzyme hyaluronidase prior to ICSI 
to remove cumulus cells, followed by mechanical corona 
removal to expose the oocyte for maturity identification 
and injection. Semen is also extensively processed in 
order to pre-select good quality sperm exhibiting high 
motility, normal morphology and concentration. It is a 
distinct possibility that such manipulative techniques may 
inadvertently compromise important features relating to 
gamete integrity, structure, and function. 

2. Oxidative stress and DNA fragmentation

  Reactive oxygen species (ROS) like hydrogen peroxide 
are oxygen-derived molecules that have the capacity to 
act as powerful oxidants and are normally formed in low 
concentration in the both the male and female genital tracts. 
Oxidative stress, an elevation in the steady-state levels 
of ROS that exceeds the body’s antioxidant defences[8,9], 
has been implicated in a number of different reproductive 
scenarios ranging from endometriosis to oocyte maturation, 
as well as being indicated in the etiology of defective embryo 
development, and a number of sperm conditions such as 
asthenozoospermia, and sperm DNA damage (Figure 1)[9-11]. 
While it is generally accepted that it is difficult for an in 
vitro system to mimic the exact physiological conditions 
of an in vivo system, multiple factors inherent in an ART 
setting may lead to elevated levels of oxidative stress and a 
suboptimal ART outcome[9,12]. 
  Oxidative stress can induce damage to sperm membranes 
and DNA, ultimately leading to non-viable sperm. The 
use of damaged sperm in ART has been implicated in 
alterations in oocyte and/or embryo development. Critically, 
however, sperm selected for use in ART most likely 
originate from an environment experiencing oxidative 
stress. It follows, therefore, that DNA damage may have 
already occurred in a large percentage of such sperm 
prior to semen processing[9,14]. Similarly, oocytes and 
embryos may contribute to increased levels of ROS due to 
inadequate protective antioxidant mechanisms present in 
vivo. Indeed, cells cultured in vitro may be exposed to a 
relative “hyperoxic” environment compared to conditions in 
vivo[9,15].
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Figure 1. Representative micrographs of human sperm following an 
electrophoresis comet assay for DNA fragmentation. 
The majority of DNA from normal sperm migrates as a single cohesive 
mass, while in sperm with DNA fragmentation, a comet-like structure 
is created with the fragmented DNA forming the “tail”. The further 
the migration, the more profound the damage produced. A, B and C 
represent undamaged DNA, intermediate DNA damage, and extensive 
DNA damage in human sperm, repectively. Figure was reproduced 
from Enciso et al.[13] with permission.

3. Effects of ART treatment upon sperm 

  The perceived role of sperm has tended to be generalised 
to the mere transportation of paternal DNA into the oocyte. 
However, sperm play a crucial role which extends beyond 
the early stages of fertilisation, including embryogenesis, and 
the events leading to implantation[16]. In an ART treatment, 
semen samples are subjected to a variety of processing 
methods and chemicals (e.g., sperm washing, retardation 
of motility by polyvinylpyrrolidone, cryopreservation), in 
order to enhance sperm parameters prior to use, to facilitate 
the fertilisation procedure, and to maximise the chances of 
successful fertilisation. However, it follows that each of these 
treatments may impart detrimental effect upon the sperm 
being processed. 

3.1. Sperm washing as a means of selecting sperm for ART

  Sperm preparation techniques such as density gradient 
wash (DGW) and swim-up (SUP) are routinely used in 
ART to produce a processed sample that is enriched with 
mature, motile, and morphologically normal sperm[17]. SUP 
depends on a migratory approach following the formation 
of a sperm pellet by brief centrifugation, whereby sperm 
with the greatest motility “swim-up” into culture medium, 
while DGW depends on sperm density and sedimentation[18]. 
DGW and SUP sperm isolation techniques may play a 
role in selecting sperm without DNA damage, and they 
are able to select non-fragmented sperm following 
cryopreservation[18,19]. Sperm quality has been shown to 
be superior following density gradient compared to SUP 
processing[20,21].
  However, DGW and SUP require centrifugation, which 
may increase sperm ROS production, thereby damaging 
not only the sperm membrane which affects motility and 
fertilising capability but also sperm DNA[22]. Furthermore, 
time-dependant incubation of prepared sperm at RT or 37 
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°C reduces sperm motility and also significantly increases 
sperm DNA fragmentation and chromatin decondensation[23]. 

