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1. Introduction

   Scavenger receptors class-A (SR-A), also known as CD204, 

is a class of receptors responsible for modified appearances 

of lipoproteins including acetylated and oxidized low-density 

lipoproteins (oxLDL)[1]. SR-A shares its binding affinity with 

multiple ligands, such as Gram-positive and Gram-negative 

bacteria, lipopolysaccharides (LPS), and advanced glycation end 

products. Scavenger receptors (SR) family is divided into eight 

different subclasses (A–H) and the majority of them express on the 

surface of antigen-presenting cells[1,2]. SR-A expresses primarily 

on macrophages, dendritic cells (DCs) and smooth muscle cells[3]. 

Macrophage SR-A type I and II (SR-AI and II) belong to the family 

of transmembrane glycoprotein receptors, which favor the binding 

of numerous negatively charged polyanionic macromolecules[4,5]. 

The internalization of LDLs by macrophage SR-A and lipoprotein 

lipase is indispensable to encourage atherosclerosis and foam 

cell formation[6,7]. Subsequently, SR-A recognizes modified host 

components, apoptotic cells, exogenous pathogens associated 

molecular patterns and endogenous ligands to initiates innate 

and inflammatory responses[8-12]. Lack of signaling motif in 

intracellular domain of SR-A restricts its straight signaling into 

the cell, while phosphorylated intracellular domains facilitate the 

interaction of transmembrane domain with intracellular signaling 

components[13-15]. SR-A, as a co-receptor for toll-like receptors 

(TLRs), facilitates innate immune recognition and responses by 

eliciting an over exuberant response[16]. TLRs ligands synergize with 

SR-A to intercede bacterial phagocytosis, induce SR-A expression 

and promote SR-A binding to the TLR4 ligands[17,18]. SR-A interacts 

with TLR4 to endorse a pro-inflammatory apoptotic phenotype in 

lipopolysaccharide exposed macrophages. In addition, SR-A curbs 

for survival signaling pathways, such as interferon regulatory 

factor-3 mediated interferon-β (IFN-β) production[16]. In contrast, 

SR-A ligands trigger apoptosis in the endoplasmic reticulum 
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harassed macrophages by cooperating with TLR4 and serve as a 

negative regulator of TLR4 in mediating immune responses[3,16]. 

Collectively, SR-A contributes the activation of innate immune and 

inflammatory responses by acting as a co-receptor to TLR4.

2. An overview 

   Isoforms of SR-A (SR-AI and SR-AII) are highly conserved 

molecules holding over 60% homology in mice, humans and 

rabbits[19-21]. SR-AI and SR-AII are alternative splice variants of 

the same gene presenting on chromosome 8p22 in humans[20], 

while macrophage receptor with collagenous structure (MARCO), 

the third member of the subclass, is expressed by another gene on 

chromosome that shares analogous structural motifs with SR-AI 

and II, thus it is classified as a SR-A[22]. SR-A and MARCO with six 

and five distinct domains, respectively, belong to type II trimeric 

transmembrane glycoproteins[20]. The first 50N-terminal amino 

acids (aa) of SR-AI and SR-AII make the cytoplasmic domain and 

the followings: 25-aa transmembrane region, 75-aa N-glycosylated 

spacer domain, 121-aa-helical coiled-coil domain, 69-aa collagenous 

region and the C-terminus. The α-helical coiled-coil domain of 

SR-AI and II is most significant in receptor trimerization and their 

dissociation from the ligand in endosomes[23]. SR-AI, SR-AII and 

SR-AIII vary in their C-terminus. SR-AI holds a conserved 110-aa 

scavenger receptor cysteine-rich domain[24], while SR-AII and SR-

AIII have a short or truncated C-terminal region, respectively (Figure 

1). The cytoplasmic amino acids proximal to the membrane are 

essential for SR-A post-transcriptional processing and play a decisive 

role in SR-A trafficking to the cell surface. Furthermore, these amino 

acids are sufficient for SR-A-mediated adhesion[25]. MARCO with 

longer collagenous domain does not hold any α-helical coiled-coil 

domain and depends on the scavenger receptor cysteine-rich domain 

domain for ligands binding[22].

SR-AI

SR-AII

Figure 1. Structure of SR-A: SR-AI and SR-AII.
Green: Cytoplasmic domain; TV blue: Transmembrane domain; Cyan: 
Spacer domain; Purple: α-helical coiled-coil domain; Orange: collagenous 
domain; Yellow: C-terminus. The models were designed by using Modeller 
9.14.

