
352

Document heading            doi:10.1016/S2222-1808(13)60084-5                 襃 2013 by the Asian Pacific Journal of Tropical Disease. All rights reserved.

Generating temporal model using climate variables for the prediction of 
dengue cases in Subang Jaya, Malaysia 
Nazri Che Dom1,2*, A Abu Hassan1, Z Abd Latif 3, Rodziah Ismail2
1School of Biological Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
2Faculty of Health Sciences, University of Teknology MARA, Selangor, Malaysia
3Faculty of Architecture, Planning and Surveying, University of Teknologi MARA, Selangor, Malaysia

Asian Pac J Trop Dis 2012; 3(5): 352-361

Asian Pacific Journal of Tropical Disease

journal homepage: www.elsevier.com/locate/apjtd

    *Corresponding author: Nazri Che Dom, School of Biological Sciences, Universiti 
Sains Malaysia, Penang.
    Tel: +6019 6143465
    E-mail: nazricd@salam.uitm.edu.my
   Foundation Project: Supported by Universiti Sains Malaysia (USM)-(LRGS grant 304/
PBiology/650575/U112), Universiti Teknologi MARA (UiTM) and Ministry of Higher 
Education (MOHE) Malaysia.

1. Introduction

   Recently, modelling of dengue cases has become an 
interest among many epidemiologists in Malaysia. Much 
has been discussed regarding the effective and predictive 
models which are able to accurately predict the occurrence 
of dengue cases[1,2]. In the absence of neither effective 
vaccines nor a specific anti-viral treatment, a suitable 

predictive model is needed to support the primary anti 
dengue control which aims to destroy the breeding 
containers thus interrupting the transmission of dengue 
virus by infected adult mosquitoes. 
   In an attempt to forecast future events, most of the models 
developed by researchers, used dengue database obtained 
from the Ministry of Health to formulate the predictive 
model as opposed to using vector population data. To date, 
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Objective: To develop a forecasting model for the incidence of dengue cases in Subang Jaya 
using time series analysis. 
Methods: The model was performed using the Autoregressive Integrated Moving Average (ARIMA) 
based on data collected from 2005 to 2010. The fitted model was then used to predict dengue 
incidence for the year 2010 by extrapolating dengue patterns using three different approaches 
(i.e. 52, 13 and 4 weeks ahead). Finally cross correlation between dengue incidence and climate 
variable was computed over a range of lags in order to identify significant variables to be included 
as external regressor. 
Results: The result of this study revealed that the ARIMA (2,0,0) (0,0,1)52 model developed, closely 
described the trends of dengue incidence and confirmed the existence of dengue fever cases in 
Subang Jaya for the year 2005 to 2010. The prediction per period of 4 weeks ahead for ARIMA (2,0,0)

(0,0,1)52 was found to be best fit and consistent with the observed dengue incidence based on the 
training data from 2005 to 2010 (Root Mean Square Error=0.61). The predictive power of ARIMA (2,0,0) 
(0,0,1)52 is enhanced by the inclusion of climate variables as external regressor to forecast the 
dengue cases for the year 2010. 
Conclusions: The ARIMA model with weekly variation is a useful tool for disease control and 
prevention program as it is able to effectively predict the number of dengue cases in Malaysia.
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many models experience high degree of complexity as they 
often require a very large data base comprising several 
different variables. Collecting such data is always costly and 
eventually this may result in the scarcity of suitable data 
sets to be used in formulating the model. Autoregressive 
integrated moving average (ARIMA) model in time series 
analysis is an example of statistical modelling approach, 
which require less data than the deterministic simulation 
methodology. There have been researches indicating that the 
time series modelling is more appropriate than the simple 
trend fitting approach, despite the fact that, this trend suffers 
model specification error[3]. In response to this, Box and 
Jenkins had effectively put together the relevant information 
in a comprehensive manner for the user to understand and 
apply this time series model[4]. In addition, it is also possible 
for a non-expert to easily adopt the model methodology for 
prediction of dengue cases. 
   ARIMA models are particularly useful in modelling 
the temporal dependence structure of a time series as 
they explicitly assume temporal dependence between 
observations[5]. Through the modelling of the temporal 
structure, particularly for seasonal disease, prediction made 
with ARIMA models have been shown to be more accurate 
than those obtained by other statistical methods[3,6,7]. 
Prediction can be made for a certain number of periods 
ahead, with this number being given by the highest order of 
the parameters of the model[5].
   The ARIMA models have been used successfully in 
epidemiology to monitor and predict infectious disease, 
such as malaria and hepatitis A incidence[7], influenza and 
pneumonia deaths[6], as well as other infectious disease 
incidence[8-11]. Apart from that, it can also to be applied in 
the management of the health facilities and in isolation of 
syndromatic surveillance[12,13].
   Promprou et al. used the univariate time series analysis 
method, ARIMA (1,0,1) to model and forecast the monthly 
cases of dengue haemorrhagic fever cases in southern 
Thailand[14]. The results of their study showed that the 
regressive forecast curves of dengue cases were consistent 
with the pattern of actual values. Luz et al. used seasonal 
ARIMA to model dengue incidence in Rio de Janeiro, 
Brazil[15]. They found that the number of dengue cases in 
a month can be estimated by the number of dengue cases 
occurring one, two and twelve months ahead. Their findings 
indicated that ARIMA models were useful tools for monitoring 
dengue incidence in Rio de Janeiro and could be applied for 
surveillance and predicting trends in dengue incidence. 
   It has been proposed that climate variables can increase 
the predictive power of dengue models[16]. Increased 
temperature has been associated with dengue in tropical 
country[17-21]. A group of corresponding researchers has 
also mentioned that rainfall has a positive correlation with 
dengue incidence[17,20,22]. In the past two decades, several 
studies have documented the relationship between weather 
variables and dengue incidence. However, the use of weather 