3.2. Alternative methods for sperm selection

  Several newer selection methods have been developed with 
the objective of improving sperm preparation protocols for 
ART, aiming to isolate mature, structurally intact, and non-
apoptotic spermatozoa with high DNA integrity[17]. One group 
of new selection techniques separate sperm by size and 
electronegative charge[17,24], do not involve centrifugation 
and may avoid the generation of ROS[17,25]. Another sperm 
preparation technique, based on the externalisation of 
phosphatidylserine to the outer surface of the sperm 
membrane, a feature of early apoptosis, has been proposed 
as a basis for selection of non-apoptotic spermatozoa[17]. 
While not as efficient as established techniques such as 
DGW or SUP in selecting a large proportion of viable sperm, 
a combination of DGW and phosphatidylserine techniques 
resulted in the selection of sperm with a 50% reduction in 
DNA fragmentation rates[26], and significantly higher rates 
of survival following cryopreservation-thawing compared to 
samples prepared by DGW only[27].
  Morphological selection techniques have also been 
proposed based largely upon sperm ultra-morphology. 
Assessing the sperm acrosome, post-acrosomal lamina, 
neck, tail, mitochondria, nuclear shape, and chromatin 
content, motile sperm organelle morphology evaluation 
has been utilised prior to a modified version of ICSI, 
termed intracytoplasmic morphologically-selected sperm 
injection[28]. While such an approach particularly benefits 
situations where identification of specific sperm organelles 
is required, e.g., the acrosomal component in cases of 
globozoospermia[29,30], there is a significant debate over 
the clinical viability of motile sperm organelle morphology 
evaluation followed by intracytoplasmic morphologically-
selected sperm injection, considering that it is an elaborate 
and highly skilled procedure that involves prolonged sperm 
manipulation, adding significantly to routine ICSI processing 
times. 

3.3. Cryopreservation

  Cryopreservation is an essential tool for infertility 
treatment, and it is used not only in sperm donation 
programmes or in cases of poor semen quality but also 
following cases involving surgical sperm retrieval, or 
fertility preservation for cancer patients prior to treatment. 
Cryopreservation involves cooling of the sperm to sub-
zero temperatures (−196 °C) by means of controlled-rate 
slow freezing or vitrification (‘glass-like’ solidification of 
cells), resulting in the temporary suspension of all biological 
activity (Figure 2). Samples treated in such a manner can 
be stored for long periods of time[31]. A combination of 
cryoprotectant solutions (glucose, sucrose, ethylene glycol, 
propylene glycol, dimethyl sulfoxide, and 2-methyl-
2,4-pentanediol) is added to sperm samples in order to 

avoid damage as a result of cryopreservation or thawing 
procedures. However, high cryoprotectant concentrations 
may result in cellular damage, cause biochemical changes, 
and induce lethal osmotic injury[32,33]. 
  Cryopreservation techniques are under constant scrutiny 
to reduce potential risks to gametes and embryos. Newer 
cryoprotectants can replace water in cells during freezing[34], 
while vitrification has been utilised to replace slow-
freezing technologies[35], allowing higher cryoprotectant 
concentrations within cells and faster freezing to preserve 
cells in a ‘glass-like’ state, which avoids the formation 
of damaging ice crystals[35,36]. Simplified or adapted 
vitrification protocols have reported even better survival 
and fertilisation rates compared to original protocols, and 
there is thus a significant hope for considerable further 
improvements in the near future[34,37-39].
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Figure 2. Students learning the intricacies of cryopreservation (A) 
and vitrification (B) as part of the MSc in Clinical Embryology at the 
University of Oxford, U.K. 
Comprehensive training, coupled with the continued modification of 
such techniques as a result of investigative research, is highly likely 
to lead to improved success rates. For more information on the Oxford 
MSc in Clinical Embryology, see www.obs-gyn.ox.ac.uk/MSc.

