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1. Introduction

   Zika virus (ZIKV) outbreak was initially recognized in Africa[1], 
which occurred in Yap during April[2]. This was then followed 
by another outbreak in French Polynesia for six months between 
October 2013 and April 2014[3], and took place in some Pacific 
countries[4,5]. In 2015, some cases of ZIKV were recorded among 
South American countries, which Brazil and Columbia were 
victim[6-8]. Specifically, ZIKV transmission is basically vector-borne, 
however, in some circumstances it can also be transmitted through 
sexual contact and blood transfusions process[4]. The Aedes species 
mosquito is the main agent of transmission of the virus[9], which 
is also at the same time the vector for dengue virus. ZIKV has been 
identified as able to sustain transmission in other tropical regions[10]. 
The symptoms of ZIKV include fever, rash, increased incidence of 
neurological sequelae[11,12] and microcephaly in infants born to 
mothers who contracted ZIKV in pregnancy period[13]. The recent 

ZIKV incidence in Brazil and French Polynesia possibly compels 
World Health Organization to declare a Public Health Emergency 
of International Concern in response to the clusters of microcephaly 
and other neurological disorders. Apart from the major outbreak in 
French Polynesia incident which saw 42 Guillain-Barre syndrome 
cases[11,14] between March 2014 and May 2015 in same region, 10 
cases of Guillain-Barre syndrome with microcephaly and severe 
brain lesions were reported[12]. Globally ZIKV has the potential to 
spread across all continents, therefore, it is critical to characterize 
the transmission dynamics of the disease. Mathematical models 
have been recognized as essential tools for investigating the 
dynamics of the spread of infectious diseases. Mathematical models 
can help to determine a threshold called reproduction number 
which usually provides information on how infection will be 
sustained. Application of mathematical models to study mosquito 
related diseases have been studied by several researchers[15-19]. 
The potential factors for spreading ZIKV can be well appreciated 
via mathematical models. Control of infectious diseases is a key 
to World Health Organization and optimal time control is capable 
of providing useful theoretical information on both prevention 
and treatment of diseases. The information obtained from optimal 
control modeling can help decision makers to plan well and provide 
the best services to manage and cure diseases. Optimal time control 
has been employed to study many mosquito related diseases[15,18-

22]. To the best of our knowledge there is no optimal control model 
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on ZIKV. In this study we propose a new model with optimal control 
to examine the effect of mass treatment and insecticide. The purpose 
of this control is to minimize the number of Zika infected hosts 
and vectors with optimal cost of mass treatment and insecticide 
applying Pontryagin’s maximum principle. The paper is arranged as 
follows; In Section 3, we apply Pontryagin’s maximum principle to 
explore analysis of control strategies, and to determine the necessary 
conditions for the optimal control of the ZIKV model. In Sections 
4, we present the simulation results to illustrate the population 
dynamics, with prevention and treatment as controls. In Section 5, 
conclusions are discussed and drawn.

2. Model formulation

   There is evidence that Aedes species mosquito transmits both dengue 
fever and ZIKV and for the purpose of this study we explore 
susceptible-infected-recovered model to examine the dynamics of 
transmission of ZIKV to human[23]. The model sub-classifies the entire 
human population at time t, represented by NH, into the following sub-
divisions of susceptible individuals, SH(t) individuals with Zika 
symptoms and infectious IH(t), RH(t) individual recovered from Zika. 
Thus NH(t) = SH(t) + IH(t) + RH(t). The overall vector (mosquito) 
population at time t, given by NV(t), is sub-classified into susceptible 
mosquitoes SV(t) and infectious mosquitoes IV(t). Therefore, NV(t) = 
SV(t) + IV(t) + RV(t). βH is the transmission rate from humans to 
mosquitoes. βV is the transmission rate of ZIKV from the vector 
(mosquitoes) to humans. Natural death rate of host is denoted by µH. 
The recruitment rate into susceptible population is denoted by ΛH. 
Natural death rate of vector is denoted by µV. ηH is the recovery rate 
from treatment. Here, ΛV is the recruitment rate into susceptible 
mosquito population. While η V is the vector death rate from 

insecticide. Also, 
1
γ  is the average infectious period for humans. We 

consider the prevention control µ 1, treatment control µ 2 and the 
insecticide control µ 3. These control functions µ 1, µ 2 and µ 3 are 
bounded and Lebesgue integrable. The Figure 1 depicts transmission 
dynamics of ZIKV between the host and the vector.
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Figure 1. The model for transmission diagram.