variables as a predictor in influencing the occurrence of DF 
cases has yet to be explored and established. 
   Therefore, this work attempts to use ARIMA models to 
monitor and predict dengue incidence in Subang Jaya based 
on dengue database from 2005 to 2009 by using the Box-
Jenkins approach. The fitted model was then used to predict 
dengue incidence for the year 2010. Finally, the impact 
of climate variables (rainfall, temperature and relative 
humidity) was incorporated with the prediction of dengue 
incidence and outbreak by selecting the best fitting model. 
Hence, this study will hopefully enhance the efficiency of 
dengue surveillance program, and thus help in controlling 
dengue outbreak. 

2. Materials and methods

   This study covers the dengue incidence and meteorological 
data in Subang Jaya between the periods of 2005 until 2009. 
During the study period, stable dengue control programs 
were implemented each year in Subang Jaya. This study was 
primarily conducted using the statistical package XLstat 
for windows to develop ARIMA models. The ARIMA model 
was analysed with the Box-Jenkins approach which was 
appropriate for a longer forecasting period. Specifically, it 
consists of three types of parameters in the model namely; 
the autoregressive parameters (p), the number of differencing 
phases (d), and moving average parameters (q). This basis 
of the Box-jenkins approach to modelling time series 
is summarized in Figure 1 and consists of three phases; 
identification, estimation / testing and application.
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Figure 1. The Box Jenkins model building process.

2.1. Model identification

   The first step is to determine whether the time series is 
in a stationary or non-stationary condition by using the 
mean range plot. If non-stationary, it has to be transformed 
into a stationary time series by applying a suitable degree 
of differencing to the dataset. The input series for ARIMA 
needs to be stationary, with a constant mean, variance and 
autocorrelation through time. Basically, the number of time 
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series need to be differenced to achieve stationary condition 
is reflected in the (d) parameter. 
   In order to determine the necessary level of differencing, 
the plot of the data and autocorrelogram were examined. 
Significant changes in each level (strong upward or 
downward changes) usually require first order of non-
seasonal (lag=1) differencing whereas strong changes of 
slope require second order of non seasonal differencing. 
In normal practice, seasonal pattern of the data does not 
required respective seasonal differencing. If the estimated 
autocorrelation coefficient decline slowly at longer lags, firs 
order differencing is usually needed. At this stage the order 
of non seasonal (p,d,q) and seasonal (P,D,Q), autoregressive 
parameters (p and P) and moving average parameters (q and 
Q) are needed to be ascertained to yield an effective model.