4. Vulnerability of sperm DNA integrity to freeze-thaw 
cycles
 
  Sperm cryopreservation can detrimentally affect sperm 
integrity and the dynamics of DNA fragmentation[40,41]. 
Increased levels of DNA fragmentation and DNA oxidative 
damage are often observed in thawed sperm[42]. Further 
incubation of post-thaw semen also results in a significant 
increase in DNA fragmentation[19]. The act of cooling, 
freezing, and thawing also damages sperm membrane 
structures, leading to a significant reduction in sperm 
viability and motility. Cryopreserved sperm are prone 
to oxidative stress damage, leading to an increase in the 
number of ROS present, but with a coincident reduction in 
the level of important antioxidants such as glutathione[43]. 
Cellular lipids and proteins can be damaged by changes in 
the concentration of oxidants/antioxidants[43]. Furthermore, 
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oxidative stress is known to reduce conception rate, 
compromise embryonic development, and correlate to an 
increased risk of miscarriage and childhood mortality[44-47].
  However, while several studies indicate that sperm 
chromosomes and sperm viability were not affected 
by cryopreservation[48], other studies suggest that DNA 
fragmentation measurements are often under-estimated due 
to skewing of the TUNEL assay by DNA compaction and cell 
vitality[49]. Furthermore, fertilisation rates following ICSI 
were higher for fresh sperm (73.8%) compared with frozen 
sperm (68.7%) in a study carried out by Borges et al[50]. 
Cryopreserved asthenozoospermic (sperm with reduced 
motility) and oligoasthenozoospermic (low sperm count with 
reduced motility) were prone to further severe damage and 
consequently reduced fertilisation rates. Studies suggest 
that DNA fragmentation in sperm is mostly induced during 
sperm transport through the seminiferous tubules and the 
epididymis[9,51,52], mediated by ROS production by immature 
sperm and by the nitric oxide-producing epithelial cells 
that line the epididymis, where sperm are highly packed, 
facilitating transfer of free radicals from immature to mature 
sperm. This is particularly a reason for concern regarding 
ART protocols, where a similar mechanism may occur within 
the pellet of centrifuged semen where sperm would also be 
highly packed[9].
  Interestingly, the eggs of marine invertebrates are known 
to undergo a ‘respiratory burst’ at fertilisation, involving 
an increase in levels of ROS within the zygote, suggesting 
that mitochondrial activity is stimulated by calcium release 
in the ooplasm following gamete fusion[53-55]. Intriguingly, 
Lopes et al. demonstrated that levels of oxygen consumption 
and ROS production were higher during fertilisation and cell 
cleavage stages within bovine zygotes[55], while Vandaele 
et al. indicated that the short term exposure of bovine 
cumulus-oocyte-complexes to levels of hydrogen peroxide 
led to improved embryo development[56]. While these studies 
indicate a possible role for ROS within embryo development, 
it is also possible that an abundance of ROS, introduced 
either within the oocyte or sperm as a result of ART, may 
account for deficient/abnormal embryogenesis. Indeed, 
cumulus cells are routinely removed for clinical procedures 
like ICSI, which may result in a deficiency of ROS within 
the zygote when it is required. It is therefore important 
that routine ART techniques associated with the potential 
induction of ROS production, such as overnight incubation 
and SUP, are investigated further in order to improve success 
rates.

5. Sperm function may be compromised by the use of 
cryopreservation

  Besides DNA damage, cryopreservation may exert 
detrimental effects upon key sperm proteins associated 
with fertility[57]. However, specific effects of iatrogenic 
damage incurred by ART upon critical sperm proteins have 
not yet been extensively determined, mostly pertaining 

to difficulties in determining specific functions for the 
numerous proteins involved in sperm viability. The human 
sperm proteome, characterised in great detail by Johnston et 
al.[58], is thought to contain more than 1 760 proteins, 1 350 
being identified in the soluble fraction, 719 in the insoluble 
fraction, and 309 identified in both fractions. 
  A number of studies have begun to explore the human 
sperm proteome in order to identify immune-dominant 
sperm surface antigens[59], and to identify new biomarkers 
for male infertility[60]. Furthermore, Pixton et al. mapped 
the sperm proteome of a human male who had experienced 
failed IVF and discovered at least 20 proteins with abnormal 
expression patterns compared to fertile controls[61]. 
Indeed, knock-out mouse models have shed light on 
numerous sperm proteins which may play crucial roles 
in spermatogenesis or sperm function during fertilisation 