   The set of differential equations corresponding to the above 
transmission diagram:
dSH

dIH

dRH

dSV

dIV

dt

dt

dt (1)

dt

dt

=

=

=

=

=

ΛH – (1 – µ 1)βHSH(IV + бIH) – µHSH,

(1 – µ 1)βHSH(IV + бIH) – (µH + γ + ηHµ2)IH,

(γ + ηHµ2)IH – µHRH,

ΛV – (1 – µ 1)βVSVIH - (µV + ηVµ3)SV,

(1 – µ 1)βVSVIH - (µV + ηVµ3)IV.

3. Model analysis

   In this section, the basic properties and stability analysis of system 
1 are carried out without time optimal controls incorporated.

3.1. Invariant region

   Theorem 1: If SH(0); IH(0); RH(0); SV(0) and IV(0) are non-negative, 
then so are SH(t); IH(t); RH(t); SV(t) and IV(t) for all t > 1 . Furthermore,   

lim sup NH(t) ≤ , lim sup NV(t) ≤
ΛH ΛV

µH µVt→ ͚ t → ͚

   

   Also, if in addition NH (0) ≤
ΛH

µH
 (based on NV (0) ≤

ΛV

µV
 ), then   

NH(t) ≤
ΛH

µH
 (based on NV(t) ≤

ΛV

µV

). In specific, the region 

Ω = ΩH × ΩV  with ΩH = (SH, IH, RH) ∈R 3+:SH + IH + RH ≤
ΛH

µH
 and 

ΩV = (SV, IV) ∈R : SV + IV ≤
ΛV

µV

2+  is positively invariant.

   Proof: t1 = sup{t > 1: SH, IH, RH and IH are positive on [0,t]}. By the 
fact that SH(0) > 0, IH(0) > 0, RH(0) > 0, SV(0) > 0 and IV(0) > 0 then t1 

> 0. If t1 < +∞, then employing the variation of constants formula to 
the initial equation of the system (1), we obtain: SH(t1) > φ(t1, 0)SH(0) 

+ Ү t1
0
φΨ(t1, τ)dτ, where φ(t1, τ)= 詛 –Үtτ(βH + μH)(s)ds .

   Obviously, SH(t1) > 0, and it can be demonstrated in the same way 
that this is the case for the other variables. This contradicts the point 
that t1 is the supremum since one of the variables must be equal to t1. 
Thus, t1 = ∞ which means that SH, IH, RH, SV and IV are positive for all 
t1 > 0. For the second aspect of the proof, we obtain it, by summing 
up the first three equations and the last three equations of the model 
(1), respectively.

dHH(t)

NV(t)

 =ΛH – µHNH(t),

 =ΛV – µVNV(t).

dt

dt

           (2)

   As 0 < IH(t) ≤ NH(t) , ΛH – μHNH(t) ≤
dNH

dt
(t) <ΛH – μHNH(t).  By 

applying standard comparison theorem[23], we have;

NH(0)e–(μH)t +
ΛH ΛH

μH μH
(1 – e–(μH)t) ≤ NH(t) ≤ NH(0)e–(μH)t+ (1 – e–(μH)t)

  (3)

NV(t) = NV(0)e–(μV)t+ (1 – e–(μV)t)
ΛV

μV

Thus, if NH(0) ≤
ΛH

μH
 (based on NV(0) ≤

ΛV

μV
), then NH(t) ≤

ΛH

μH

(based on NV(t) ≤
ΛV

μV

). Furthermore,

ΛH ΛH

Λ

μH μH

μ v

,≤ lim inf NH(t) ≤ lim sup NH(t) ≤

lim inf Nv(t) =

t→∞ t→∞

t→∞

                                       (4)