  
Yt=δ+φ1 Yt-1+φ2 Yt-2+...+ φp Yt-p-δ1 at-1-δ2 at-2-...- δq at-2+at

   Consequently, with the series in stationary condition 
by transformation or differencing, an ARIMA model was 
developed. A tentative model was made to express each 
observation as a linear function of the previous value of the 
series (autoregressive parameter) and of the past random 
shock (moving average parameters). The general form of the 
tentative model was given below:
Where:
   Yt denotes the number of DF cases at time t, Yt-1 denotes 
the number of DF cases at time t-1, Yt-p denotes the number 
of DF cases at time t-p, φ1, φ2, ...φp is autoregressive 
parameters (of order p), δ1, δ2, ...δp is moving average 
parameters (of order q), at denotes a time series of random 
shock or white noise process at time t, at-1 denotes the white 
noise process at time t-1, δ is a constant term.
   The random shock at is a value that is assumed to be 
randomly selected from a normal distribution that has a 
mean of 0 and variance that is constant at every time period. 
The random shock at, a(t-1), ..., a(t-q) are assumed to be 
statistically independent.  
   In order to analyse the time series of dengue incidence in 
Subang Jaya between the year 2005 to 2009, observation (s) 
is defined as the number of epidemiological weeks in one 
year (s=52). Then, the temporal structure of seasonal and non 
seasonal autoregressive parameters (p, P), moving average 
parameters (q, Q) parameters were determine by assessing 
the analysis of autocorrelation function (ACF) and partial 
autocorrelation function (PACF). The Akaike Information 
Criterion (AIC) was used to select the best fit model with 
fewer parameters in order to proceed to the next process. 
Then, validation of the final model was based on the residual 
analysis (The residual value must be equivalent to white 
noise) using Ljung-Box test. 

2.2. Model estimation and testing

   In the identification phase, the specific number and types 
of ARIMA parameters to be used were estimated. The major 

tools used in these phase are plot of the series, correlogram 
of autocorrelation, and partial autocorrelation. The decision 
is not straightforward and in less typical cases requires not 
only experience but also a good deal of experimentation with 
alternative models (as well as the technical parameters of 
ARIMA). However, a majority of empirical time series patterns 
can be sufficiently approximated using one of the 5 basic 
models that can be identified based on the shape of the 
autocorrelogram and partial autocorrelogram. 
   The general recommendation concerning the selection of 
parameters to be estimated (based on ACF and PACF) also apply 
to seasonal models. The main difference is that in seasonal 
series, ACF and PACF will show sizable coefficient at multiples 
intervals of the seasonal lag (in addition of their overall pattern 
reflecting the non-seasonal components of the series).
   Although the selected model may appear to be the best 
among those models considered, it is also necessary to run 
diagnostic checking in order to verify the adequacy of the 
model. A good model should not only provide sufficiently 
accurate forecast, it should also be parsimonious as well as 
produce statistically independent residuals that contain only 
white noise without systematic components (the correlogram 
of residuals should not reveal any serial dependencies). 
A good indicator of the model is by plot the residuals 
and inspects for any systematic trends and examines the 
autocorrelogram of residuals (there should be no serial 
dependency between residuals).
   For a good forecasting model, the residual left over after 
fitting the model should be closed to white noise. Therefore, 
if the ACF and PACF of the residuals were obtained, there 
should be no significance for both autocorrelation and 
partial autocorrelation.
   Subsequently, a portmanteau test can also be applied to 
the residuals as an additional test of best fit. Insignificant 
value of the test suggests the model is adequate and there 
is no need to consider further refinement of the model. 
On the contrary, significant values of the test suggest the 
model is inadequate and thus other ARIMA model need to be 
considered in the process.

2.3. Application phase

   Another straightforward and common measure of the 
reliability of the model is the accuracy of its forecast 
generated based on partial data so that the forecast can be 
compared with known (original) observations. Some of the 
data at the end of the series omitted before the models are 
estimated. Then the models are compared on the basis of 
how accurate they forecast which have been withheld rather 
than how well they forecast the same data which has been 
used for prediction modelling.
   In this study, the fitted ARIMA model adopted from dengue 
incidence data in Subang Jaya from 2005 to 2009 was used 
to calculate the predicted values and their 95% prediction 
intervals. Three different approaches were designed to estimate 
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the predicted values for the year 2010. First approach was 
applied to predict 2010 data with a one-year (52 weeks) lag. 
The second and third method was iterative approach. They 
were applied to predict dengue incidence with 3 months 
(13 weeks) and one month (4 weeks) lag, respectively. The 
selection of this approach was reflected by the on-going 
nature of dengue surveillance where the health authorities 
in charge of disease monitoring continuously work with new 
information as it arrives. The basic idea was to superimpose 
reference lines, called control limit on a time series plot.
   The final test for an ARIMA model was its ability to 
forecast. The observed data for this period were included in 
the database in order to update the model and to compare 
the prediction values of dengue occurrence throughout the 
year 2010. To validate, the predictive value was assessed 
by calculating the root mean square error (RMSE) and the 
statistical difference of the error. This test is to evaluate the 
median of the distribution and the difference of the error 
among 3 approaches is statistically different from zero at the 
5% significance level.
   As a tropical country, Malaysia experience slight variation 
of temperature, abundant rainfall and high humidity 
throughout the year. This condition has significantly 
impact on population size, maturation period, feeding 
characteristics and survival rates of Aedes mosquitoes. In 
order to improve the predictive model, climate variables 
were used as a predictors. To facilitate selection of these 
explanatory variables, cross correlation coefficient was 
computed between climatic variables and dengue incidence 
with effect of different time lags, ranging from 1 to 16 weeks 
for each weather predictor. Cross correlation coefficient of 
each weather variable and dengue cases as well as literature 
reports were also examined to estimate maximum lag term.  
   As a criterion for assessing the predictive ability of 
the model to forecast the number of DF cases, the model 
adequacy was assess by checking whether (i) the model 
assumption were satisfied, (ii) the error were normally 
distributed and (iii) all residual ACF were equal to zero by 
using Q-statistics Box-Ljung test.