(Table 1)[62]. More recently, the human sperm proteome 
has been used to compile a protein profile of capacitated 
versus freshly ejaculated human sperm[63]. However, 
while the effects of cryopreservation upon sperm DNA 
integrity has been exhaustively investigated, the effects 
of cryopreservation upon the vast array of sperm proteins 
thought to be involved in determining fertility remain largely 
un-investigated. As such, it is crucial that new studies aim 
to investigate related changes in vital sperm proteins. One 
key point to consider is how clinical activity/processing may 
exert influence over the quality of sperm DNA and protein, 
and ultimately, the ‘fitness’ of sperm to carry out their 
required reproductive function. 
  Kashir et al. reported that cryopreservation of human sperm 
significantly reduced levels of the sperm-specific oocyte 
activation factor, phospholipase C (PLC) zeta compared 
to fresh human sperm (by 20%-56%), possibly leading to 
a compromised fertilisation capacity of such sperm[6]. 
Indeed, specific levels of PLC zeta correspond to successful 
fertilisation and embryonic development, with an absence 
or reduction of this protein associated with male factor 
infertility[4,64]. Cao et al. further observed that levels of heat 
shock protein 90 were significantly reduced in thawed human 
sperm following cryopreservation[65]. Similarly, sodium 
dodecyl sulphate poly acrylamide gel electrophoresis (SDS-
PAGE) and Western blot analysis on freeze-thawed boar 
sperm further revealed significantly reduced levels of heat 
shock protein 90[66]. Surface proteins that act as mediators 
in the fertilisation pathway[67], such as P25b, are reduced in 
bull sperm following cryopreservation with consequential 
reduction in fertilisation rates[68]. Moreover, 2-dimensional 
poly acrylamide gel electrophoresis (2D-PAGE) analysis of 
cryopreserved sea-bass sperm revealed degradation in a 
total of 21 proteins[69]. 
  Prior to fertilisation, sperm endure several membrane 
and biochemical processes in the female tract, collectively 
known as capacitation, in order to facilitate penetration into 
the oocyte[70]. Among the many intracellular modifications 
occurring during sperm capacitation, are elevations in 
protein tryrosine phosphorylation (P-Tyr)[71] and cAMP[72]. 
In a recent study, cryopreservation was not found to affect 
the regulatory pathways of capacitation and the acrosome 
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reaction; however, levels of P-Tyr and cAMP were 
significantly reduced in cryopreserved sperm[73]. 

6. Conclusions 

  Sperm selection and cryopreservation are commonly-used 
techniques in ART. However, current selection protocols 
may underlie an increased incidence of DNA fragmentation 
in sperm, thus compromising viability. Growing evidence 
suggests that cryopreservation may also exert a number of 
detrimental effects upon key sperm proteins involved in 
capacitation, acrosome reaction and fertilisation. However, 
our understanding of such effects is hindered by our limited 
understanding of the exact functional role of the multitude 
of proteins making up the sperm proteome. 
  The extensive development of ART has not only 
revolutionised clinical treatment of infertility but also 
facilitated significant advances in our understanding of 
human reproduction. However, pregnancy and birth rates 
resulting from such technology remain frustratingly low. 
Modifications of current ART protocols and the development 
of novel techniques associated with advances in science 
and technology are essential in order to provide improved 
clinical and diagnostic tools for patients. Recognising the 
potential for iatrogenic damage upon gametes and embryos 

during ART will facilitate the improvement, development, 
and introduction of modified ART protocols which are highly 
likely to improve success. 
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