3. Cellular errands

   SR-A, CD36 (a member of scavenger receptor class B family) and 

scavenger receptor class BI are multifunctional receptors to elucidate 

large complex molecules. Most functional studies demonstrate the 

involvement of SRs in the accumulation of modified lipids within 

macrophages that leads toward atherosclerosis and atherogenesis. 

SR-mediated endocytosis of targeted ligands such as maleylated 

native proteins follows the presentation of modified-specific 

antigens to T cells[26]. The regulation of SR-A during inflammation 

is indistinct as most of the ligands are common to all SRs. Although 

the mouse and human SR-A proteins are highly conserved but their 

control of expression is quite different[27]. In murine macrophages, 

SR-A expression augments LPS challenge in vitro but is down-

regulated in human macrophages. It is unclear that SR-A protects 

against endotoxic shock in humans, but it is hasty to suggest that 

SR-A does not have a role. SR-A regulates the complex relationship 

between immune responses to LPS such as cytokine release. For 

example, SR-A dampens the expression of both transcriptionally and 

post-transcriptionally inflammatory cytokines such as tumor necrosis 

factor-α (TNF-α) and IFN-γ[28]. SR-AIII is not functional and displays 

dominant negative control on post-translational mechanism for SR-

AI and SR-AII[29]. Further investigations are needed to find specific 

ligands that various receptors recognize on the dying cells and the 

signaling events after the binding of apoptotic cells with SR binding 

and how the cells regulate the induction of inflammation. The 

expression of SR-A on bone marrow dendrictic cells helps in DCs-

mediated phagocytosis of apoptotic cells infected with influenza 

virus and the following uptake of viral antigens are presented to T 

cells via major histocompatibility complex-I (MHC-I). In comparison, 

this cross-priming ability is not exhibited by macrophages[30]. It 

shows that the chief immunological consequences of SR-A serve 

as an anti-inflammatory molecule for the removal of potentially 

damaging altered host proteins by macrophages and its inflammatory 

role in DCs.

4. SR-A and apoptosis

   SR-A can recognize apoptotic cells. Platt et al.[31] reported that 

macrophages from knockout mice have a very less in vitro, but high 

in vivo ability to remove apoptotic cells despite the induction of 

enormous apoptosis by sub-lethal irradiation. Although the role of 

SR-A in pro-apoptotic mechanisms is not fully understood, SR-A 

involves in triggering JNK-dependent apoptosis in macrophages with 

stressed endoplasmic reticulum (ER). In macrophages under stressed 

ER, fucoidan agonist SR-A causes the inhibition of microtubule-

associated protein light chain 3-phospholipid conjugates (LC3-II) 

and a number of autophagosomes, which promotes the activation 

of mammalian target of rapamycin (mTOR), JNK and p38 signaling. 

Further activation of TNF-α encourages apoptosis[32]. During 

myocardial ischemia/reperfusion (I/R) injury the low expression 

of SR-A leads to the up-regulated expression of miRNA 125b (pro-

apoptotic), but in hypoxia/re-oxygenation (H/R)-induced cell damage 
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SR-A inhibits the activation of caspase 3, 7 and 8 to reduce the 

chances of apoptosis[33]. On one side SR-A augments the expression 

of LPS, but on the other it may causes the inhibition of caspase 3, 7 

and 8, the key players of apoptosis (Figure 2). 

 

5. Cell signaling and antigen presentation

   To control foam cell formation, the signaling mechanisms of SR-A 

are not fully understood. Some studies are conducted to find the 

role of cellular signaling mediated by SR-A which leads towards 

foam cell formation. Recently, Michael et al.[7] investigated that 

phosphoinositide 3-kinase promotes foam cell formation by up-

regulating SR-A expression. In myocardial infarction knockout SR-A 

leads to the increased expressions of apoptosis signal-regulating 

kinase 1, p38, mitogen-activated protein kinases and nuclear factor-

κB (NF-κB). During the attenuated expression of SR-A, it not only 

exacerbates the expressions of apoptosis signal-regulating kinase 

1, p38, and NF-κB, but also dampens the expressions of interleukin 

(IL)-6, IL-1β, and TNF-α[34]. Nifedipine, an anti-hypersensitive 

drug, protects against atherosclerosis and inhibits the expression of 

SR-A, which results in the less expression of protein kinase C theta 

(PKC-θ)[35]. SR-A by its microbial ligands effectively encourages the 

production of a wide range of inflammatory cytokines, including 

TNF-α, IL-1β and IL-6. SR-A also mediates the activation of TNF-α 

using biochemical inhibitors like polyinosinic: polycytidylic acid 

and lipoteichoic acid[36]. 