3. Results 

   A total of 4 898 dengue fever cases have been recorded by 
Vector Control Unit, MPSJ from 2005 to 2009. The monthly 
numbers of dengue fever cases notified are shown in Table 
1. Note that dengue cases in Subang Jaya increased yearly in 
the study period and reach the highest record in 2008. During 
the study period, recorded dengue incidence increased with 
greater magnitude and intensity from 805 cases in year 2005 
to 1 191 cases in 2008. The incidence then decreased to 1 033 
cases in 2009. The highest dengue cases in the study period 
were reported in February of year 2007 with 208 cases being 
recorded. 

Table 1
Number of recorded cases of dengue between 2005 and 2009 in Subang Jaya. 
Month Year (Number of dengue fever cases)

2005 2006 2007 2008 2009

January 122  23  72   93 101

February 101  86 208 127 120

March  44  90 100   95   68

April  42 125  70 122   52

May 125 125 103 151  110

June  44   89  53   94   74

July  55 106  58 144   67

August  37  84  39   92   69

September  78  60  62   77   74

October  61  40  48   77   71

November  46  60  44   56   92

December  50  77  47   63  135

Total 805 965 904 1191 1033

   Since data for climate predictors were collected continuously 
year round, trend and seasonality pattern in collected data 
need to be identified in order to control for unmeasured 
cofounders which might influence some parts of the seasonal 
and long term time trends variation in dengue cases. Daily 
weather data were aggregated to weekly average which 
comprised a total of 260 weeks period ( 52 weeks in a year for 
5 years). This analysis is independent of any spatial location 
or week of transmission of dengue fever cases. Spatial and 
temporal location is not a factor in this analysis.
   The plot of weekly mean temperature and weekly cumulative 
precipitation for the study period showed increasing trends 
in both climatic variables, however the plot of weekly mean 
precipitation didn’t reveal consistently distinctive seasonal 
pattern compared to weekly mean temperature which show 
consistent pattern during 2005-2009 (Figure 2).
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   In the first step in analyzing the time series of dengue 
incidence, a natural logarithm transformation was performed 
to stabilize the variance of the series. In order to stabilize 
the variance, seasonal and regular differencing was applied. 
Figure 3 showed the transformation of the series with 
the lowest dispersion whereby it indicated that dengue 
incidence has no significant trends.
   The temporal dependence structure was then determined 
by assessing the analysis of autocorrelation and Partial auto 
correlation. The plot of ACF and PACF (Figure 4A and Figure 

4B) described the temporal dependence structure indicating 
that the seasonal (P,D,Q) and non seasonal (p,d,q) parameters 
are needed in the model development. After differencing, 
a significant cut offs at one week lag and another at lag 52 
weeks were observed on the plot of ACF (Figure 4C). These two 
cut offs were less marked on the plot PACF (Figure 4D) and 
evolved more gradually over time, compared to the plot ACF. 
The analysis from the correlograms of the series suggests that 
p value should be equal to 1 or 2 and q value equal to 0 or 1 of 
moving average parameters.
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Figure 3. Natural logarithm of DF incidence in Subang Jaya for the period 2005 
to 2009.