   This provides the invariance of as to be determined. We conclude 
from this this theorem that it is sufficient to deal with the dynamics 
of (1) in Ω. In this respect, the model can be assumed as being 
epidemiologically well-posed for mathematical analysis[24].
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3.2. Positivity of solutions

   We need to demonstrate by a way of proof that given any non-
negative initial conditions of system (1), say, SH(0), IH(0), RH(0), 
SV(0), IV(0) the solutions continue to be non-negative for all t∈[0, 
∞). We show that the entire state variables stay non-negative. The 
solution of the zika model of system (1) having non-negative initial 
conditions will continue to be positive for all t > 1. We therefore 
state the following lemma.
   Lemma 1: supposed that the initial conditions of system (2) are 
non-negative, the solutions: SH(t), IH(t), RH(t), SV(t) and IV(t) are 
positive for all t > 0

   Proof: we assume that, t̃ = sup{t > 1: SH > 0, IH > 0, RH > 0, SV 

> 0, IV > 0}∈[0, t]. So t̃  > 0, and it can be seen straight from 
system (1) of equation 1 that; 

dSH

dt
 ≤ (μ H)[(μ H + λ)]SH, where 

λ = (βHIV + бIH) > 0 . We therefore obtain;

0[SH(t)exp{(μH)t + ∫0 λ(s)ds}] ≤ (μH)exp[(μH)t + ∫t λ(s)ds]d
dt

t̃

Thus, t̃t̃t̃ t̃ t
SH( ) exp[(μH)t + ∫0λ(s)ds] - S(0) ≤ ∫0(μH)exp[(μH)  ∫0 λ(ω)dω]dt . So 

that,

t̃ t̃

t̃t̃

SH( ) ≤ SH(0)exp[–(μH)t + ∫0 λ(s)ds] 
+ exp{–[(μH)  ∫0 λ(s)ds]}{∫0(μH)exp[(μH)t + ∫0λ(ω)dω]d }t

t̃ t̃

                        (5)           

   The right hand side of (5) is obviously positive. Hence, the solution  
SH(t) will thus be continuously positive. The second equation of 
system (1) we thus have,
dIH

dt ≥ –(μH + γ)IH

IH ≥ IH(0)exp–(μH + γ)t > 0

   Likewise, it can be demonstrated that RH > 0, SV > 0 and IV > 0 for 
all t > 0, and this therefore completes the proof.

3.3. Steady states and the model reproductive number

   In this subsection, we determine the steady states solution by 
putting the right hand side of system (1) to be equal to zero. This 
direct computation indicates that system (1) consequently has a 

disease free equilibrium point E0 = ( , 0, 0,        , 0ΛH

μH

ΛV

μV

 and endemic 

equilibrium point is E1=(SH , IH , RH , SV , IV
* ****

) in Ω where,

S   =
_γβVΛV  

_ βVΛV μH + βVΛH μV + γμV + μH μV

2

             βV μH μV              

2

*
H

I   = ,βVΛV  
_ μV

2

I   =
μH(γ + μH) (βVΛV  

_ μV) *
H βH(γβVΛV  + βVΛV μH 

_ βV ΛHμV  
_ γμV  

_ μH μH

μV

βV

βV  μV

*
H

R   =

S   =

,                                                                        (6)

,

γ(βVΛV  
_ μV)

βV μH μV

*
H

*
V

2

2

2

2

,

3.4. The reproduction number of model

   It is worthy to note that R0 represents the reproduction number 
of model. A reproduction number, often expressed as the average 
number of human infected by an index case, is a vital threshold 

parameter that determines whether a disease persists and becomes 
extinct in a population. By employing the next-generation operator 
approach of Okosun and Makinde to determine the reproduction 
number[18,19], F and V correspondingly stand for matrices for the 
new infections generated and the transition terms, then we thus have

 
F = and V =

γ + μH

0

0

μV[ [ ]]бβHΛH βHΛH

βVΛV

μH μH

μV
0

 

   The basic reproduction number R0 is expressed as the spectral 
radius of the matrix FV-1 and thus
   
R0 = ρ(FV–1) =

2μH μV (γ + μH)

βHΛH (4γμH βVΛV  + б2βHΛH μ  + 4μ   βVΛV) + б2βHΛH μV
2

v
2

H

   
(7)
   It is remarkable to note that R0 depends on infection rate of 
human and vector populations and also is driven by the respective 
recruitment rate. The reduction of ZIKV is driven by recovery rate 
and natural mortality of human and vector population.