   SRs direct the loading of Ag in antigen-presenting cells by MHC-I 

restricted presentation. SR-A internalizes heat shock proteins 

gp96/grp94 and calreticulin that are further presented by MHC-

I[37]. Similarly, recognition of heat shock proteins 70 by lysyl 

oxidase-1 is implicated in cross-presentation[38]. SR-A and CD36 

present the antigen of live and apoptotic cells by MHC-I restricted 

fashion[39]. Conversely, the expression of MARCO directs the 

maturation of DCs and may affect its Ag presentation ability[40]. 

6. SR-A as a pattern recognition receptor

   SR-A absence extensively attenuates the cooperation of TLR4 and 

TLR4-mediated activation of NF-κB during cerebral I/R[3,17]. SR-A is 

now considered to be a pattern recognition receptor which have the 

affinity to recognize several ligands such as double-stranded RNA[11], 

CpG DNA, DCs and some unknown endogenous ligands which are 

released from stressed or damaged cells during I/R[10]. SR-A also 

have an abilty to mediate self-complementary adeno-associated virus 

serotype 8 endocytosis[41].

7. SR-A in disease 

   SR-A p romote s  ox LDL up t ake  capac i t y  o f  DCs  i n 

hyperinsulinaemia leading to atherogenesis[42]. Despite the role of 

SR-A in atherosclerosis by foam cell formation, it is a key mediator 

of cell adhesion, endocytosis, phygocytosis and the regulation of 

cellular immunity[43]. It is recently investigated that SR-A promotes 

the internalization of Aβ oligomer in Alzheimer’s disease[44]. SR-A 

with gluc-collagen collectively helps in stimulating the enhanced 

expression of prostaglandin in atherosclerosis and diabetes[45], 

whereas visfatin induced the modulated expression of SR-A 

leading to the accumulation of cholesterol in microphages during 

atherosclerosis[46]. In ovarian (OVA) and pancreatic cancer, it inhibits 

cell invasion[47], while the dysregulated expression of SR-A in 

prostate cancer directs the elevated cross-presentation of OVA antigen 

in DCs[48]. When inflammation SR-A put an impact on the LDL 

receptor-mediated macrophages derived foam cells formation[49], 

TLR4 regulated the up-regulation of NFκB and TNF receptor-

associated factor 6 inhibition[50] (Table 1). High expressions of SR-A, 

NFκB, monocyte chemoattractant protein, matrix metalloproteinases 

Fucoidan

LC3-II

mTOR JNK

TNF-α

p38

p53 Bak-1 C-3 C-7

C-8

miRNA 125b

I/R-induced apoptosis

Down-regulated SR-A

H/R induced cell damage

SR-A

Fucoidan

SR-A

Stressed ER

Autophagosomes

Apoptosis

Apoptosis

(A) (B) (C)

Figure 2. SR-A and apoptosis. 
A: SR-A with fucoidan inhibits LC3-II and autophagosomes that leads to the up-regulation of mTOR, JNK and p38 signaling. Higher expressions of mTOR, 
JNK and p38 activate TNF-α to promote apoptosis; B: Down-regulated expression of SR-A dampens the activation of p53 and Bak-1 but uplifts the presence 
of miRNA 125b which takes part in I/R induced apoptosis; C: During H/R induced cell damage, SR-A inhibits the activation of caspase 3, 7 and 8. 
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are consistent with the hyperlipidemia-induced atherosclerosis[58]. 

Recently, PKCδ has been implicated as a regulator of oxLDL uptake 

and foam cell formation via the down-regulation of PKC-β while 

SR-A expression re-evaluates the role of PKCδ in oxLDL uptake and 

foam cell formation[59]. High glucose also increased IL-6 and IL-

12 secretion and decreased IL-10 secretion. High glucose level 

increases the expression of SR-A, CD36 and lysyl oxidase-1, which 

in response enhances the oxLDL-uptake capacity of DCs[60].

8. Conclusion

   Multifunctional traits of SR-A to regulate immune responses need 

further investigations to standardize high throughput approaches to 

overcome different pathologies. The overview of the data suggests 

that reuptake of lipid occurs because of the over expression of SR. It 

is important to dissect various regulators of endocytic pathway which 

influence increasing cell surface appearance of these receptors. 

Additionally, lesser internalization of the receptor and escape from 

degradation add another layer of complication that needs detailed 

investigation. 
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