Epidemiological week

   Both ACF and PACF were utilized to explore a set of 
models based on the training data from 2005 to 2009. Table 2 
showed AIC values and Mean Absolute Percent Error (MAPE) 
for the ARIMA models corresponding to difference choice 
of p,d and q. Among these models, ARIMA (2,0,0) (0,0,1)52 
had both lowest AIC (360.093) and MAPE (16.858) values and 
appeared to be the best ARIMA model to fit the occurrence 
of dengue incidence.
Table 2
AIC values for different ARIMA (p,d,q) (0,0,1)52 model and MAPE values.
Models MAPE* AIC*
(2,0,0) (0,0,1)52 16.858 360.093
(2,0,1) (0,0,1)52 16.552 367.534
(2,1,1) (0,0,1)52 17.171 369.534
(1,0,0) (0,0,1)52 18.445 408.503
(1,0,1) (0,0,1)52 18.487 367.959
(1,1,1) (0,0,1)52 17.152 369.441

* Lower values of AIC and MAPE are preferable.

   Therefore, the following ARIMA (2,0,0) (0,0,1)52 model 
was found to be the best to fit the occurrence of dengue 
incidence based on the training data from 2005 to 2009. 
The analysis of residual on ACF and PACF plots (Figure 
4E and Figure 4F) assessed the absence of persistent 
temporal correlation. For the model, the plot of the residual 
autocorrelation function died out after one lag and the 
residual autocorrelations fell within 95% confidence limit. 
This suggested that autocorrelation function of residuals at 
different lag times in the ARIMA (2,0,0) (0,0,1)52 model did not 
differ from zero. The observed and predicted dengue fever 
cases in Subang Jaya from 2005 to 2009 matched reasonably 
well.
   Furthermore, the selected ARIMA model fitted observed 
data from 2005 to 2009 was used to forecast the dengue 
incidence in 2010 by extrapolating the pattern several weeks 
ahead. In this model three approaches were designed to 
extrapolate the pattern of dengue incidence in 2010 by 
using timely interval of one year (52 weeks) lag, 3 months (13 
weeks) and one month (4 weeks) lag. Predicted 2010 values 
were shown in Table 3, where they are compared with the 
observed number of dengue cases. Table 3 presented out 

of sample predicted values obtained from the ARIMA (2,0,0)

(0,0,1)52 model by extrapolating the pattern several weeks 
ahead. The model was able to describe the pattern in weekly 
dengue cases and it produced good fit of predicted cases 
when plotted against observed data.

Table 3
Observed number of dengue cases in 2010 and corresponding out of 
sample predicted values obtained from ARIMA models.

Epidemiological 
week

Observed 
values, 

2010

Out-of-sample predicted values for 2010

4-weeks ahead
13 weeks 

ahead
52 weeks ahead

W1  35  35  34 38

W2  33  32  32 36

W3  22  30  30 33

W4  24  25  25 27

W5  24  21  21 24

W6  39  22  22 20

W7  36  28  27 25

W8  43  33  32 30

W9  36  34  34 31

W10  17  34  34 31

W11  36  23  23 21

W12  22  23  23 21

W13 17  26  25 23

W14  29  18  19 23

W15  11  21  21 25

W16  20  17  17 21

W17  10  15  15 18

W18   7  14  14 17

W19   9   9   9 11

W20   8   9   9 10

W21  12   9   9 11

W22   8  10  10 12

W23   3  10  11 12

W24   6   6   6  7
W25   2   5   5  6
W26   9   4   4  4
W27  11   5   5  4
W28  16  10  11  9
W29   4  13  13  12

W30   4   9   9   8
W31   6   5   5   4
W32   2   6   6   5
W33   1   4   4   4
W34   3   2   2   2
W35   1   2   2   3
W36   4   2   2   3
W37   4   3   3   3
W38   3   5   5   5
W39   2   4   4   5
W40   1   3    3   4
W41   5   2    3   4
W42   3   3    4   5
W43   2   5    5   5
W44   3   3    5   4
W45   1   3    5   4
W46   1   2    4   4
W47   2   1    4   3
W48   2   2    4   2
W49   3   3    3   3
W50   4   3    4   3
W51   6   3    5   4
W52   5   4    6    5
Total 617 619 634 656
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   The graph in Figure 5 compares the number of dengue 
cases observed in 2010 with the values obtained by all 
pattern of weeks. The 4 weeks step approach showed the 
smallest difference between observed and predicted values 
(RMSE=0.61) when compared to the 52 weeks step approach 
(RMSE=0.83) and to the 13 weeks step approach (RMSE=0.76). 
The observed and estimated values agreed very closely in 
the time series. However, the difference between residuals 
predicted 13 weeks ahead and those predicted 4 weeks 
ahead was not statistically significant. The prediction for the 
following months was the best compromise for helping the 
health authorities to take measures to mitigate transmission, 
morbidity and mortality.
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Figure 5. Natural logarithm of dengue incidence in Subang Jaya for 2010. 
Solid line (filled squared): observed values during the period, Dashed line: 
ARIMA model (2,0,0) (0,0,1)52 model.