3.5. Stability of the disease-free equilibrium

   Theorem 2: the disease-free equilibrium E0 whenever it exists, is 
locally asymptotically stable if R0 < 1 and unstable otherwise.
Proof: the Jacobian matrix of system (1) at the equilibrium point E0  
is obtained as

JE0 
=

–μH

– μH

– μV

– μV

бβHΛH

бβHΛH

βHΛH

βVΛV

βVΛV

βHΛH

μH

μH

μH

μV

μV

μH

–

–γ – μH +

–

–

0

0

0 0

0

0

0 0

0

0

0

0 γ

0

0

[ ]
   It can be observed that the eigenvalues of JE0

 are –μH, –μH, –μV and 
the solution of the characteristic polynomial is 
P(x) = x2 + η1x + η0 = 0                                                                       (8)
where

2
H η1 = –бβHΛH  + γμH + μ

η0 =  + μV(–γ – μH)
μH μV

2
V(1 – R0)βHΛH(βVΛV + бμ  )   

   The solution of P(x) = 0 have negative real parts only if R0 < 1. 
The thus concluded that the disease free equilibrium is locally 

asymptotically stable whenever R0 < 1.

   Theorem 3: the disease free equilibrium point E0whenever it 
exists, is globally asymptotically stable if R0 < 1 when all solutions 
of system (1) in R5 are bounded.
   Proof: in order to show this result, we construct the following 
Lyapunov function:
                          .
L(t) = μV SH – S log + μVIH + +SV                         log

SH SVβHΛH βHΛH

μH

IV  μH{ { }}0

H – S
0

H  – S
0

V– S
0

VS
0

H S0
V

 

(9)
   Taking the time derivative of (9) along the solutions of system (9), 
we obtain

L1(t) = μV [ΛH 
_ βHSH(IV + бIH) _ μHSH] + μV[βHSH(IV + бIH) _ (μH + γ)IH]

[βVSVIH 
_ μVIV]                        (10)+

SH

SH{ }_ S
0

H

μH
[ΛV 

_ βVSVIH 
_ μVSV]+

SH

SH{ }_ S
0

H
βHΛHβHΛH

μH
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   Making use of S =ΛH

μH

0

H  and S =ΛV

μV

0

V
 in equation (10), and taking 

some arrangements, we get

βHΛH βHΛH
(SV             )

2

μH μH
IVSV

L1(t) = _μV μH _ μV – μV μHIH – μV

_IH (μH + γ)μV(1 _ R0)

2 2(SH              )
2

SH

 _ S                           0H      – S                                                V
0

   L1(t) is negative if R0 < 1 and L1(t) = 0 if SH = S0

H , SV = S 0

V , IH 

= IV = 0. Hence, the largest compact invariant set (SH, IH, RH, SV, 
IV)∈Ω : L1(t) = 0 is the singleton set E0, where E0 is the disease free 
equilibrium. Thus, by principle[25], E0, is globally asymptotically 
stable in π.

3.6. Stability of the endemic equilibrium

   Theorem 4: if R0 > 1, the endemic equilibrium point of system (1), 
is locally asymptotically stable.
   Proof: the Jacobian matrix of system (1) at endemic equilibrium is 
determined so that

JE1 
=[ ]

I  βH – I    βH – μH

0

0 0
0

0
0

0
0

0
0

–μH

–μV

0
0

*
H

*
V

–μV – I  βV
*

H

–βHS*
H

βHS *
H

I  βV
*
H

бI  βH + I  βH
*
H

*
V

– б –бSH βH

γ
*
V–βV S
*
VβV S

–γ  – μH + бSHβH
*

   The characteristics equation to the Jacobian matrix JE1 is followed as
q(x) = (x – μH)(x4 + η3x