   Subsequently, this study was assessed to improve the 
predictive power of the model. Therefore, a climatic variable 
was incorporated as an external regressor in the univariate 
time series ARIMA model. Table 4 described the characteristics 
of the ARIMA model for climatic variables. A regular 
differencing was applied for all climatic variables except for 
relative humidity and rainy day variables. On the contrary, a 
seasonal differencing was applied for all climatic variables 
and the residual was kept for the multivariate analysis.
   Climatic variables identified as the most interconnected to 
dengue incidence were accounted one by one, due to their 
strong interconnection. In order to facilitate the selection of 
climate variables as external regressor, cross correlations 
between residuals of dengue incidence and those climatic 
variables over a range of 16 weeks was analysed. Figure 6 
showed the cross correlation functions between dengue fever 
cases and climatic variables after applying ARIMA model. 
The following explanatory variables were the most potential 
external regressor based on the correlation coefficient of the 
residual of the time series: Lag-10 maximum temperature 
(Pearson correlation: r=0.129, P=0.017), Lag-5 minimum 
temperature (Pearson correlation: r=0.122, P=0.075), Lag-10 
average temperature (Pearson correlation: r=0.169, P=0.014), 
Lag-11 relative humidity (Pearson correlation: r=0.163, 
P=0.012). Meanwhile, precipitation and rainy day was not 
correlated with dengue incidence directly over a range of 

Figure 6. Cross correlation functions between dengue fever (DF) cases and meteorological variables after applying ARIMA model. The x axis gives the number of 
lags in weeks. Dotted lines indicate 95% confidence interval. Only positive lags are taken into account. A: Accumulative precipitation, B) Maximum temperature, C) 
Minimum temperature, D) Mean Temperature, E) Relative Humidity, F) Rainy day.
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Table 4 
Characteristics of ARIMA models for climatic variables: coefficient, standard errors of residuals, AIC, P-value after Ljung-Box test of residuals.
Climatic variables ARIMA (p,d,q) (P,D,Q)S AR1 MA1 SMA Sd (residuals) AIC P-value (Ljung-box test)*
Precipitation (1,1,1) (0,1,1)52 0.140* -1.000* -1.000* 1.339   782.502 0.22
Relative humidity (0,0,1) (0,1,1)52 -   0.462* -0.694* 4.208 1 204.913 0.52
Minimum temperature (1,1,1) (0,1,1)52 0.160* -0.936* -1.000* 0.998    565.991 0.45
Maximum temperature (1,1,1) (0,1,1)52 0.283* -0.931* -0.843* 0.976    521.573 0.57
Average temperature (1,1,1) (1,1,1)52 0.307* -0.929* -0.973* 0.928    477.077 0.61
Rainy day (0,0,1) (0,1,1)52 -   0.204* -0.981* 1.743    879.488 0.62

AR: autoregressive, MA: moving average, SMA: Seasonal moving average, *: P<0.05 significant. * The residual value must be equivalent to white 
noise.
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16 weeks-lags (r<0.1, P=non significant). Thus, the result 
of this study indicated that the climatic variables varied 
accordingly to a range of lag time.
   The identification of climate variables that significantly 
correlated with dengue incidence were then tested 
with ARIMA (2,0,0) (0,0,1)52 model. This is carried out by 
incorporating these independent variables, either the Lag-5 
minimum temperature or the Lag-11 average temperature. 
These models have improved predictive power as measured 
by the RMSE as shown in Table 5. The prediction for 2010 on a 
monthly basis were improved after the introduction of either 
minimal temperature at Lag-5 weeks (RMSE=0.71) or the 
average temperature at Lag-11 weeks (RMSE=0.75) (Figure 7).
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Figure 7.  Natural logarithm of dengue incidence in Subang Jaya for 2010. 
Solid line (filled square): observed values during the period; Blue (triangle): 
Univariate ARIMA (2,0,0) (0,0,1)52 models 13 weeks ahead values; Red (Circle): 
multivariate ARIMA (2,0,0) (0,0,1)52 models 13 weeks ahead values with minimum 
temperature lag-5.
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4. Discussion

   An early epidemic prediction tool is critical for evaluating 
the risk of an outbreak. Early identification allows early 
interventions and prevention of an epidemic instead of an 
epidemic management. There is a need to develop an early 
warning system that should be able to identify and quantify 
the risk of dengue in a population. The present system of 
prediction of dengue outbreak is based on the use of various 
entomological indices without incorporating epidemiological 
component. The ARIMA model is a useful tool for interpreting 
and applying surveillance data. It has a great potential 
to be used as a decision support tool in order to improve 
contingency planning and prevention by public health 
interventions in the field.
   The result of this study revealed that the ARIMA model 

developed, closely described the trend of dengue incidence 
and confirmed the existence of dengue fever cases in 
Subang Jaya. The analysis of auto-regression and moving 
average parameters of the developed model demonstrated 
the prediction for the year 2010. The developed model can 
be estimated by the number of dengue fever cases using the 
extrapolation of several week patterns ahead. In this study, 
the prediction for the year 2010 per period of 4 weeks ahead 
was found agreed with the observed dengue incidence. 
   Moreover, this study subsequently assessed alternative 
ARIMA model incorporating climate variables as external 
regressor. Cross correlation between dengue incidence and 
climate variables was compute over a range of lags in order 
to identify significant variables to be included as external 
regressor. Although the observed correlation are week (below 
0.2) but they are statistically significant which means these 
variables have a powerful strength to improve the reliability 
of developed predictive model. It was found that temperature 
variables is a key component to introduce in the model as 
external regressor either minimal or average temperature in 
order to improve the prediction capability of the model. 
   Climate variables are key components in dengue 
transmission cycle and affect dengue incidence in multiple 
ways. For instance rainfall plays an indefinite role on dengue 
incidence while temperature and relative humidity affect 
this transmission in several ways. Rainfall has the potential 
to effect either to increase the transmission of vector borne 
disease by promoting the proliferation of breeding places for 
mosquitoes or by eliminating breeding sites via heavy rainfall 
that destroy existing breeding sites. Hence, interrupting 
the development of eggs or larvae out of the pool. In this 
study rainfall parameters failed to be included as the best 
variable to fit in predictive model. Concurrently, temperature 
indirectly influences the development and digestion of 
mosquitoes by reducing the duration of the gonotrophic 
cycle and female size. An increased temperature accelerates 
viral dissemination within the mosquito, reducing the 
extrinsic incubation period in the water. Besides that, higher 
temperature may increase the ratio of the standing crop of 
pupae to the number of adult females.
   In recent years, the ability to predict local and regional 
climate in terms of accuracy and lead times has rapidly 
been improved due to advances in technology. This has 
allowed a better understanding of the interaction between 
climate and the temporal distribution of dengue fever as 
well as stimulating research interest on epidemic prediction 
modelling. As systematic mosquito data were not available 

Table 5 
Characteristics of univariate and multivariate model using climate variables which have most correlated to dengue incidence: Coefficients, 
standard error and P-value of parameters, AIC, RMSE for prediction.
ARIMA model Coefficient Standard error t-statistics P-value AIC RMSE
None 360.093 0.76
Average Temperature_Lag10 0.208 0.035 1.128 0.219 362.812 0.75
Minimum Temperature_Lag5 0.248 0.041 1.654 0.023 359.190 0.71
Relative humidity_Lag11 0.218 0.054 2.343 0.025 362.462 0.75