3 + η2x
2 + η1x

 + η0) = 0                       (11)
   It is obvious that μH is negative and the other four eigenvalues of 
the E1 can be obtained from the characteristic equation where,
η3 = γ  + (бIH + IV – бSH)βH + IHβV + 2μH + 2μV ,

η2 = k1 + k2 + k3

βHβV – S  S βHβV + γμH – бS  βHμH + μ  ,*2
Hk1 = бI

k2 = 2(γ  – бS  βH + 2μH) + μ  + I  βH(γ  + μH + 2μV),

k3 = I  {βV(γ  + 2μH + μV) + βH[I  βH + б(γ  – S  βV + μH + 2μV)]}.
η1 = бI   βH βV + m1 – S  [S  βH(μH + μV) + бμV(2μH + μV)] + m2 + m3,

*
H 

*
V 

*
V 

*
V

*
H 

*
V

*2
H 

*
H 

*
H 

*
H 

*
H 

2
H 

2
V 

where

m1 = μV[2(γ  + μH)(I  βH + μH) + (γ  + I  βH + 2μH)μV],
m2 = I  {I  βHβV(γ  + μH + μV) + бβHμV[2(γ + μH) + μV + μH] (γ  + I  βH + μV),
m3 = βV[μH(γ  – бS  βH + μH) + (γ – бS  βH + 2μH)μV].

*
V 

*
V 

*
H 

*
V 

*
V 

*
H 

*
H 

   Owing to the mathematical complexity of the computation 
encompassed in an attempt to show the Routh-Hurwitz conditions 
for the stability of E1, we just present the criterion under which 
endemic is said to be locally asymptotically stable at endemic 
equilibrium point. If η3 > 0, η3η2 – η1 > 0,[η3η2 – η1] – η  η0 > 02

3
, then 

the polynomial of endemic equilibrium E1 has roots with negative 
real parts. Thus theorem (2) depicts that the disease free equilibrium   
whenever it exists, is locally asymptotically stable if R0 < 1 and 
unstable otherwise
   Theorem 5: the endemic equilibrium point whenever it exists, is 
globally asymptotically stable if R0 > 1 when all solutions of system 
(1) in R5 are bounded.
   Proof: we consider the non-linear Lyapunov function below to 
establish the global stability of the model.

V =SH – SH – SH ln + α1

+ α3 + α4

+ α2IH – I   – I   ln

SV – S  – S  ln IV – I  – I  ln

RH – R   – R  ln{
 { {

{}
}            (12)}

}SH

SV
IV

RHIH

S

S I

RI*
H 

*
V 

*
V 

*
V 

*
V 

*
V 

*
V 

*
H 

*
H 

*
H 

*
H 

*
H 

*
H 

. . .

   Differentiating the above equation (12) with some algebraic 
simplifications and a1 = a2 = a3 = a4 = 1, we have:

.

.

vz
w

1 – w – + vz ≤ 0; α1бβHS  I   (1 – v – w + vw) ≤ 0α1 βH S  I { }*
H 

*
H 

*
H 

*
V 

yw
z

1 – – z + ywα4 ≤ 0                                                                        (13)          { }

 V = –μHS (1 – v)2 (1 – y)2

v y
– μVS + H(v,w,x,y,z)*

H 
*
V

1 -+ α4{                  }IV

I*
V I*

V 
1 -{                  }SV

S*
V S*

V 

V = 1 – + α1      1 – 1 -+ α2 + α3{ {                  {                  } } }RHIH
SH 

S*
H 

R*
H R*

H 

I*
H I*

H 

S*
H 

w 1
x y

1 – 1 – – yw + w– x + wα2 γI { { }}*
H  α3 βVS  I*

V 

*
V ≤ 0; ≤ 0; 

   Since all the model parameters are non-negative, it follows that 
V ≤ 0 for R0 > 1. Hence, by LaSalle’s invariance principle[25], 
every solution of the equation in the model approaches the endemic 
equilibrium point as t→0 whenever R0 > 1.

4. Analysis of optimal control

   In this section, Pontryagin’s maximum principle was used to 
determine the necessary conditions for the optimal control of 
the disease. We desire to minimize the number of ZIKV infected 
human host and the cost which involves using mass treatment and 
insecticide controls. We thus, examine an optimal control problem 
having the objective function and given by

J(u1,u2) = ∫ (AIH + BIV +
d1 d2 d3

2 2 2
u  +     u  +     u  )dt

tF
0

2

1

2

2

2

3
                         (14)

where d1, d2 and d3 denote the weighting constants for prevention, 
treatment and insecticide efforts, respectively. The costs of the 
prevention, treatment and insecticide turn to be nonlinear and assume 
quadratic function. We seek an optimal control u*

1, u
*
2 and u*

3 such 

that, J (u   ,u   ,u  ) = min J(u1, u2, u3),
*
1

*
2

*
3

г = {(u1, u2, u3)|0 ≤ μi ≤ 1, i = 1,2}.

{
dSH

dIH

dRH

dSV

dIV

dt

dt

dt

dt

dt

= ΛH – (1 – u1)βHSH(IV + бIH) – μHSH,

= (1 – u1)βHSH(IV + бIH) – (μH + γ + ηH u2)IH,

= (γ + ηH u2)IH – μHRH,

= ΛV – (1 – u1)βVSVIH – (uV + ηHu3)SV ,

= (1 – u1)βVSVIH – (uV + ηHu3)IV .

                 (15)

   The necessary conditions that an optimal solution must satisfy 
come from the maximum principle of Pontryagin et al.[26]. This 
principle converts (14)–(15) into a problem of minimizing pointwise 
a Hamiltonian H, with respect to u1 and u2.

+ λSH
{ΛH – (1 – u1)βHSH(IV + бIH) – μHSH}

+ λIH
{(1 – u1)βHSH(IV + бIH) – (μH + γ + ηHu2)IH}

+ λRH
{(γ + ηHu2)IH – μHRH} + λSV

{ΛV – (1 – u1)βVSVIH – (μV + ηVu3)SV}
+ λIV

{(1 – u1)βVSVIH – (μV + ηVu3)IV}

H = AIH + BIV + d1μ  + d2μ  + d3μ2
1

2
2

2
3

                                             (16)
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where λSH
, λIH

, λRH
, λSV and λIV are the adjoint variables or co-

state variables. The system of equations is found by taking the 
appropriate partial derivatives of the Hamiltonian (8) with respect 
to the associated state variable.

   Theorem 6: given optimal controls μ*1 , μ*
2 , μ*

3 and solutions SH , 
IH , RH , SV , IV of the corresponding state system (14)–(15) that 
minimize  J(μ1,μ2, μ3) over U. Then there exists adjoint variables 
λSH

, λIH
, λRH

, λSV
, λIV satisfying.

–dλi ∂H
dt ∂ i

=
                                                                                (17)

where SH, IH, RH, SV, IV and with transversality conditions
λSH (tf) = λIH

(tf) = λRH
(tf) = λSV

(tf) = λIV
(tf) = 0 

                      (18)   

μ  = min 1,max 0,
SH βHIV(λIH – λSH

) + SV βVIH(λIV – λSV
)

d1
{ [ ]}           (19)*

1

               

μ  = min 1,max 0,
ηHIH(λIH – λRH

)
d2

{ [ ]}                                   (20)*
2

                                            

μ   = min 1,max 0,
ηVSVλSV + ηVIVλIV

d3
{ [ ]}                                (21)*

3

                                         

   Proof: corollary 4.1 of [27] gives the existence of an optimal 
control due to the convexity of the integrand of J with respect 
to μ1, μ2 and μ3 a priori boundedness of the state solutions, and 
the Lipschitz property of the state system with respect to the 
state variables. The differential equations governing the adjoint 
variables are obtained by differentiation of the Hamiltonian 
function, evaluated at the optimal control.
   Then the adjoint equations can be written as[27]:

–

–

–

–

–

= μHλSH + (1 – μ1)βH(λSH – λIH
)(IV + бIH)

= –A + (μ2ηH + μH + γ)λIH – (γ + μ2ηH)λRH

= ε(λRH 
– λSH

) + μHλRH                                                                                                      
(22)