Last column gives the predictive power as measured by the RMSE of the four ARIMA models using 4 weeks (1 month) ahead approach. Parameter 
estimated by maximum likelihood.
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in the study area, this study explored the climate variables to 
develop dengue forecasting model based on the delay effect 
of climate variables on dengue incidence.
   Several studies have documented scientific evidence on 
the impact of climate condition on the life cycle dynamic of 
both vectors and virus. From mosquito hatching to human 
case appearance, several successive phase occured resulting 
cumulative lags observed in the study. These phases include 
larval and pupal development (10-21 d), gonotrophic cycle (3 
to 7 d per cycle), extrinsic incubation in mosquitoes (7 to 15 
d) and incubation in human (1-12 d)[23-25]. The lag between 
weather data and DF incidence data will differ depending 
on the respective lag between the biological cycle and 
clinical symptoms. Thus, the lag is expected to be shorter 
for minimum temperature that is usually associated with 
adult mosquito mortality and expected to be longer for high 
relative humidity which is related to adult survival and 
hatching. On the contrary, the mean temperature is involved 
in all biological cycles of mosquitoes that take more time to 
influence the dengue incidence.
   The results from this model are consistent with all of this 
assumption that is similar with other studies dealing with 
the effect of climate on dengue outbreak. Many studies have 
also dealt with the effect of climate on dengue outbreak. In 
Thailand, the dengue incidence was positively correlated 
with the average temperature at lag 3-4 months[25]. In Taiwan, 
there was significant positive correlation with the maximum 
temperature at lag 1-4 months, the minimum temperature 
at lag 1-3 months and the relative humidity at lag 1-3 
months[26]. In Brazil, positive association were found between 
the minimum and maximum temperature and dengue 
transmission at lag-0[15], and in the city of Guangzhou in 
China, the minimum temperature and relative humidity were 
positively correlated with dengue incidence at lag-1 month.
   It should be acknowledged that dengue transmission is a 
very complicated problem. The risk of transmission varies in 
space and time and the dynamics of the disease is dependent 
on seasonal changes in weather and immunity. Dengue 
transmission is particularly sensitive to rainfall, temperature, 
and humidity, which is associated with the monsoon season. 
Along with weather variables, other environmental and host 
factors such as community intervention measures and human 
behaviour also influence mosquito populations and the 
degree of contact between human being and vector.
   The development of this model hopefully can be used 
to monitor and predict dengue incidence in Subang Jaya. 
This is in line with an urgent need to improve approaches 
for monitoring and predicting dengue incidence in order 
to reduce spreading of DF cases globally. Hence there is a 
potential of the ARIMA model to be used in the estimation 
and prediction of dengue cases, thus supporting the existing 
intervention program. Accurate predictions for even a few 
months ahead provide an invaluable opportunity to mount 
a vector control intervention. This study proves the ability 
of ARIMA model to be used as a simple, precise and low cost 
functional dengue early warning system and thus help to 
develop an efficient dengue control program.
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Comments 

Background
   Modeling of dengue cases has become an interest among 
many epidemiologists in Malaysia. ARIMA models are 
particularly useful in modelling the temporal dependence 
structure of a time series as they explicitly assume temporal 
dependence between observations. Through the modelling 
of the temporal structure, particularly for seasonal disease, 
prediction made with ARIMA models have been shown to 
be more accurate than those obtained by other statistical 
methods (Box et al., 2011).
  
Research frontiers
   This study proves the ability of ARIMA model to be used 
as a simple, precise and low cost functional dengue early 
warning system and thus help to develop an efficient dengue 
control program.

Related reports
   The results from this model are consistent and similar with 
other studies dealing with the effect of climate on dengue 
outbreak. Many studies have also dealt with the effect of 
climate on dengue outbreak, e.g., Watts et al. (1987); Focks et 
al.(2005); Luz et al. (2008). 

Innovations & breakthroughs
   The ARIMA model was found to be the best to fit the 
occurrence of dengue incidence based on the training data 
from 2005 to 2009. The analysis of residual on ACF and PACF 
plots assessed the absence of persistent temporal correlation. 
For the model, the plot of the residual autocorrelation function 
died out after one lag and the residual autocorrelations fell 
within 95% confidence limit. This suggested that auto-
correlation function of residuals at different lag times in 
the ARIMA model did not differ from zero. The observed and 
predicted dengue fever cases in Subang Jaya from 2005 to 
2009 matched reasonably well.
  
Applications
   In this study, three different approaches were designed 
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to estimate the predicted values for the year 2010. First 
approach was applied to predict 2010 data with a one year 
(52 weeks) lag. The second and third method was iterative 
approach. They were applied to predict dengue incidence 
with 3 months (13 weeks) and one month (4 weeks) lag, 
respectively. The selection of this approach was reflected 
by the on-going nature of dengue surveillance where 
the health authorities in charge of disease monitoring 
continuously work with new information as it arrives. The 
basic idea was to superimpose reference lines, called 
control limit on a time series plot.  

Peer review
   This is a good study in which the authors have developed 
a forecasting model for the incidence of dengue cases 
in Subang Jaya using time series analysis. The result of 
this study are interesting and revealed that the ARIMA 
model developed, closely described the trends of dengue 
incidence and confirmed the existence of DF cases in 
Subang Jaya for the year 2005 to 2010. The ARIMA model with 
weekly variation is a useful tool for disease control and 
prevention program as it is able to effectively predict the 
number of dengue cases in Malaysia.
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