 = (1 – μ1)βVIH(λSV 
– λIV

) – (μV + ηVμ3)λSV

= –B + (1 – μ1)βHSH(λSH 
– λIH

) + (μV + ηVμ3)λIV

+ б(1 – μ1)βHSH(λSH – λIH
) + (1 – μ1)βVSV(λSV – λIV

) 

dλSH

dλIH

dλRH

dλSV

dλIV

dt

dt

dt

dt

dt

                             

5. Numerical simulations

   In order to illustrate the results of the foregoing analysis, 
numerical simulations of the model are carried out, using 
parameter values given in Table 1. For the purpose of illustration, 
some parameter values are assumed. Find below in Table 1 
the parameter descriptions and values used in the numerical 
simulation of the model.

Table 1
Description of variables and parameters of the model.

Parameter Description Value Ref
βH Probability of individual getting infected 0.2/day [28]
βV Probability of mosquitoes getting infected 0.09 [18,19]
µH Natural death rate in humans 1/(365 × 60)/day [14]
µV Natural death rate in mosquito 1/14 [28,29]
ηH Recovery rate from treatment 0.01 [28]
ηV Death due to insecticides 0.001 Assumed
ΛH Recruitment rate of humans 100/day Assumed
ΛV Mosquito recruitment rate 1 000/day Assumed

5.1. Prevention (u1) and treatment (u2) control only

   The Zika prevention control u1 and the treatment control 
μ2 are used to optimize the objective function J while we set 
the insecticide control (u3) to zero. We observed in Figure 
2a a significant difference in the number of infected humans 
IH under control and those without control. The result in the 
depicted Figure 2b clearly suggests that this strategy is not very 
efficient and effective in the control of the number of infected 
mosquitoes IV.

5.2. Prevention (u1) and insecticide control (u3) only

   The prevention control μ1 and the insecticide control μ3 are used 
to optimize the objective function J while we set the treatment 
control (u2) to zero. We observed in Figure 3a a significant 
difference in the number of infected humans IH in the controlled 
cases and the cases without control. The result also depicted in 
Figure 3b suggests that this strategy is very efficient and effective 
in the control of the number of infected mosquitoes IV.
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Figure 2. Simulations of the model showing the effect of Zika prevention and treatment only on transmission.
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5.3. Treatment (u2) and insecticide (u3) only

   The treatment control u2 and the insecticide control u3 are used to 
optimize the objective function J while we set the prevention control  
(u1) to zero. That is, preventions only mechanisms are optimized 
without treatments. We observed in Figure 4a a significant difference 
in the number of infected humans IH in the controlled cases and the 
cases without control. The result also depicted in Figure 4b suggests 
that this strategy is very efficient and effective in the control of the 
number of infected mosquitoes IV.

5.4. Prevention, treatment and insecticide (u1, u2, u3) 

   In this strategy all the control mechanism (u1, u2, u3) are used 
to optimize the objective function J. That is, all the prevention, 
treatment and use of insecticide are optimized. A significant 
difference in the number of infected humans IH in the controlled 
cases and the cases without control was observed in Figure 5a. 
The result depicted in Figure 5b suggests that this strategy is very 
efficient and effective in the control of the number of infected 
mosquitoes IV.
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Figure 3. Simulations of the model showing the effect of prevention and insecticide only on transmission.
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Figure 4. Simulations of the model showing the effect of treatment and insecticide only on transmission.
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Figure 5. Simulations of the model showing the effect of all controls on transmission.
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6. Conclusion

   In this paper, we explored and analyzed a ZIKV model which is 
deterministic. For the model without optimal control, we derived 
basic properties of the model. The basic reproduction number of the 
model is determined and steady states are investigated. The global 
stability of disease-free equilibrium is found to be asymptotically 
stable. Optimal control strategies of prevention, treatment and 
insecticide are incorporated into the model. The Pontryagin’s 
maximum principle is used to characterize the conditions for 
existence of optimal control. The control strategy of prevention 
and treatment of infected mosquito ZIKV would not minimize the 
spread of the disease as depicted in the numerical simulation. The 
numerical analysis of the optimal control indicates that the best 
strategy is to combine all controls that is preventive, treatment and 
insecticides in order to control the disease.
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